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Abstract. We investigate the problem of constructing efficient, efficiently
invertible injective maps with large image to the set of rational points of an
elliptic curve over a finite field, and obtain an essentially optimal solution for a
large families of curves, including all Edwards curves with a complete addition
law.

1. Introduction

Various cryptographic protocols based on the hardness of Diffie-Hellman-like
problems in a certain group G, such as El Gamal encryption [6] or Lindell’s recent
universally-composable commitment scheme [12], assume the existence of an effi-
cient (possibly randomized) algorithm f mapping messages m ∈ {0, 1}ℓ to elements
of G, in such a way that m can also be recovered efficiently from f(m). For exam-
ple, El Gamal encryption is a priori defined on group elements, so that a message
needs to be mapped to an element of G before encrypting it, and mapped back to
a bit string upon decryption. Moreover, the size ℓ of supported bit strings should
preferably as close as possible to the bit size of G to maximize bandwidth. We call
such an algorithm f an injective encoding.

For certain groups G, like multiplicative groups of finite fields or certain super-
singular elliptic curves, it is not difficult to construct injective encodings achieving
the optimal value of ℓ. On the other hand, for a general group G, it is not obvious
how to construct a function f with ℓ even super-logarithmic in the size of G. In
§2.3, we prove that this is not possible with a deterministic generic group algorithm.

When G is the group of points of any elliptic curve over a finite field, one can
construct a probabilistic injective encoding with ℓ equal to about half of the size
of G, as we show in §2.4, but we do not know constructions achieving a better ℓ in
general. Recently, however, a solution was proposed by Farashahi [7] in the special
case of Hessian elliptic curves over finite fields Fq with q ≡ 2 (mod 3).

In §4, we propose an essentially optimal construction for a new, large class of
ordinary elliptic curves over fields Fq with q ≡ 3 (mod 4), including all curves with
exactly two rational points of exact order 4 (these are birational to the well-known
Edwards curves with complete addition law, studied by Edwards and Bernstein–
Lange [1]. Our construction is based on the bijective encoding from [9] to certain
hyperelliptic curves of genus 2 and 3, and on the observation from [10] that those
curves are quadratic covers of elliptic curves.
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2. Injective encodings

2.1. Definition. To fix ideas, and although it is not essential for our main purpose,
let us first give a formal definition of what we mean by an “injective encoding”.

Let us say that a cyclic group family (Gk)k∈N consists in the data of a sequence
of integers nk ≥ 1 converging to infinity, a sequence of integers sk ≥ 0 that is at
most polynomial in lognk, and for each k, an efficiently computable bijection σk

between the cyclic group Z/nkZ of order nk and a set Gk ⊂ {0, 1}sk of bit strings
of length sk, as well as efficient algorithms:

⊕k : {0, 1}sk × {0, 1}sk → {0, 1}sk ∪ {⊥} ⊖k : {0, 1}sk → {0, 1}sk ∪ {⊥}
which induce on the Gk the group addition and negation obtained by transport
of structure via σk. Here, “efficient” means with a time complexity polynomial in
lognk (or equivalently, in sk).

For example, if qk is an increasing sequence of positive prime powers, we can
construct a cyclic group family Gk = F

∗
qk with nk = qk − 1 and sk = O(log qk) by

representing invertible elements in Fqk
as polynomials over the corresponding prime

field (themselves the concatenation their coefficients as bit strings). Similarly, if E
is an elliptic curve over Z[1/N ] with N coprime with the qk’s such that E(Fqk

) is
cyclic for all k, we have a cyclic group family Gk = E(Fqk

) with nk = qk +O(
√
qk)

and sk = O(log qk) obtained by representing curve points in e.g. affine coordinates
(with a special string for the point at infinity).

Given such a cyclic group family (Gk) and a sequence of non negative integers
ℓk, we define an ℓk-injective encoding to (Gk) be the data consisting of a pair of
efficient, possibly randomized algorithms:

Fk : {0, 1}ℓk → Gk ⊂ {0, 1}sk Ik : {0, 1}sk → {0, 1}ℓk ∪ {⊥}
for all k, which satisfy Ik(Fk(m)) = m for all m ∈ {0, 1}ℓk with overwhelming
probability over the randomness involved. We will typically express ℓk in terms
of νk = ⌊log2 nk⌋, which is the optimal bound, in the sense that we clearly have
ℓk ≤ νk for all k by injectivity.

In what follows, the indices k, as well as references to sequences of integers and
groups, will be omitted most of the time for simplicity’s sake.

2.2. Some simple, optimal examples. Let p be an odd prime number. The
bijection [1, p− 1] → F∗

p yields an obvious injective injective encoding to the mul-
tiplicative group G = F∗

p which is optimal, in the sense that ℓ = ν.
Similarly, we obtain an optimal injective encoding to the group of squares G =

(F∗
p)

2 ⊂ F∗
p from the bijection [1, p−1

2 ] → (F∗
p)

2 given by x 7→ x2. The inversion

algorithm I then computes the unique square root of an element in (F∗
p)

2 contained

in [1, p−1
2 ]. This is sufficient to obtain IND–CPA El Gamal encryption in the group

(F∗
p)

2 when p is a safe prime, assuming the Decisional Diffie–Hellman assumption
in that group (though one typically wouldn’t want to use it for efficiency reasons).
On the other hand, it is not clear how to construct a close to optimal injective
encoding to the subgroup of prime order q in F

∗
p when p is a Diffie–Hellman prime

p = 2r · q + 1.
Some elliptic curve groups also have optimal injective encodings. This is for

example the case for the supersingular elliptic curves given by an equation of the
form:

E : y2 = x3 + b
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over a field Fq with q ≡ 2 (mod 3). Then, as observed e.g. by Boneh and Franklin

[3], the map Fq → E(Fp)\{∞} given by u 7→
(

(u2−b)1/3;u
)

is an efficient bijection,
and its inverse is clearly efficient as well. This gives, again, an optimal injective
encoding to G = E(Fq). Similarly, the genus 1 case of the construction we proposed
in [9] provides an optimal injective encoding to supersingular elliptic curves of the
form:

E : y2 = x3 + ax

over fields Fq with q ≡ 3 (mod 4). However, we are not aware of any strictly
optimal injective encoding to groups of points of ordinary elliptic curves.

2.3. Generic injective encodings. It is easy to construct ℓk-injective encodings
to any cyclic group family (Gk) provided that ℓk = O(log νk) (and of course ℓk ≤ νk

for all k). Indeed, in that case, the set {0, 1}ℓk of elements to be encoded contains
only polynomially many elements: therefore, Fk and Ik can be defined as mutually
inverse dictionary lookups for each k, and still be efficient. For example, we can
define Fk to be the restriction of σk to {0, 1, . . . , 2ℓk − 1} ⊂ Z/nkZ (coded as
bit strings in the obvious way), and Ik as a series of 2ℓk successive comparisons.
Moreover, Fk and Ik are clearly generic group algorithms in the sense of Shoup
[14].

On the other hand, if ℓk = ω(log νk), then it is easy to see that Fk and Ik

cannot be both generic group algorithms for all k if the Fk’s are deterministic.
Indeed, suppose that it were the case. Since it doesn’t take any group element as
input, Fk must be of the form:

Fk(m) = σk

(

f(m)
)

for some efficiently computable function fk : {0, 1}ℓk → Z/nkZ, by definition of a
generic group algorithm. Then, let S = Fk({0, 1}ℓk) be the image of Fk. The
generic group algorithm fk ◦ Ik computes the discrete logarithm σ−1

k (g) of any
element g ∈ S with overwhelming probability in poly(νk) steps. As a result, by
Shoup’s argument, we must have #S = poly(νk): a contradiction.

This means that deterministic injective encodings from sets of superlogarithmic
bit size to must use the particular representation of individual group elements. We
conjecture that no probabilistic generic ω(log ν)-injective encoding exists either,
although this seems less easy to establish.

2.4. Injective encodings to elliptic curves. For groups of points of arbitrary
(even ordinary) elliptic curves over finite prime fields, it is possible to construct
ℓ-injective encodings for much larger values ℓ than in the generic case. We propose
one such construction here.

Let E be an elliptic curve over Fp (p ≥ 5) in short Weierstrass form, and ℓ an
integer such that ℓ ≤ (1/2−ε) log2 p for some fixed constant ε ∈ (0, 1/2). We define
the encoding algorithm F : {0, 1}ℓ → E(Fp) as follows. To compute F (m), pick
a random integer x in [0, p − 1] whose least significant ℓ bits coincide with m. If
there are points in E(Fp) of abscissa x mod p, return one of those (at most two)
points; otherwise, start over. The inversion algorithm I then simply maps a point
(x, y) ∈ E(Fp) to the bit string m formed by the ℓ least significant bits of x.

To prove that this method works, it suffices to show that F terminates in ex-
pected polynomial time on any input m. We obtain the following, more precise
result.
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Theorem 1. If p is large enough, the expected number of iterations in F on any
input is less than 3.

Proof. Let P (m) be the success probability of F on input m after a single iteration;
in other words, P (m) is the probability that a random integer x in [0, p− 1] whose
least significant ℓ bits coincide with m is the abscissa of a point in E(Fp). Since for
each such x there are at most two corresponding points in E(Fp), we have:

(1) P (m) ≥ 1

2
· #{(x, y) ∈ E(Fp) | lsbℓ(x) = m}

#{x ∈ [0, p− 1] | lsbℓ(x) = m}
where lsbℓ(x) denotes the bit string formed by the ℓ least significant bits of x.
Clearly we have

#{x ∈ [0, p− 1] | lsbℓ(x) = m} ≤ 2−ℓ · p.
On the other hand, the value #{(x, y) ∈ E(Fp) | lsbℓ(x) = m} can be estimated
as in [8, §6]. It is the number of Fp-points (x, y) of E such that x/p is in a certain
interval of R/Z of length ≥ 2−ℓ · (1− 2/p) (because x can be of the form m+ 2ℓ · r
at least for any r ∈ [0, ⌊p/2ℓ⌋ − 1]). But the values x/p in R/Z for (x, y) ∈ E(Fp)
are close to equidistributed. More precisely, we know from Bombieri’s bound on
character sums [2] that for any nontrivial additive character ψ of Fp, we have:

(2) T (ψ) =

∣

∣

∣

∣

∣

∑

(x,y)∈E(Fp)\{∞}

ψ(x)

∣

∣

∣

∣

∣

≤ 4
√
p.

As a result, the (1-dimensional version of) the Erdős–Turán–Koksma inequality [5,
Th. 1.21] gives, for any interval I ⊂ R/Z of length L and any positive integer
H < p:
∣

∣

∣

∣

∣

#{(x, y) ∈ E(Fp) \ {∞} | x
p ∈ I}

#E(Fp) \ {∞}
− L

∣

∣

∣

∣

∣

≤ 3

H + 1
+

3

#E(Fp) \ {∞}

H
∑

h=1

T (ψh)

h

where ψh is the additive character x 7→ e2iπhx/p. Setting H =
√
p − 1 and N =

#E(Fp) \ {∞}, we get, in view of (2):

#{(x, y) ∈ E(Fp) \ {∞} |
x

p
∈ I} ≥ L ·N − 3N√

p
− 3 · 4√p log

√
p

≥ L · p− 2L
√
p− 3

√
p− 6− 6

√
p log p

≥ L · p− 12
√
p log p

since |N − p| ≤ 2
√
p by the Hasse bound. Plugging this estimate back into (1), we

finally obtain:

P (m) ≥ 1

2
· 2

−ℓ(1− 2/p)p− 12
√
p log p

2−ℓ · p =
1

2
− 7 log p

pε

since ℓ ≤ (1/2−ε) log2 p. Hence, the expected number of iteration in F is 1/P (m) ≤
3 for large enough p as required. �

Thus, we can construct ℓ-injective encodings to elliptic curves over prime fields
for ℓ = (1/2 − ε)ν: this is much better than the logarithmic bound we get in the
generic case, but this still falls short of optimality by a constant factor greater than
2. It is conceivable that the same algorithm does in fact work with a larger ℓ still,

possibly as large as (1− ε)ν or even ν − logO(1) ν; we doubt that current results on
the distribution of points on elliptic curves are sufficient to prove that the algorithm
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terminates on all inputs on those cases, however (though it should be possible to
bound its complexity on average over all inputs m).

The only injective encoding to ordinary elliptic curves in the literature achieving
a better bound is, to our knowledge, the one proposed by Farashahi in [7]. It applies
to Hessian curves (i.e. elliptic curves with a rational point of order 3) over fields
Fq with q ≡ 2 (mod 3), and achieves ℓ = ν − 1, a single bit short of optimal. In
the next sections, we construct a similar deterministic injective encoding to elliptic
curves over fields Fq with q ≡ 3 (mod 4) which have rational point of order 4 and
only one point of order 2 (these are birational to the computationally interesting
Edwards curves), also with ℓ = ν − 1.

3. On some special families of hyperelliptic curves

3.1. Mapping to “odd” hyperelliptic curves. Let f be an odd polynomial over
a finite field Fq with q ≡ 3 (mod 4), which has simple roots in Fq. We denote its
degree by 2g + 1, and consider the hyperelliptic curve over Fq defined by:

H : y2 = f(x) = a0x
2g+1 + a1x

2g−1 + · · ·+ agx.

In [9], we defined an “almost bijective” map F : Fq → H(Fq) as follows.
Denote by

√· the usual square root function on the set of quadratic residues in
Fq (exponentiation by (q+1)/4), and by χq(·) the nontrivial quadratic character of
F
∗
q , extended by 0 to Fq as usual. Let further ε(t) = χq(f(t)) for all t ∈ Fq. Then,

we define F as:

(3)
F : Fq −→ H(Fq)

t 7−→
(

ε(t) · t ; ε(t)
√

ε(t) · f(t)
)

.

Let W ⊂ H(Fq) be the set of Fq-rational Weierstrass points of H (the points
where the rational function y is ramified, i.e. the point at infinity and those of the
form (x, 0)), and T ⊂ Fq the set of roots of f in Fq. In [9], we proved:

Lemma 2. The function F given by (3) is well-defined, maps all points in T to
(0, 0) ∈ W , and induces a bijection Fq \ T → H(Fq) \W .

3.2. Hyperelliptic curves with a certain non-hyperelliptic involution. We
now turn our attention to hyperelliptic curves over Fq (where Fq is as above, and
in particular of odd characteristic) defined by another special type of polynomials.
Let f(x) = b2g+1x

2g+1 + b2gx
2g + · · · be a squarefree polynomial of degree 2g + 1

over Fq, whose coefficients bj satisfy the relation b2g+2−j = bj. In other words:

(4) x2g+2f(1/x) = f(x).

Then we obtain immediately that the hyperelliptic curve:

H : y2 = f(x)

admits the following non-hyperelliptic involution σ defined over Fq:

(5)

σ : H −→ H

(x; y) 7−→
(

1

x
;

y

xg+1

)

.

We claim that the quotient curve H/〈σ〉 is a hyperelliptic curve of genus ⌊g/2⌋ for
which we can give an explicit equation.
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Theorem 3. There is a (unique) squarefree polynomial h ∈ Fq[u] of degree g + 1
satisfying the relation:

h0(u
2) = (1 + u)2g+2f

(

1− u
1 + u

)

.

The quotient curve H/〈σ〉 is then isomorphic to the hyperelliptic curve of genus
⌊g/2⌋ defined by H0 : v2 = h0(u), and the quotient map H → H/〈σ〉 ∼= H0 is given
by:

(x; y) 7→ (u; v) =

(

(1− x
1 + x

)2

; y
( 2

1 + x

)g+1
)

.

Proof. To establish the first claim, we introduce the polynomial:

h(t) = (1+t)2g+2f

(

1− t
1 + t

)

= b2g+1(1−t)2g+1(1+t)+b2g(1−t)2g(1+t)2+· · · ∈ Fq[t].

Clearly, h is of degree at most 2g+2. Moreover, the coefficient of t2g+2 is −b2g+1 +
b2g − b2g−1 + · · · = f(−1), which we can show is non zero.

Indeed, suppose f(−1) = 0. Taking the derivative of (4), we see that f ′(x) =
(2g + 2)x2g+1f(1/x) − x2gf ′(1/x), which for x = −1 gives f ′(−1) = 0 − f ′(−1),
hence f ′(−1) = 0. As a result, we see that −1 is a double root of f , which is a
contradiction since f was assumed to be squarefree.

Hence, h is a polynomial of degree 2g + 2. In addition, we have:

h(−t) = (1− t)2g+2f

(

1 + t

1− t

)

= (1 − t)2g+2

(

1 + t

1− t

)2g+2

f

(

1− t
1 + t

)

= h(t)

so that the polynomial h is even, and there is thus a unique polynomial h0 of degree
exactly g + 1 such that:

(6) h0(t
2) = h(t) = (1 + t)2g+2f

(

1− t
1 + t

)

.

It remains to see that h0 is squarefree. Suppose that h0 has a double root
u0 ∈ Fq. We can write it as u0 = t20 for some t0 ∈ Fq, and since we can replace t0
by −t0, we can assume t0 6= −1. Then, let x0 = (1 − t0)/(1 + t0). By (6) we have
f(x0) = 0. Moreover, taking the derivative of (6) we obtain the following relation
in Fq[t]:

2t · h′0(t2) = (2g + 2)(1 + t)2g+1f

(

1− t
1 + t

)

− 2(1 + t)2gf ′

(

1− t
1 + t

)

.

For t = t0, this gives −2(1 + t0)
2gf ′(x0) = 0, hence x0 is a double root of f in Fq,

a contradiction.
Hence, the curve H0 : v2 = h0(u) is a hyperelliptic curve of genus ⌊g/2⌋ as

required. Evidently, it is the quotient of H1 : v2 = h0(t
2) = h(t) by the involution

σ1 : (t; v) 7→ (−t; v), and the rational maps:

H −→ H1

(x; y) 7−→
(

1− x
1 + x

; y
( 2

1 + x

)g+1
)

(

1− t
1 + t

;
v

(1 + t)g+1

)

←−[ (t; v)
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are inverse of each other. Since the involutions σ and σ1 correspond to each other
under these isomorphisms, this completes the proof. �

Remark 4. (1) The previous results also apply to a polynomial f of degree
2g+2. We focused on degree 2g+1 as we will be considering odd polynomials
f in the next section.

(2) The one-line idea of the proof is of course that the rational function t =
(1 − x)/(1 + x) of degree 1 on H satisfies σ∗t = −t; hence, writing the
equation of H in terms of t leads to the form v2 = h0(t

2) for some h0,
which makes the quotient is easy to find.

(3) The fact that H/〈σ〉 is a curve of genus ⌊g/2⌋ can be seen directly with the
Riemann-Hurwitz formula, and occurs in various forms in the literature.
See for example [13, Th. 4].

3.3. Behavior of F with respect to the involution. Putting the results of §3.1
and §3.2 together, consider a polynomial f over Fq of degree 2g + 1 which is odd
and satisfies f(x) = x2g+2f(1/x). Then the hyperelliptic curve

H : y2 = f(x)

admits both the non-hyperelliptic involution σ from §3.2 and the encoding function
F : Fq → H(Fq) from §3.1. In this paragraph, we look into the relation between
the two.

For any t ∈ F∗
q , we have:

ε

(

1

t

)

= χq

(

f
(1

t

)

)

= χq

(

t−2g−2 · f(t)
)

= χq(f(t)) = ε(t).

Moreover, for any u ∈ Fq,
√
u2 = u(q+1)/2 = χq(u) · u. As a result, if we let

F (t) = (x; y), we can compute:

F

(

1

t

)

=

(

ε
(1

t

)1

t
; ε
(1

t

)

√

ε
(1

t

)

f
(1

t

)

)

=

(

ε(t)

t
; ε(t)

√

ε(t)
1

t2g+2
f(t)

)

=

(

ε(t)

t
; ε(t)

χq(t)
g+1

tg+1

√

ε(t)f(t)

)

=

(

1

x
;
(

ε(t)χq(t)
)g+1 · y

xg+1

)

.

In particular, if g is odd, the following simple relation always holds:

F (1/t) =

(

1

x
;

y

xg+1

)

= σ
(

F (t)
)

.

This makes it easy to construct an injective encoding to H0(Fq) where H0 = H/〈σ〉,
whose image contains about q/2 points. However, this case is actually never in-
teresting, because H0 is then isomorphic to an “odd” hyperelliptic curve of genus
(g − 1)/2 (in the sense of §3.1). To see this, note that with the same notation as
in the proof of Theorem 3, the polynomial h is self-reciprocal (because f is odd),
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and hence so is h0. As a result, we have h0(u) = ug+1h0(1/u). It follows that the
polynomial:

r(x) = (1 + x)g+1 · h0

(

1− x
1 + x

)

is odd, and since g + 1 is even, H0 is isomorphic to the odd hyperelliptic curve
y2 = r(x). We can thus use the results of [9] to obtain an “almost bijective” map
Fq → H0(Fq), as well as a

(

ν −O(1)
)

-injective encoding to the Jacobian of H0.
Therefore, we concentrate on the case when g is even, which we study in more

details from now.

3.4. An injective function when g is even. In the situation of the previous
paragraph, we see that when g is even, F (1/t) can be either σ

(

F (t)
)

or its image
under the hyperelliptic involution, depending on t, so the map does not directly
pass to the quotient. To overcome this problem, we restrict ourselves to an even
more special case.

We now choose f squarefree of the form f(x) = xg+1f1(x
2)f1(1/x

2), where f1 is
an even, squarefree polynomial of degree g/2 whose leading and constant coefficients
cg/2 and c0 are such that cg/2c0 = ±1, and that satisfies f1(1) 6= 0. This shape

directly implies that f is of degree 2g+1, odd, and satisfies f(x) = x2g+2f(1/x) so
we are indeed in a particular case of the above discussion. Then, for all t ∈ Fq, let:

α(t) = χq

(

f1(t
2)
)

.

We claim that for all t ∈ Fq with f(t) 6= 0, the following holds:

(7) α(t) = ε(t)χq(t) · α(1/t).

Indeed, for any t ∈ F∗
q , we have:

ε(t)χq(t) = χq

(

tg+2 · f1(t2) · f1
( 1

t2

)

)

= 1 · α(t) · α(1/t)

which, if t is not a root of f , yields (7) by multiplying both sides by α(1/t), which
is then necessarily non zero.

Now, introduce a “twisted” variant Fα of F defined for all t ∈ Fq by Fα(t) =
(

x;α(t)y
)

, where (x; y) = F (t). Since F (−t) = (x;−y), we have for all t ∈ Fq:

Fα(−t) =
(

x;α(−t) · (−y)
)

=
(

x;−α(t)y
)

so that Fα(−t) is the image of Fα(t) under the hyperelliptic involution of H . More-
over, we obtain, for all t ∈ Fq other than roots of f :

Fα

(

1

t

)

=

(

1

x
; α
(1

t

)

· ε(t)χq(t) ·
y

xg+1

)

=

(

1

x
; α(t) · y

xg+1

)

= σ
(

Fα(t)
)

,

so that Fα does pass to the quotient and gives a map to the points of H0 = H/〈σ〉
which in turn yields the injective map we are looking for. To see that, denote by
G the map H(Fq)→ H0(Fq) induced by the covering. We first prove the following
result.

Lemma 5. Let S ⊂ Fq be any subset of Fq containing no root of f , and such that
S ∩ S−1 = ∅ (i.e. for all x ∈ S, 1/x 6∈ S). Then, the restriction of G ◦ Fα to S is
injective.



INJECTIVE ENCODINGS TO ELLIPTIC CURVES 9

Proof. Consider t, t′ ∈ S such that G
(

Fα(t)
)

= G
(

Fα(t′)
)

. We must have either

Fα(t) = Fα(t′) or Fα(t) = σ
(

Fα(t′)
)

= Fα(1/t′).
In the latter case, we see in particular that the first coordinates of Fα(t) and

Fα(1/t′) coincide, so that t = ±1/t′. By definition of S, t = 1/t′ is excluded, so
we must have t = −1/t′. Now observe that G commutes with the hyperelliptic
involution, i.e. we have G ◦ τH = τH0

◦G, where τH , τH0
are the maps induced on

H(Fq) and H0(Fq) by the corresponding hyperelliptic involutions: this is obvious
from the explicit expression of G given in the proof of Theorem 3. We can thus
write:

G
(

Fα(t′)
)

= G
(

Fα(−1/t′)
)

= G
(

τHFα(1/t′)
)

= τH0
G
(

σFα(t′)
)

= τH0
G
(

Fα(t′)
)

.

Therefore, G
(

Fα(t′)
)

is a Weierstrass point on H0. Given the expression of G, this
implies that Fα(t′) is a Weierstrass point on H , and hence that t′ is a root of f ,
which is a contradiction.

If on the other hand Fα(t) = Fα(t′), we see in particular by comparing the first
coordinates of Fα(t) and Fα(t′) that t′ = ±t. But since S contains no root of f ,
Fα(t) is not a Weierstrass point, so it is not equal to its image Fα(−t) under the
hyperelliptic involution τH . Hence t′ = −t is impossible, and we must have t = t′

as required. �

Corollary 6. Let S be as in Lemma 5. The restriction of G ◦ Fα to S ∪ {0, 1} is
injective.

Proof. The images of 0 and 1 under G ◦ Fα in H0(Fq) are:

G
(

Fα(0)
)

= G
(

(0; 0)
)

= (1; 0)

G
(

Fα(1)
)

= G
(

(ε(1);α(1)ε(1)
√

ε(1)f(1))
)

= G
(

(1; f1(1))
)

=
(

0; f1(1)
)

since f(1) = f1(1)2 and hence ε(1) = 1 and
√

f(1) = α(1)f1(1). Thus, we see that
the images of 0 and 1 under G ◦ Fα are distinct. Moreover, it follows from the
previous proof that for all t ∈ S, G

(

Fα(t)
)

is never a Weierstrass point on H0, and

hence is always distinct from G
(

Fα(0)
)

. And finally, if there was some t ∈ S such

that G
(

Fα(t)
)

= G
(

Fα(1)
)

, then, again following the previous proof, we would

have t = ±1, which is impossible since S ∩ S−1 = ∅. �

Now fix I ⊂ Fq a subset of Fq of cardinal (q − 1)/2 such that I ∩ (−I) = ∅ and
−1 6∈ I. If q is prime, we can simply take I = [1, (q − 1)/2]. If q is a power of the
prime p, we can choose a basis of Fq as an Fp-vector space, and set I as the set of
elements in F

∗
q whose first non zero component on that basis is in [1, (p− 1)/2].

Then, remove from I all the elements of the form 1−t
1+t where t is a root of f , and

add 0 and 1 to the resulting set to get I0. In other words:

I0 =

(

I \
{1− t

1 + t
| f(t) = 0

}

)

∪ {0, 1}.

Note that for any non zero root t of f , the four values t, −t, 1/t and −1/t are
pairwise distinct roots of f (because f(±1) 6= 0 and −1 is a non quadratic residue),
and exactly two of them satisfy 1−t

1+t ∈ I. As a result, the number of roots of f is of

the form 4ρ+ 1, and we have #I0 = (q − 1)/2− (2ρ+ 1) + 2 = (q + 1)/2− 2ρ.
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We are then in a position to define our injective function:

(8)

Finj : I0 −→ H0(Fq)

u 7−→ (G ◦ Fα)

(

1− u
1 + u

)

.

The following is an immediate consequence of Corollary 6.

Theorem 7. The function Finj is well-defined and injective.

In the next section, we make it explicit how this function Finj yields (ν − 1)-
injective encodings to the group of points of a large family of elliptic curves.

4. A new encoding to elliptic curves

4.1. Explicit encoding. In the situation of §3.4, the quotient curve H0 is an
elliptic curve when g = 2. In that case, the polynomial f1 is of degree 1, of the
form f1(x) = cx + δ/c for some c ∈ F∗

q and δ = ±1. Moreover, since f(x) =

x3f1(x)f1(1/x) is squarefree, we must have c 6= ±1, and all the other values of c
give a valid polynomial f . The hyperelliptic curve H is then:

H : y2 = f(x) = δx5 +

(

c2 +
1

c2

)

x3 + δx.

Its quotient H0 = H/〈σ〉 is the elliptic curve of equation v2 = h0(u) where h0

is the polynomial of degree 3 defined in Theorem 3, and the function Finj readily
provides an injective encoding to H0(Fq).

Clearly, when δ = +1, the polynomial f1(x
2) has no root in Fq, and as a result,

0 is the only root of f . Therefore, the range I0 of Finj is of cardinality (q + 1)/2;
when q is prime, it is the interval [0, (q − 1)/2].

On the other hand, when δ = −1, the roots of f are 0,±c,±1/c, and I0 is then of
cardinality (q+1)/2−2 = (q−3)/2; when q is prime, it is the interval [0, (q−1)/2]
from which one has removed ±t,±1/t where t = 1−c

1+c .
In both cases, we see that the size of the set from which we encode is a single

bit less than the cardinality #H0(Fq) = q +O(
√
q) of the target group. Hence, we

do get a deterministic (ν − 1)-injective encoding as stated.

4.2. Target elliptic curves. Let us also look more closely at the elliptic curve
H0. We can compute h0 and find that:

h0(1− u) =

(

c+
δ

c

)2

u3 − 16δu2 + 16δu.

By applying the change of coordinates (u; v) 7→ (1 − u; v) and then scaling the
coordinates as (u; v) 7→

(

4(c + δ/c)2u; 8(c + δ/c)2v), we finally find that H0 is
isomorphic to the elliptic curve:

Eδ
c : y2 = x3 − 4δx2 + δ (c+ δ/c)2 x.

This curve obviously has a rational point of exact order 2, namely (0; 0). When
δ = +1, it is the only one; indeed, the trinomial x2−4x+(c+1/c)2 has discriminant
16−4(c+1/c)2 = −4(c−1/c)2 which is a non quadratic residue. On the other hand,
if δ = −1, all three points of exact order 2 are rational, since x2 + 4x− (c− 1/c)2

has discriminant 16 + 4(c− 1/c)2 = 4(c+ 1/c)2 which is a square.
Furthermore, there is a rational point P such that [2]P = (0; 0) if and only if

δ = +1. To see that, it suffices to show that there is a line through (0; 0) which is
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tangent to the curve, since the intersection point will clearly satisfy the requirement.
Now if y = tx is a line through (0; 0), the other intersection points with the curve
have their abscissa given by t2x = x2 − 4δx + δ(c + 1/c)2, and the line is tangent
when the discriminant of this quadratic equation vanishes, i.e. when t satisfies:

(4δ + t2)2 = 4δ

(

c+
1

c

)2

.

There is no solution when δ = −1 since the right-hand side is not square. On the
other hand, when δ = +1, this is equivalent to:

t2 = −4± 2

(

c+
1

c

)

and this equation has a solution for one of the two possible signs, because
(

− 4 +

2(c+1/c)
)

·
(

−4−2(c+1/c)
)

= −4(c−1/c)2 is a non quadratic residue, and hence
exactly one of the factors must be square.

Thus, in all cases, we see that the curve admits a rational subgroup of order 4.
In fact, the rational 4-torsion is of order 4 or 8: namely Z/4Z when δ = +1, and
(Z/2Z)2 or Z/2Z× Z/4Z when δ = −1 depending on whether one of the points of
order 2 other than (0; 0) is divisible by two.

4.3. Curves isomorphic to E±
c . Conversely, we claim that, up to a quadratic

twist, any elliptic curve over Fq with a point of order 4 and only one point of order
2 is isomorphic to E+

c for some c. Indeed, let E be any such elliptic curve. We can
put E in Weierstrass form, translate so that the point of order 2 is (0; 0), and scale
the coordinates to get an equation of the form:

E : y2 = x3 ± 4x2 + ax

for some a ∈ Fq, with a 6= 0, 4 since the right-hand side must have no double root.
Note that the nontrivial quadratic twist of E has the same equation, only with the
sign of the coefficient of x2 reversed.

Since there is a single point of order 2, the discriminant 16− 4a of the trinomial
x2±4x+amust be a non quadratic residue. Hence, a−4 is a square. Moreover, (0; 0)
is divisible by two: therefore, there exists a t such that the line of slope t through
(0; 0) is tangent to the curve. This t is such that the equation t2x = x2±4x+a has
a double root, so we must have (−t2 ± 4)2 − 4a = 0, hence a is a square. And the
discriminant of the trinomial c2 −√a · c+ 1 is a− 4, so there is a c ∈ Fq \ {0,±1}
such that a = (c+ 1/c)2. This shows that E is either E+

c or its quadratic twist as
required.

Note that curves with a point of order 4 and only one point of order 2 are bira-
tional to Edwards curves x2 + y2 = 1 + dx2y2 with non square d [1]. Bernstein and
Lange showed that these curves are quite interesting for computation and cryp-
tography, as they admit a complete addition law, and admit the fastest arithmetic
known to date.

It seems a bit more difficult to find a nice characterization of curves isomorphic
to E−

c or to its twist. Consider any elliptic curve E over Fq with full rational
2-torsion (these curves are also isomorphic to computationally interesting curves,
namely twisted Huff curves [11]). As above, we can put E in the form:

E : y2 = x3 ± 4x2 + ax
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for some a ∈ Fq with a 6= 0, 4, and since the right-hand side splits in linear factors,
4 − a is a square. If in addition a happens to be a non quadratic residue, then
E is isomorphic to either E−

c or its twist. Indeed, −a is then a square, and the
discriminant of the trinomial c2 −

√
−a · c− 1 is −a+ 4 which is a square as well;

hence, we can find c ∈ Fq \ {0,±1} such that a = −(c − 1/c)2. However, a nice
characterization of the cases when a is a non quadratic residue escapes us at the
time of this writing (it is not the case, in particular, that a must be a non quadratic
residue whenever (0; 0) is not divisible by two).

4.4. Mapping to the twist. The previous paragraph suggests that if E is e.g. an
Edwards curve x2 + y2 = 1 + dx2y2 with non square d, then we know an injective
encoding to either E(Fq) itself or to E′(Fq), where E′ is the nontrivial quadratic
twist of E. But we can in fact do better and map to E(Fq) itself!

Indeed, if H is as in §4.1, then it is classical (see e.g. [13] or [4, Ch. 14]) that
is does not only cover the elliptic curve H0 : v2 = h0(u) given by the quotient by
σ, but also H ′

0 : v2 = u3h0(1/u) given by the quotient by στ . Moreover, we have
u3h0(1/u) = −h0(u), so that H ′

0 is the nontrivial quadratic twist of H0.
It is easy to adapt the discussion of §3.4 to obtain a similar injective function

F ′
inj to H ′

0(Fq), and hence a (ν − 1)-injective encoding to the twists of E±
c . We

conclude:

Theorem 8. Let E be an elliptic curve over a finite field Fq with q ≡ 3 (mod 4).

(1) If E has an Fq-point of exact order 4 and a single point of exact order 2,
then there is a (ν − 1)-injective encoding to E(Fq).

(2) If E(Fq) has a subgroup isomorphic to (Z/2Z)2, it admits an equation of
the form y2 = x3 ± 4x2 + ax. If a is a non quadratic residue, then there is
a (ν − 1)-injective encoding to E(Fq).

5. Conclusion

In this paper, we propose an efficient injective encoding with almost optimally
large image for a new class of elliptic curves including important examples like
Edwards curves. The only previous construction in that direction was for Hessian
curves.

Note that, from a cryptographic perspective, this does not completely solve the
problem of construction an encoding for El Gamal encryption, as the curves we
encode to have a small subgroup which can reveal information about the message
(i.e. El Gamal is one-way but not semantically secure in this setting). This is similar
to the situation of El Gamal in multiplicative groups F∗

p when p is not a safe prime.
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