Skip to main content

Time Series Fault Prediction in Semiconductor Equipment Using Recurrent Neural Network

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7952))

Included in the following conference series:

  • 3776 Accesses

Abstract

This paper presents a model of Elman recurrent neural network (ERNN) for time series fault prediction in semiconductor etch equipment. ERNN maintains a copy of previous state of the input in its context units, as well as the current state of the input. Derivative dynamic time warping (DDTW) method is also discussed for the synchronization of time series data set acquired from plasma etcher. For each parameter of the data, the best ERNN structure was selected and trained using Levenberg Marquardt to generate one-step-ahead prediction for 10 experimental runs. The faulty experimental runs were successfully distinguished from healthy experimental runs with one missed alarm out of ten experimental runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerdprasop, K., Kerdprasop, N.: Feature Selection and Boosting Techniques to Improve Fault Detection Accuracy in the Semiconductor Manufacturing Process. In: Int. Multi. Conf. Engineers and Computer Scientists 2011, pp. 398–403. IAENG, Hong Kong (2011)

    Google Scholar 

  2. Stokes, D., May, G.S.: Real-Time Control of Reactive Ion Etching Using Neural Networks. IEEE Trans. Semi. Manufac. 13, 469–480 (2000)

    Article  Google Scholar 

  3. Hong, S.J., May, G.S.: Neural Network Based Time Series Modeling of Optical Emission Spectroscopy Data for Fault Detection in Reactive Ion Etching. In: SPIE Conf. Adv. Microelectronic Manufacturing, vol. 5041, pp. 1–8 (2003)

    Google Scholar 

  4. Hong, S.J., May, G.S., Park, D.-C.: Neural Network Modeling of Reactive Ion Etching Using Optical Emission Spectroscopy Data. IEEE Trans. Semi. Manufac. 16, 598–608 (2003)

    Article  Google Scholar 

  5. May, G.S.: Manufacturing ICs the Neural Way. IEEE Spectrum 31, 47–51 (1994)

    Article  Google Scholar 

  6. Baker, M., Himmel, C., May, G.S.: Time Series Modeling of Reactive Ion Etching Using Neural Networks. IEEE Trans. Semi. Manufac. 8, 62–71 (1995)

    Article  Google Scholar 

  7. Nadi, F., Agogino, A., Hodges, D.: Use of Influence Diagrams and Neural Networks in Modeling Semiconductor Manufacturing Processes. IEEE Trans. Semi. Manufac. 4, 52–58 (1991)

    Article  Google Scholar 

  8. Hong, S.J., Lim, W.Y., Cheong, T.S., May, G.S.: Fault Detection and Classification in Plasma Etch Equipment for Semiconductor Manufacturing e-Diagnostics. IEEE Trans. Semi. Manufac. 25, 83–93 (2012)

    Article  Google Scholar 

  9. Pearson, K.: Principal Components Analysis. The London, Edinburgh and Dublin Philosophical Magazine and Journal 6, 559 (1901)

    Article  Google Scholar 

  10. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: First SIAM International Conference on Data Mining (SDM 2001), Chicago, USA (2001)

    Google Scholar 

  11. Bellman, R., Kalaba, R.: On adaptive control processes. IEEE Trans. Automat. Contr. 4, 1–9 (1959)

    Google Scholar 

  12. Senin, P.: Dynamic time warping algorithm review. University of Hawaii, Honolulu (2008)

    Google Scholar 

  13. Kassidas, A., MacGregor, J.F., Taylor, P.A.: Synchronization of batch trajectories using dynamic time warping. AIChE Journal 44, 864–875 (1998)

    Article  Google Scholar 

  14. Elman, J.L.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  15. Mankar, V.R., Ghatol, A.A.: Design of Adaptive Filter Using Jordan/Elman Neural Network in a Typical EMG Signal Noise Removal. Advances in Artificial Neural Systems (2009)

    Google Scholar 

  16. Swingler, K.: Applying Neural Networks, A Practical Guide. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  17. Singh, E.: Comparative Economic Forecasting with Neural Networks Forecasting Aggregate Business Sales from S&P 500 and Interest Rates. Pace University, New York (2007)

    Google Scholar 

  18. Marquardt, D.W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  20. Dohnal, J.: Using of Levenberg-Marquardt method in identification by Neural Networks. In: Student EEICT 2004, pp. 361–365 (2004)

    Google Scholar 

  21. Hagan, M.T., Menhaj, M.B.: Training Feed forward Networks with the Marquardt Algorithm. IEEE Trans. on Neural Networks 5, 989–993 (1994)

    Article  Google Scholar 

  22. Du, K.L., Swamy, M.N., Swamy, S.: Neural Networks in a soft computing Framework. Springer, London (2006)

    Google Scholar 

  23. Si, Nelson, Runger: Artificial Neural Network Models for Data Mining. In: The Handbook of Data Mining. Lawrence Erlbaum Associates Publishers, New Jersey (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nawaz, J.M., Arshad, M.Z., Hong, S.J. (2013). Time Series Fault Prediction in Semiconductor Equipment Using Recurrent Neural Network. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39068-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39068-5_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39067-8

  • Online ISBN: 978-3-642-39068-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics