Skip to main content

A Study on the Randomness Reduction Effect of Extreme Learning Machine with Ridge Regression

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7951))

Included in the following conference series:

Abstract

In recent years, Extreme Learning Machine (ELM) has attracted comprehensive attentions as a universal function approximator. Comparing to other single layer feedforward neural networks, its input parameters of hidden neurons can be randomly generated rather than tuned, and thereby saving a huge amount of computational power. However, it has been pointed out that the randomness of ELM parameters would result in fluctuating performances. In this paper, we intensively investigate the randomness reduction effect by using a regularized version of ELM, named Ridge ELM (RELM). Previously, RELM has been shown to achieve generally better generalization than the original ELM. Furthermore, we try to demonstrate that RELM can also greatly reduce the fluctuating performance with 12 real world regression tasks. An insight into this randomness reduction effect is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhu, Q.-Y., Qin, A.K., Suganthan, P.N., Huang, G.-B.: Evolutionary extreme learning machine. Pattern Recognition 38, 1759–1763 (2005)

    Article  MATH  Google Scholar 

  2. Lan, Y., Soh, Y., Huang, G.-B.: Ensemble of online sequential extreme learning machine. Neurocomputing 72(13-15), 3391–3395 (2009)

    Article  Google Scholar 

  3. Suresh, S., Saraswathi, S., Sundararajan, N.: Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Engineering Applications of Artificial Intelligence 23(7), 1149–1157 (2010)

    Article  Google Scholar 

  4. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Processing Letters 17(8), 754–757 (2010)

    Article  Google Scholar 

  5. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: Op-elm: optimally pruned extreme learning machine. IEEE Transactions on Neural Networks 21(1), 158–162 (2010)

    Article  Google Scholar 

  6. Sun, Z., Choi, T., Au, K., Yu, Y.: Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems 46(1), 411–419 (2008)

    Article  Google Scholar 

  7. Feng, G., Huang, G.-B., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 20(8), 1352–1357 (2009)

    Article  Google Scholar 

  8. Lan, Y., Soh, Y., Huang, G.-B.: Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 73, 3191–3199 (2010)

    Article  Google Scholar 

  9. Lan, Y., Soh, Y., Huang, G.-B.: Two-stage extreme learning machine for regression. Neurocomputing 73(16-18), 3028–3038 (2010)

    Article  Google Scholar 

  10. Hoerl, A., Kennard, R.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 55–67 (1970)

    Google Scholar 

  11. Huang, G.-B., Wang, D., Lan, Y.: Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics (2011)

    Google Scholar 

  12. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics (99), 1–17 (2010)

    Google Scholar 

  13. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  14. Toh, K.: Deterministic neural classification. Neural Computation 20(6), 1565–1595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, D., Asuncion, A.: UCI machine learning repository (2007)

    Google Scholar 

  16. Vlachos, P.: Statlib project repository. Carnegie Mellon University (2000)

    Google Scholar 

  17. Mardikyan, S., Cetin, E.: Efficient choice of biasing constant for ridge regression. Int. J. Contemp. Math. Sciences 3(11), 527–536 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Er, M.J., Shao, Z., Wang, N. (2013). A Study on the Randomness Reduction Effect of Extreme Learning Machine with Ridge Regression. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39065-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39064-7

  • Online ISBN: 978-3-642-39065-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics