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Abstract. Mobility assistance is of key importance for people with dis-
abilities to remain autonomous in their preferred environments. In severe
cases, assistance can be provided by robotized wheelchairs that can per-
form complex maneuvers and/or correct the user’s commands. User’s ac-
ceptance is of key importance, as some users do not like their commands
to be modified. This work presents a solution to improve acceptance.
It consists of making the robot learn how the user drives so corrections
will not be so noticeable to the user. Case Based Reasoning (CBR) is
used to acquire a user’s driving model reactive level. Experiments with
volunteers at Fondazione Santa Lucia (FSL) have proven that, indeed,
this customized approach at assistance increases acceptance by the user.

1 Introduction

Mobility is of key importance for persons to carry their Activities of Daily Living
(ADL). People affected by a disability may require mobility assistance to remain
autonomous. Lack of human resources has led to research in mobility assistive
devices, like a robotic power wheelchair. These wheelchairs are not a traditional
robot in the sense that it is controlled, at least partially, by its user. This ap-
proach is known as shared control. Furthermore, doctors and caregivers have
reported that excessive assistance may lead to loss of residual skills, whereas an
active profile is reported to improve rehabilitation. Hence, in these cases it is
desirable to give the user as much control as possible.

There are different approaches to shared control. In safeguarded navigation,
for example, robots are always under human control, except when a poten-
tially dangerous situation is detected. In these cases, the robot takes over [1][2]
and a reactive algorithm is used to avoid such a danger. Other shared control
approaches[5][6] rely on a basic set of primitives like AvoidObstacle, FollowWall
and PassDoorway to assist the user in difficult maneuvers, either by manual
selection or automatic triggering. In extreme, the user just points a destination
and the robot does the rest [3]. In order to avoid sharp control switches from
human to robot and to prevent loss of residual skills by not letting the user
participate at all in complex tasks a third approach to shared control is collabo-
rative control [7][8], where user and robot commands are mixed in a continuous
way so that people may contribute their best to any situation.
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The authors proposed a collaborative control method in [7] consisting on
weighting robot’s and user’s commands by their respective driving efficiencies at
each situation and adding them at reactive level. Thus, the most efficient agent
was awarded with more control, yet the least efficient one always contributed to
emergent motion. This approach was tested at Fondazione Santa Lucia (FSL),
Rome, by a large number of volunteers presenting different degrees of functional
disability. Surprisingly, we found out that people with a better functional dis-
ability profile actually performed worse than people with worse diagnosis in a
significant number of cases. Further analysis proved that this group actually
rejected assistance, i.e. tried to counteract robot commands, as soon as they
acknowledged that the wheelchair was not doing exactly what they commanded.

To solve this problem, we propose to use a CBR based approach to let the
robot learn how the user drives. Rather than choosing the most efficient com-
mand, the robot will try to provide the most similar one to what the person
would do at each situation within established safety constraints. Since the robot’s
commands become much more similar to the user’s, acceptance is improved and
global efficiency grows, as proven by further experiments with volunteers at FSL.
To achieve this, the wheelchair learns how a given user drives using CBR.

2 Collaborative Navigation System

Our basic approach to collaborative navigation – fully explained in [7] – is based
on reactive navigation. Reactive schemes implicitly deal with several sensors and
goals at a time, so we can simply handle user and robot commands as two differ-
ent goals. Let −→vU and −→vR be the user and robot command vectors respectively.−→vU is extracted from a joystick and −→vR is calculated via the simplest pure Po-
tential Fields Approach (PFA) [9], where goals and obstacles are modelled as
attractors and repulsors, respectively. We can combine −→vU and −→vR linearly into
a collaborative command −→vC . However, we do not want user and robot to have
the same weight in the emerging decision. Instead, we want assistance to adapt
to the user’s needs. Hence, we weight −→vU and −→vR by the local efficiency of user
and robot, respectively: the more efficient a user is at solving a given situation,
the less assistance he/she receives.

−→v C = ηR · −→v R + ηU · −→v U (1)

Motion efficiency η needs to be calculated locally, because in a purely reactive
(i.e. memoryless) approach, global factors like trajectory length or completion
time cannot be used. We have identified three local factors, ranging from 0
to 1, with an impact on η: smoothness (ηsm in Eq. 2), directness (ηdir in Eq.
3) and safety (ηsf in Eq. 4), corresponding respectively to how smooth the
wheelchair is driven, how efficient it is to reach a target and how close it moves
to obstacles. Global efficiency η is the average of these three efficiencies, that
roughly correspond to the properties of a navigation function:
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ηsm = e−Csm·|αsm| (2)

ηdir = e−Cdir·|αdir| (3)

ηsf = 1− e−Csf ·|αsf | (4)

αsm being the angle between the heading direction and command direction; αdir

being the angle between goal direction and command direction; αsf being the
angle between obstacle direction and command direction; and Csm, Cdir and
Csf constants to decide how much impact have each angle on its respective local
efficiency. As most of situations require uniform efficiency factor changes, these
constants are set to 1 by default.

The main advantages of our approach [7] are that: i) it tends to preserve
curvature and safety, as most PFA-based algorithms do; ii) users contribute to
control chair all the time because ηU is never equal to 0; and iii) humans provide
(when possible) a deliberation level to the system to avoid local traps.

The main problem with the proposed approach was that η̄C (collaborative
command efficiency) turned out to be lower for people with better functional
profiles than for people with severe disabilities in a significant number of cases
[7]. We observed that a number of these users seemed to be fighting robot control,
so we developed a new metric that we called Disagreement. Disagreement is
equal to the angle between the user’s command −→vU and the emergent one −→vC
and it represents how similar emergent motion is to what the user expects.
Disagreement in our tests for people with good functional profile and low driving
efficiency was very high: around 40-45%. Even though there is always a baseline
Disagreement when a person drives a vehicle depending on its dynamics and
kinematics -we measured it to be around 15% in our wheelchair-, it becomes
obvious that it is not comfortable for a person to drive like this.

To solve this problem, we propose to replace commands provided by PFA by
commands learnt from previous experience on how the user drives, as described
in next section. Thus, the differences between commands proposed by the user
and by the robot should be quite lower and acceptance improves.

3 Robot Adaptation to User

3.1 CBR-Based Collaborative Control

CBR has been used in navigation before, typically for global path planning in
static environments [10][11] rather than for reactive navigation. There are also
approaches for global planning in dynamic environments [12]. However, in [12]
new opportunities cannot be discovered when the environment changes unless
the topological map, which is based on, is regularly reorganized. Kruusmaa [13]
proposed a grid-based CBR global path planning method to overcome the afore-
mentioned problem. However, she concluded that CBR-based global navigation is
beneficial only when obstacles are large and dense and only a few solutions exist.
Otherwise, the solution space may become too large. Some CBR-based methods
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focus on reactive navigation [14][15], but they all rely on accumulating experi-
ence over a time window while navigating in a given environment to obtain an
emergent global goal seeking-behavior. Hence, they are environment-dependent.
The authors already proposed a purely reactive navigation layer based on CBR
in [7] for autonomous robots. Its original purpose was to create ad-hoc reactive
navigation strategies via supervised learning and adapt them to different robot
structures via learning by experience. Hence, we could avoid kinematics and dy-
namics calculations. In the present work, a similar strategy is used to make the
robot learn how the user drives to improve acceptance.

Learning a reactive navigation behavior basically consists of associating what-
ever the driver is doing to the situation at hand. The user is already taking into
account the vehicle kinematics and dynamics, as well as the relative position of
obstacles and goal and any local consideration, like floor condition, mechanics,
etc, that he/she intuitively adapts to through practice. This knowledge is im-
plicitly added to the case base. After a while, all this information is encoded into
a set of cases, that can be evaluated with our local metrics: ηsm, ηdir and ηsf .
Eventually, the case base stabilizes to the best average solutions the user gives
to any input situation. This happens after acquired cases are clustered to obtain
valid prototypes, so that duplicates and least efficient cases are removed from
the case base as explained below. This case base is not environment-dependent
because there are not so many situations one can face from a local point of view
[16]: the only relevant information at reactive level is how far we are from close
obstacles, where we are heading and where we would like to go.

Obviously, if our system cloned exactly what the user does, it would provide
no assistance except to correct punctual errors. However, if we combine a CBR
reactive navigation module with the proposed collaborative control approach,
advantages are more obvious: we use learnt cases when possible and receive
assistance when needed. Each time the robot retrieves a case from the case base,
its efficiency (ηCBR) is checked. If ηCBR is over a given threshold Uη (in our
case, 0.7), the retrieved case solution becomes −→v R. Otherwise, −→v R is obtained
from PFA, even if ηCBR is bigger than ηPFA. Then

−→v R and −→v U are weighted
by their respective efficiencies as usual to calculate −→v C , which is stored in the
case base for future reference.

3.2 CBR Implementation

The number of different situations that a robot can locally find is not too large
[16], so the number of cases to acquire a given motion strategy is not large either
(150-200 cases in our previous tests [7]). Hence, we can use a flat structures and
the usual feature-value vector representation. Our cases are compared using a
nearest-neighbour (NN) algorithm. After several tests, we chose to work with
the Tanimoto distance Ts. For cases C1 and C2:

Ts(C1, C2) =
C1 · C2

|C1|2 + |C2|2 − C1 · C2
(5)
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We found that similar environment arrangements result in a lower Tanimoto
distance, whereas other metrics, e.g. Euclidean distance, reward higher partial
similarities in nearby obstacles than the environment as a whole [7]. Our input
instance includes all commented reactive factors: goal position, laser readings
(nearby environment) and wheelchair heading. Our output includes the user
motion command (−→v CBR) and our evaluation measure is its global efficiency
(ηCBR). Fig. 1 shows our case structure. Since minor differences between sensors
readings usually correspond to slight robot shiftings rather than to different
situations, we have discretized the space sampled by the robot into 8 equal sized
arc regions and also discretize laser readings into 5 non equal intervals that have
proven to be valid for a typical indoor environment [7]: i) critical (0-20 cm);
ii) near (20-50 cm); iii) medium (50-100 cm); iv) far (100-150 cm); and v) no
influence (more than 150 cm).

Fig. 1. CBR case structure and example

Our system uses both learning by observation and learning by own experience.
If there is any recorded trace of a given user driving the wheelchair without
assistance, it is used to initialize the case base. As soon as the user starts driving,
his/her commands are combined with the robot’s and learnt by the system. If
the user is unable to provide an efficient way of solving a problem, the solution
will be mostly based on PFA. However, the robot’s commands tend to be more
and more similar to the user’s as a whole. It needs to be noted that we include
no case adaptation stage in our CBR cycle to preserve user’s commands as much
as possible. Instead, adaptation is implicitly provided by collaborative control.

Finally, a MaxMin clustering algorithm is applied to the case base on a regular
basis to group similar cases into a single cluster prototype (CP). The resulting
CP is equal to the average of all cases in the cluster weighted by their own
efficiencies. Thus, a given CP is not the most frequent response to a situation,
but the most efficient response the user may produce on a regular basis. Also,
low efficiency cases weight too little in CP calculation, so in practice they are
removed unless there is no learnt alternative to cope with the related situations.
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Our final case base is composed only of CPs and we only compare new instances
with those Cps, but we preserve all learnt cases for future rearranging. This
whole process is performed offline each time the number of newly acquired cases
exceeds a threshold. Typically, it needs to be performed at least twice, once for
the learning by observation stage and another for the first run while learning by
own experience. Later on, the number of acquired cases decreases significantly
and it is no longer necessary to cluster cases after each experiment. This process
has, mainly, four targets: i) to remove duplicated cases, ii) to bind the number
of cases in the database, iii)to avoid oscillations between similar cases, and iv)
to clean spurious solutions from the database.

4 Experiments and Results

The proposed CBR system was built on CARMEN (Collaborative Autonomous
Robot for Mobility ENhancement), a modified a Runner Meyra wheelchair (Fig.
2.a),donated by Sauer Medica S.L. and equipped with an industrial PC running
Linux OS and a frontal Hokuyo laser URG04-RX for localization and obsta-
cle detection. Moving backwards was not allowed due to lack of rear sensors and
mirrors in the wheelchair. All experiments took place -after approval by FSL Eth-
ical Committee- in Casa Agevole, a 60 m2 fully furnitured, standard-compliant
test house built in the FSL complex in Rome1. All tests were performed by 18
volunteering inpatients presenting different degrees of disability (Left or Right
Hemiparesis, Ischemic Stroke, Spinal cord injury, Cerebral Hemorrhage). Their
cognitive and physical skills ranged from good to low, according to the mini-
mental state examination (MMSE)[17] (1-30), the Barthel Index [18] (0-100)
and the Instrumental ADL (IADL) [19] (0-5/8). In our volunteers, these scales
were MMSE: 3-29, Barthel: 8-100, IADL: 0-8. Volunteers were divided into 3
groups depending on their diagnosed profile: 1) minor; 2) mild; and 3) severe
physical/cognitive disabilities .Fig. 2.b shows the approximate path that volun-
teers were asked to perform. It can be observed that it involves door crossing,
narrow areas and significant turns. This path was suggested by our medical staff
because it includes most situations faced in ADL.

Each volunteer performed at least three runs (autonomous mode, shared con-
trol using PFA, and shared control using CBR). First of all, they drove the
wheelchair without assistance (for benchmarking). In this mode, only a safe-
guard layer is active to prevent collisions. Many volunteers did not manage to
complete the path in this mode. Our second mandatory run was PFA-based
collaborative control navigation. Most users managed to do the run in assisted
mode at first attempt, but one group of inpatients – group 3 – had notable ex-
ceptions. During this run, CBR was active and cases were acquired for the next
run. Finally, all volunteers tried at least a CBR-based collaborative control runs,
using their own case bases to assist navigation. During these runs, the case base
kept acquiring new cases on a need basis.

1 http://www.progettarepertutti.org/progettazione/

casa-agevole-fondazione/index.html

http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/index.html
http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/index.html
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Fig. 2. a) Robot wheelchair (CARMEN) b) Proposed path at Casa Agevole

Table 1. Average results for all inpatients in collaborative control tests

PFA Tests CBR Tests
Mean Dev. Mean Dev.

Global efficiency (%) 65.23 20.10 71.42 18.74

Smoothness (%) 64.18 27.80 69.05 25.54

Directness (%) 39.31 28.93 53.60 26.73

Safety (%) 92.25 17.60 91.73 16.06

Intervention Level (%) 79.17 - 75.59 -

Disagreement (%) 41.83 27.75 26.11 21.87

Joystick variation (%) 1.62 4.69 1.64 4.47

Inconsistency (%) 9.53 10.93 6.59 9.28

Completion time (sec) 48.45 - 43.46 -

Table 1 shows the average results of our experiments. Standalone results are
omitted, as they are possibly biased by the users’ learning curve. Our task met-
rics include all efficiency factors η, ηsm, ηsf and ηdir and total time. Our psych
metrics include: Intervention Level, defined as the portion of time that the user
moves a joystick [20] and showing if the user presents an active profile; ii) Dis-
agreement, as previously commented, related to effort and frustration; it needs
to be noted that due to mechanical issues like inertia, response time, joystick
sensitivity, etc., our lowest wheelchair disagreement seemed to settle around 20%
in standalone mode for our wheelchair; iii) Inconsistency, defined as the variation
of the user’s commands when facing similar situations; and iv) Joystick varia-
tion, which measures changes over 10% in the position of the stick and has been
used as an indirect measure of workload [21][22].

It can be observed that efficiency in CBR-based collaborative mode is higher –
specially in terms of directness – and its deviation is lower. The most important
issue, however, is that disagreement decreases from 41.83% (PFA-based mode)
to 26.11% (CBR-based mode), meaning that users are more comfortable with
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the wheelchair. This was, in fact, the main target of the proposed approach.
Consistency is also better.

Table 2 shows the global results of the experiments separated into our 3
groups. It can be observed that the CBR approach improves and homogenizes
performance significantly. However, disagreement does not decrease equally for
all groups. People in group 3 do not benefit from this method, probably because
their consistency is low and learnt commands are not too efficient.

Table 2. Anova Test of global efficiency and disagreement for groups: 1) Good cognitive
and physical 2) Good cognitive and low physical 3) low cognitive and physical

Group 1 Group 2 Group 3

PFA Global efficiency (%) 66.77 70.75 68.86

CBR Global efficiency (%) 74.50 76.20 76.33

ANOVA (pvalue) 0.000 0.018 0.000

PFA Disagreement (%) 32.87 31.85 25.66

CBR Disagreement (%) 25.10 19.40 31.8

ANOVA (pvalue) 0.000 0.004 0.000

Patients in group 3 3 12

4.1 A Case in Detail

The problem our CBR approach meant to solve is clearly represented by vol-
unteer 1, a 56 years old female affected by multiple sclerosis with good physi-
cal and cognitive skills (MMSE=26, Barthel=100, IADL=8). This person could
move with the help of a walker, but had no previous experience with power
wheelchairs. Table 3 briefs her performance in her five tries: standalone, PFA-
based (x3) and CBR-based collaborative control. This person repeated the PFA
test three times and her third try was the worst of all. In fact, she failed to
finish her last two PFA-based paths and reported that ”the wheelchair was not
working” while trying to move it into a wall.

In her first standalone run, only the safeguard layer was active – to prevent
imminent collisions –, hence the minor differences between human and collabo-
rative performance in this mode (table 3). Her standalone global efficiency was
equal to 67.56%, and her worst feature was directness, probably due to lack of
practice with power wheelchairs. Intervention Level (table 3) was very high be-
cause the wheelchair did not move unless there was some human input (99.73%).
Besides, her Joystick variation was very low (0.09 %). Her standalone trajectory
was quite smooth and efficient, even at door crossing, except at the second turn,
when she got too close to the walls and had to steer right sharply. In brief, her
standalone run was quite good and she reached her goal in just 30.67 seconds. In
order to observe what this volunteer actually lacked, we clustered her commands
according to the relative position of wheelchair, goal and obstacles and realized
that she had trouble adjusting turns.
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Table 3. Results for inpatient 1 trials in all modes. In the CBR column, data without
parenthesis represents the PFA value and data with them the CBR value.

Control type User PFA PFA PFA CBR

ηglobal (%)
Robot — 63.12 65.73 58.97 68.61(69.23)
User 67.51 65.17 60.7 57.05 70.6
Shared 67.56 68.4 67.88 64.0 74.5

ηsm (%)
Robot — 56.45 57.37 36.81 52.2(78.73)
User 66.4 65.91 56.4 61.26 66.62
Shared 66.33 65.1 63.17 61.96 74.6

ηdir (%)
Robot — 43.85 51.6 48.75 61.98(34.13)
User 44.28 37.46 38.42 22.0 48.61
Shared 44.39 45.75 44.85 37.0 52.73

ηsf (%)
Robot — 88.9 88.24 91.39 91.81(94.92)
User 91.95 92.34 87.41 87.94 96.55
Shared 92.03 94.45 95.59 92.96 96.22

Intervention Level% 99.73 70.73 77.85 97.95 82.83(82.56)

Disagreement
% 25.18 21.37 29.87 47.31 20.89(25.11)
dev 25.18 14.96 18.02 27.7 18.72(26.63)

Joystick variation
% 0.09 0.2 0.07 0.06 2.38
dev 1.12 2.37 1.08 0.99 3.65

Inconsistency
% 6.73 7.7 8.58 4.91 6.69
dev 6.73 7.7 8.58 4.91 6.69

Total Length m 6.7 6.68 4.98 4.8 6.4
Completion time sec 30.67 38.2 31.61 32.22 30.63

Her next 3 runs were performed with PFA-based collaborative control: not
only did ηC not increase but even decreased in the last run whereas the volunteer
tried to collide into a wall to check if the wheelchair obeyed her. Obviously, the
wheelchair tried to correct her and they struggled for a couple of seconds. Her
directness dropped to 22% and ηC decreased sharply. In this particular run,
disagreement became as high as 47.31% – meaning that half the time, user and
emergent commands were in conflict –.

Fig. 3 shows ηH , ηR and ηC for the third PFA-based run. We have chosen to
represent ηsm, and ηdir and ηsf as the red, green and blue channels of the RGB
colorspace, respectively, for visibility in our efficiency plot. Hence, pink efficiency
means loss of directness (steering areas) and purple-blue means loss of directness
and smoothness (sharp direction changes). Fig. 4.b shows how disagreement was
highly correlated with ηR, i.e. it grew when the robot had more impact on
emerging commands. Fig. 4.a shows how disagreement grew after crossing the
door – when ηR began to increase and the user became aware of the robot
intervention– . After that, the rest of the trajectory was a fight for control.
Although the robot tried to compensate the user’s motion commands (cyan ηR
area), emergent ones were affected and, as a result, she failed to reach the goal.
The inpatient’s inconsistency in this run shows that she was driving far from
her usual skills: from the 43 different commands clusters that she typically used
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Fig. 3. Inpatient 1 results for PFA-based collaborative mode: a) human efficiency; b)
robot efficiency; c) collaborative efficiency

Fig. 4. Inpatient 1 results for PFA-based collaborative mode: a) disagreement for PFA-
based collaborative control; b) cross correlation disagreement/ηR

to solve the proposed trajectory in standalone mode, 25 – corresponding mostly
to steering decisions – had a very large standard deviation in this run. This
basically means that her decisions were statistically erratic during the struggle.

Fig. 5 shows two clusters corresponding to locations involving steer correction
and strong disagreement. The robot -in the center of the plot- is heading in
the 0 degrees direction, obstacles are represented with circles and the goal is
marker with an x. On the right of each plot, we can see the joystick shadow
for human and robot. Cluster 16 corresponds to the beginning of the trajectory,
when the first steering decision needed to be taken. As usual, inpatient 1 delayed
her steering command, so the robot initiated it, and provoked a noticeable turn
to the right to avoid getting too close to the wall. The emerging command, no
longer equal to the user’s, was practically a 900 right turn, only much slower
than the user’s command (shorter vector). At this point, the user became fully
aware of the robot’s influence and tried to fight it, but, eventually, the struggle
became so intense that we got clusters like cluster 34, with a goal on the right
side of the wheelchair, obstacles on the left and yet, the user pushing the joystick
hard into the obstacles. Since her efficiency was very low at the point, the robot
was dominant and the combination was a slow forward motion. This eventually
got the wheelchair so close to an obstacle that further safe maneouvre was not
possible and inpatient 1 failed to finish the trajectory.
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Fig. 5. Clusters representation of two situations with a strong disagreement between
inpatient 1 and robot in PFA-based collaborative control

Fig. 6.a shows the path in CBR-based collaborative control. As commented,
the case base was filled with user’s data coming from all the previous runs,
but in this case mostly included data from the standalone and first PFA runs,
because efficiency grew worse later. During execution, if a situation is not similar
enough to the output case or ηCBR is too low, we use a PFA command instead
in collaborative control at that specific location (areas marked in Fig. 6.b with a
dot). We can observe that disagreement was specially high when PFA was used
instead of CBR. Nevertheless, disagreement was no longer correlated with ηR
because most learnt cases were efficient enough to be extensively used through
the trajectory. In this case, inconsistency was similar in average to standalone
mode and there were less, more homogeneous command groups than in PFA
mode.

Results of this test are briefed in the last column of table 3. As commented,
we calculate what PFA would do all the time, but PFA commands are not used
unless ηCBR goes under a safety threshold or the retrieved case instance is too
far from the current situation. Table 3 shows how ηC in the CBR-based mode
case increased to 74.5%, higher than in any of the previous runs, including stan-
dalone mode, and higher than each of the components separately: PFA (68.61%),

Fig. 6. Inpatient 1 results for CBR-based collaborative mode: a) path; b) disagreement
(PFA and CBR); c) correlation between disagreement and system efficiency
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CBR (69.23%) and user (70.6%). More specifically, smoothness was boosted up
to 74.6%, even though CBR was in this case, by definition, worse than PFA
(78.73% to 52.2%). This happened because: i) the case base was still not com-
plete enough; and ii) PFA are designed to preserve smoothness, whereas CBR
produces mildly sharp direction changes at case switching. Inpatient 1 had prac-
tically the same smoothness than in standalone mode, i.e. she was not fighting
the machine anymore. Directness, though, was quite low for CBR with respect
to PFA, but the user compensated this and, at locations where ηC was too low,
PFA took control of the situation, so that combined directness raised to 52.73%.
Safety, as commented, was preserved by all combinations of control in the ex-
periment, but it was a bit higher here. We have experimentally checked that
this happens when users are comfortable with control and drive smoothly, as, in
these cases, they tend not to get too close to obstacles.

To illustrate how CBR decisions are closer to human commands, Fig. 7 shows
two clusters corresponding to approximately the same situations regarding the
relative position of obstacles and goal. Fig. 7.a corresponds to PFA-based col-
laborative mode, whereas Fig. 7.b is obtained in CBR-based collaborative mode.
It can be observed that PFA-based collaborative mode corrected directness and
reduced variability, but CBR-based collaborative mode reduced disagreement as
well.

Fig. 7. Inpatient 1 cluster comparative for the same location for PFA-based (a) and
CBR-based (b) collaborative mode

5 Conclusions and Future Work

This paper has presented a CBR-based collaborative control technique to reduce
user’s stress and assistance rejection by adapting help to the user via learning.
Collaborative control is based on reactively combining the contribution of both
human and robot, weighting them by their respective local efficiencies, to obtain
an emergent collaborative navigation behavior. The robot learns how the user
drives via CBR and contributes to control with more familiar commands. Thus,
differences between user and emergent commands are less perceivable by the
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user. However, if CBR commands are not efficient enough, and due to safety
reasons, PFA is used instead of CBR.

The system was tested by 18 inpatients at FSL in a home-like environment.
Average efficiency was higher in CBR-based collaborative mode than in PFA-
based one or standalone mode. Besides, all users managed to finish a mildly
complex trajectory in CBR-based collaborative mode. As expected, CBR-based
navigation mimicked the user’s way of driving and, in most cases – good or mild
cognitive skills –, reduced disagreement between user and machine. Persons with
very low cognitive skills did not provide enough efficient patterns to build a valid
user model, so in those cases the system typically behaved like a PFA-based
collaborative one.

The main drawback of the proposed system is that most users agreed that
the wheelchair moved a bit brusque. This is provoked by case swapping, since
the case base has a limited number of cases, and also by swaps from CBR to
PFA-based collaborative control. This problem can be solved by adding some
temporal inertia and future work will focus on this.

Future work will focus too on checking if the contents of a given user’s case
base can be correlated with the person’s condition and, if so, on predicting the
amount of help required by a specific user at a given situation instead of just
providing it in a completely reactive fashion. This would allow us to include
temporal inertia and reduce the commented problems related to case switching.
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