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Abstract

A backbone of a propositional CNF formula is a variable whuoséh value is the same in every truth
assignment that satisfies the formula. The notion of badckbdor CNF formulas has been studied in various
contexts. In this paper, we introduce local variants of bades, and study the computational complexity of
detecting them. In particular, we considetackbones, which are backbones for sub-formulas congisti
at mostk clauses, and iterative-backbones, which are backbones that result after rep&aehtiations of
k-backbones. We determine the parameterized complexitg@élthg whether a variable iskabackbone or an
iterative k-backbone for various restricted formula classes, indgdiorn, definite Horn, and Krom. We also
present some first empirical results regarding backborreSNif--Satisfiability (SAT). The empirical results we
obtain show that a large fraction of the backbones of stradt$AT instances are local, in contrast to random
instances, which appear to have few local backbones.

1 Introduction

A backbonef a propositional formula is a variable whose truth value is the same for all satisfaisgjgnments
of ¢. The term originates in computational physics|[24], andrtbion of backbones has been studied for SAT
in various contexts. Backbones have also been consideretthén contexts (e.g., knowledge compilation [4])
and for other combinatorial problenis [25]. If a backbone isittuth value are known, then we can simplify the
formula without changing its satisfiability, or the numbésatisfying assignments. Therefore, it is desirable to
have an efficient algorithm for detecting backbones. In ganbowever, the problem of identifying backbones
is coNP-complete (this follows from the fact that a litekas enforced by a formula if and only if ¢ A =l is
unsatisfiable).

A variable can be a backbone becausdagfal propertiesof the formula (such backbones we chdtal
backboneps As an extreme example consider a CNF formula that contimsit clause. In this case we know
that the variable appearing in the unit clause is a backbbtieedormula. More generally, we define theder
of a backbone: of a CNF formulap to be the cardinality of a smallest subgétC ¢ such that: is a backbone
of ¢/, and we refer to backbones of orderk ask-backbonesThus, unit clauses give rise to 1-backbones.

A natural generalization df-backbones are variables whose truth values are enforcezpleatedly assign-
ing k-backbones to their appropriate truth value and simplgtime formula according to this assignment. We
call variables that are assigned by this iterative prodesative k-backbonegfor a formal definition, see Sec-
tion[2.). For instance, iterativiebackbones are exactly those variables whose truth vateesndorced by unit
propagation. Théerative orderof a backbone: is the smallesk such thatr is an iterativek-backbone.

Finding Local Backbones For every constarit, we can clearly identify alk-backbones and iterativeback-
bones of a CNF formul& in polynomial time by simply going over all subsets @fof size at most (and
iterating this process if necessary). Howeverpi€onsists ofm clauses, then this brute-force search requires
us to consider at least” subsets, which is impractical already for small values.oft would be desirable to
have an algorithm that detects (iterativelpackbones in tim¢g (k)||¢||© wheref is a function,|||| denotes the
length of the formula, and is a constant. An algorithm with such a running time woulddemthe problem
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C LocAL-BACKBONEIC] ITERATIVE-LOCAL-BACKBONEIC]

CNF WI[1]-c (Thm2)  WI[1]-h (CoEB)
DEFHORN WI[1]-c (Thm(2) P (Thnib)
NUHORN W[1]-c (Thm[@)  WI[1]-h (Co(3)
KROM P (Prod1) P (Thrial7)
VO, FPT (Thni@)  FPT (Thril5)

Table 1: Map of parameterized complexity results. (Thesgas of formulas are defined in Sectibn.1.)

fixed-parameter tractablevith respect to parametér[6]. In this paper we study the question of whether the
identification of (iterative:-backbones of a CNF formula is fixed-parameter tractabl®graonsidering various
restrictions on the CNF formula. We therefore define theofeihg template for parameterized problems, where
C is an arbitrary class of CNF formulas.

LocAL-BACKBONE[C]

Instance:a CNF formulay € C, a variabler of ¢, and an integek > 1.
Parameter:The integerk.

Question:ls = a k-backbone ofp?

The problem TERATIVE-LOCAL-BACKBONE is defined similarly. It is not hard to see thabtAL-BACK-
BONE[C] is closely related to the problem of finding a small unsatidéi@ubset of a CNF formula (this is proven
below in Lemmag]l anld 2). More precisely, for every clasthe problem lbOcAL-BACKBONE|C] has the same
parameterized complexity as the following problem, stddig Fellows et al [[9].

SMALL -UNSATISFIABLE-SUBSET|C]

Instance:a CNF formulay € C, and an integek > 1.

Parameter:The integerk.

Question:ls there an unsatisfiable subgétC ¢ consisting of at most clauses?

This problem is of relevance also for clasgefor which the satisfiability is decidable in polynomial timEor
instance, given an inconsistent knowledge base in terms ahaatisfiable set of Horn clauses, one might want
to detect the cause for the inconsistency in terms of a smalitisfiable subset.

Results We draw a detailed parameterized complexity map of the densd problems ©caL-BACKBONE[C],
ITERATIVE-LOCAL-BACKBONE[C], and SALL -UNSATISFIABLE-SUBSET|C], for various classe§. Table[1
provides an overview of our complexity results (FPT indésathat the problem is fixed-parameter tractable,
WI[1]-hardness indicates strong evidence that the probtenot fixed-parameter tractable; see Sediioh 2.2 for
details).

It is interesting to observe that the non-iterative protdeend to be at least as hard as the iterative problems.
The polynomial time solvability of finding iterative locaiabkbones in definite Horn formulas is also interesting,
especially in the light of the intractability of the correspling problem of finding (non-iterative) local backbones.

We also provide some first empirical results on the distidvubf local backbones in some benchmark SAT
instances. We consider structured instances and randéamdes. For the structured instances that we consider
we observe that a large fraction of the backbones are ofwelasmall iterative order. In contrast, the backbones
of the random instances that we consider are of large ieratider. The results suggest that the distribution of
the iterative order of backbones might be an indicator foiddén structure in SAT instances.

Related Work The notion of backbones has initially been studied in theexirof optimization problems in
computational physic$ [24]. The notion has later been agdpb several combinatorial problems|[25], including
SAT. The relation between backbones and the difficulty ofifigda solution for SAT has been studied by
Kilby et al. [18], by Parkes [22] and by Slaney and Walsh [ZBhe complexity of finding backbones has been
studied theoretically by Kilby et al. [18]. The notion of lkdones has also been used for improving SAT solving



algorithms by Dubois and Dequen [7] and by Hertli etlall [TPhe problem of identifying unsatisfiable subsets
of size at mosk has been considered by Fellows etlal. [9], who proved thaftiblem (parameterized @) is
WI[1]-complete. Furthermore, they showed by the same rémtutitat finding ak-step resolution refutation for
a given formula is W[1]-complete as well. Related notiondazfally enforced literals have also been studied,
including a notion of generalized unit-refutation [12] 19]

2 Preliminaries

2.1 CNF Formulas, Unsatisfiable Subsets and Local Backbones

A literal is a propositional variable or a negated variablex. The complement of a positive literalz is
-z, and the complementz of a negative literal-x is z. A clauseis a finite set of literals, not containing a
complementary pait, —x. A unit clauseis a clause of size 1. We let denote the empty clause. fArmulain
conjunctive normal form (or CNF formula) is a finite set ofda@s. We define thength||¢|| of a formulay
tobe}_ ., |c[; the number of clauses qf is denoted by|. A formulay is ak-CNF formula if the size of
each of its clauses is at madst A 2-CNF formula is also called a Krom formula. A clause islarn clauseif
it contains at most one positive literal. A Horn clause coritey exactly one positive literal is definite Horn
clause Formulas containing only Horn clauses are caltn formulas Definite Horn formulasare defined
analogously. We denote the class of all Krom formulas ®okK, the class of all Horn formulas by @kN and
the class of all definite Horn formulas byeEBHORN. We let NUHORN denote the class of Horn formulas not
containing unit clauses (such formulas are always satlsfiabetd be an integer. The class of CNF formulas
such that each variable occurs at mésimes is denoted by V@

For a CNF-formulap, the set Varg) denotes the set of all variablessuch that some clause gfcontains
x or —z; the set Lit() denotes the set of all literalssuch that some clause ¢f containsl or I. A formula
¢ is satisfiableif there exists an assignment: Var(y) — {0, 1} such that every clause€ ¢ contains some
variablex with 7(z) = 1 or some negated variabter with 7(x) = 0 (we say that such an assigmerdatisfiesy);
otherwise,p is unsatisfiable ¢ is minimally unsatisfiablé ¢ is unsatisfiable and every proper subsetpdaf
satisfiable. It is well-known that any minimal unsatisfiaBF formula has more clauses than variables (this is
known as Tarsi's Lemma[L, 20]). For two formulasy, whenever all assignments satisfyipglso satisfyy,
we writep = . The reductp|;, of a formulay with respect to a set of literals C Lit(y) is the set of clauses of
¢ that do not contain any< L with all occurrences offor all | € L removed. For singletons = {I}, we also
write |;. We say that a class of formulas isclosed under variable instantiatiahfor every ¢ € C and every
I € Lit(y) we have thap|; € C. For an integek, a variabler is ak-backbonef ¢, if there exists &' C ¢ such
that|¢’| < k and eithery’ = x or ¢’ |= —x. A variablez is abackboneof a formulay if it is a |p|-backbone.
Note that the definition of the backbone of a formul#hat is used in some of the literature includes all literals
I € Lit(y) such thatp = [. For an integek, a variabler is aniterative k-backboneof ¢ if either (i) = is a
k-backbone ofp, or (ii) there existyy € Var(p) such thaty is a k-backbone ofp, and for soméd € {y, —y},
¢ |l andz is an iterativek-backbone ofp|;.

For a Krom formulap, we let imp[y) be theimplication graph(V, E) of ¢, whereV = {z,—z : = €
Var(p) } andE = { (a,b), (b,a) : {a,b} € ¢ }. We say that a path in this graphuses a clauséa, b} of ¢ if
either one of the edgés, b) and (b, a) occurs inp; we say thap doubly useshis clause if both edges occurin

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterizegblaxity theory. For more details, we refer to text
books on the topi¢ [6, 10, 21]. An instance of a parametenetlem is a paif1, k) wherel is the main part of
the instance, anklis the parameter. A parameterized probletiiried-parameter tractablié instanceq 7, k) can

be solved by a deterministic algorithm that runs in tifi{&)|7|, wheref is a computable function df, andc is

a constant (algorithms running within such time bounds alledfpt-algorithmg. If ¢ = 1, we say the problem

is fixed-parameter linear=PT denotes the class of all fixed-parameter tractabldgmub Using fixed-parameter
tractability, many problems that are classified as inttaletin the classical setting can be shown to be tractable
for small values of the parameter.



Parameterized complexity also offers@mpleteness theargimilar to the theory of NP-completeness. This
allows the accumulation of strong theoretical evidence th@arameterized problem is not fixed-parameter
tractable. Hardness for parameterized complexity classbased on fpt-reductions, which are many-one re-
ductions where the parameter of one problem maps into tremer for the other. More specifically, a pa-
rameterized problend is fpt-reducible to another parameterized problef(denotedL <jy L’) if there is a
mappingR from instances of. to instances of.’ such that (i, k) € L ifand only if (I',k’") = R(I,k) € L/,

(i) ¥ < g(k) for a computable functiog, and (iiij) R can be computed in tim@(f(k)|I|¢) for a computable
function f and a constant

Central to the completeness theory is the hierarchy ERT[1] C W[2] C - -- C para-NP. Each intractabil-
ity class WIt] contains all parameterized problems that lobameduced to a certain parameterized satisfiability
problem under fpt-reductions. The intractability classgpilP includes all parameterized problems that can be
solved by a nondeterministic fpt-algorithm. Fixed-parsnéractability of any problem hard for any of these
intractability classes would imply that the Exponentiain®& Hypothesis fails [10, 16] (i.e., the existence of a
20(n) algorithm forn-variable3SAT).

3 Local Backbones and Small Unsatisfiable Subsets

The straightforward reductions in the proofs of the follogitwo lemmas, illustrate the close connection between
LocAL-BACKBONE and SVALL -UNSATISFIABLE-SUBSET.

Lemma 1. SMALL -UNSATISFIABLE-SUBSET <ft LOCAL-BACKBONE.

Proof. Let (p, k) be an instance of ALL -UNSATISFIABLE-SUBSET. We construct an instande’, z, k) of
LOCAL-BACKBONE, by lettingy’ = {cU {z} : ¢ € ¢ } for somez ¢ Var(p). We claim that(¢, k) € SMALL -
UNSATISFIABLE-SUBSET if and only if (¢, 2, k) € LOCAL-BACKBONE.

(=) Assume(p, k) € SMALL -UNSATISFIABLE-SUBSET. Then there exists an unsatisfialé C ¢ with
|¢”| < k. Now considery = { cU {z} : c € 9" }. Clearly,x C ¢’ and|x| < k. Also, sincep” is unsatisfiable,
we gety | z. Thusy witnesses that is ak-backbone ofy'.

(<) Assume(¢’, k,z) € LocAL-BACKBONE. Since—z does not occur ip’, this means that there exists
ay’ C ¢ with |¢”| < k such thaty” = 2. Now takex = {c\{z} : ¢ € ¢"}. We get thaty C ¢ and
Ix| < k. Also, we know thaty is unsatisfiable, since otherwise it would not hold thét |= z. Therefore,
(p, k) € SMALL -UNSATISFIABLE-SUBSET. O

The reduction in the proof of Lemnid 2 shows that instar(ges, k) of LOCAL-BACKBONE lead to equiva-
lent instances of BALL -UNSATISFIABLE-SUBSET by simply taking the disjoint union of the reductsefwith
respect to both and—z.

Lemma 2. LOCAL-BACKBONE <t SMALL -UNSATISFIABLE-SUBSET.

Proof. Let(yp, z, k) be an instance of CAL-BACKBONE. We construct an instance, k) of SMALL -UNSATISFI-
ABLE-SUBSET. For every variable: € Var(p) we take two copiesy,z2. Fori € {1,2} we lety,; be a copy
of ¢ using the variables,. Now we define) = ¢1],, U v2|-.,. In other wordsy) is the union of two disjoint
copies of the reducts @f with respect taz and—z. We claim thaty, z, k) € LOCAL-BACKBONE if and only if
(¢, k) € SMALL-UNSATISFIABLE-SUBSET.

(=) Assumez is ak-backbone ofp. This means there existsA C ¢ with |¢’| < k such that eithep’ |= z
or ¢’ | —z. Assume without loss of generality that |= 2. Theny'|-, is unsatisfiable. One can see this as
follows. Assume the contrary, i.e., that|, is satisfiable. This means there is a valuafiotthat satisfies all
clauses iny’|-.. LetV’ be a valuation for’ defined by

V() = {O ifx ==z

V(z) otherwise.

We show thal/ satisfiesy’. For each clause € ¢’ such that-z € ¢, we clearly have that” satisfies:, because
V'(z) = 0. For all other clauses € ¢’ with -z ¢ ¢, we knowV’ satisfiese, by the following argument.



Because’ = c\{z} € ¢'|.., we know thafl satisfies some literal if. Therefore, we know that” satisfies

c. This is a contradiction to the fact that = 2. Thus,¢’|-. is unsatisfiable. Furthermore, we know that
[(¢'|-2)] < |¢| < k. Also, sincep’ C ¢, we know thaty’| -, C ¢|-.. Then, by the fact thaps |-, is a copy of
©|-z, we know that(+), k) € SMALL -UNSATISFIABLE-SUBSET.

(<) Assume(y, k) € SMALL -UNSATISFIABLE-SUBSET. This means there exists an unsatisfiapleC ¢
with |¢'| < k. Sincey = 1], U ¢2]-2, andes|,, andys|-., are disjoint, we can assume without loss of
generality that eithet/ C 1|., or ¢’ C ¢s|-.,. Suppose that’ C s|-.,, and the other case is similar. We
then know that there is a subsgtC ¢ such that)’ is a copy ofy’|-... Take such &’ of minimal size. We then
know that there is no clausee ¢’ such that-z € c. Therefore, we know thdy’'| = |¢'| < k. We now show
thaty’ = z. Assume the contrary, i.e., that there exists an assigniievith V' (z) = 0 that satisfieg’. Then
this V' would also satisfyy’|-.. From this one can straightforwardly construct an assigrirtiet satisfies)’,
which contradicts our assumption thétis unsatisfiable. Thug’ witnesses that is ak-backbone ofp. O

Theorem 1. LOCAL-BACKBONE is W[1]-complete.

Proof. Since $MALL -UNSATISFIABLE-SUBSET is W[1]-complete[[9], the result follows from Lemmbk 1 and
2 O

4 Local Backbones of Horn and Krom Formulas

Horn formulas Restricting the problem of finding backbones in arbitramnfalas to Horn formulas reduces
the classical complexity from co-NP-completeness to pofyial time solvability. It is a natural question whether
the parameterized complexity of finding local backbonesaeses in a similar way when the problemiis restricted
to Horn formulas. We will show that this is not the case. Inayrib do so, we define the parameterized problem
SHORT-HYPERPATH, show that it is W[1]-hard, and then provide fpt-reductinaen SHORT-HYPERPATH

For a Horn formulap ands, t € Var(y), we say that a subformulgd C ¢ is ahyperpathfrom s to ¢ if (i)
t=sor(i)c={x1,...,z,,t} € ¢ andy’\cis a hyperpath froms to z; for eachl < i < n. If |p| < k then
@ is called ak-hyperpath The parameterized problemH8RT-HYPERPATH takes as input a Horn formula,
two variabless, ¢ € Var(p) and an integek. The problem is parameterized by The question is whether there
exists ak-hyperpath froms to ¢. For a more detailed discussion on the relation betweerk{ed) hyperpaths
in hypergraphs and hyperpaths as defined above, we refeutveysarticle by Gallo et al [11].

For the hardness proof oH®RT-HYPERPATH we reduce from the W[1]-complete problemiMricoLORED-
CLIQUE [8]. The MuULTICOLORED-CLIQUE problem takes as input a gragh some integek, and a proper
k-coloringc of the vertices of5. The problem is parameterized by The question is whether there is a properly
coloredk-clique inG.

Lemma 3. SHORT-HYPERPATHIs W[1]-hard, even for instances, s, t, k) wherep € 3CNF.
Proof. We give a reduction from MLTICOLORED-CLIQUE. Let (G, k, c¢) be an instance of MLTICOLORED-

CLIQUE, whereG = (V, E) andV4, ...,V are the equivalence classeslofinduced by thé:-coloringec. We
construct an instande, s, t, k') of SHORT-HYPERPATH, wherek’ = k + (’2“) +1and
Var(p) = {s,t}UVU{pi;:1<i<j<k};
o= v UppUp;

pv = {{=sv}:veV}

Pp = {{_‘via_'vjapi,j} 01 S 1< .] S kavi S ‘/’vaj € ‘/ja {viavj} S E}?

or= {{wpi;:1<i<j<Ek}uU{t}}
This construction is illustrated for an example with= 3 in Figure[1. We claim tha{G, k,c) € MULTI-
COLORED-CLIQUE if and only if (¢, s,t, k') € SHORT-HYPERPATH

(=) Assume(G, k,c) € MULTICOLORED-CLIQUE. Then there exists a cligué’ of G with [V NV;| =1
forall 1 < < k. We construct &’-hyperpathy’ from s to t. We define:

eve= {{shv):veV' }Uuep U
{{vi,vi},pig) 1 <i<j<kwveVinVi v eV;NnV' {v,v;} € E}

It is straightforward to verify thapy -+ is ak’-hyperpath froms to ¢.
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(a) A 3-partite graphz with a clique (b) The B-hyperpath ifif of sizek’ = 3+ (;) +1from s to ¢ corresponding
(in black). to the clique.

Figure 1: lllustration of the reduction in the proof of LemBjéor the case of a 3-colored clique.

(<) Assume(yp, s, t, k') € SHORT-HYPERPATH Then there exists &-hyperpathy’ from s to ¢. We know
thaty; C ¢/, sincep, contains the unique clause gnwith ¢ occurring positively. Sincgy’| < &/, we know that
in order fory' to be a hyperpath fromto ¢, we haveyy Ny’| = k and|g, N¢’| = (’;) Itis then straightforward
to verify that the seV’ = {v € V : {-s,v} € ¢’ } witnesses that’ has ak-clique containing one node in each
Vi.

To see that clauses of size at md#t the hyperpath suffice, we slightly adapt the reductiore ®hly clause
we need to change is the single clause ;. This clause: is of the form{—p, ..., —p.m,,t}, form = (’;) We
introduce new variables, . . ., v,,, and replace by them + 1 many clause$—p1, v1 }, {—v;—1, —p;, v; } for all
1 < i < mand{-v,,,t}. Clearly, the resulting Horn formula only has clauses oé sitmost. This adapted
reduction works with the exact same line of reasoning asatieation described above, with the only change that
K =k+2(5) +1.

Note that even the slightly stronger claim holds thahas a properly colored-clique if and only if there
exists a (subset) minimal-B-hyperpathy’ C ¢ for which we havey'| = £’. O

We are now in a position to prove the W[1]-hardness oflaL-BAckBONE[HORN]. In fact, we show that finding
local backbones is already W[1]-hard for definite Horn fotasuvith a single unit clause. We also show that this
hardness crucially depends on allowing unit clauses indhaiila, since for definite Horn formulas without unit
clauses the problem is trivial. In fact, the complexity justp W[1]-hardness already when allowing a single unit
clause.

Lemma 4. Definite Horn formulas without unit clauses have no backisone

Proof. Consider the two valuationsr and!,, wherelt(x) = T andI, (z) = L for all x € Var(y). Since
@ € DEFHORN andy has no unit clauses, we know that each clause has one pasitivat least one negative
literal. Thus both/+ andi, satisfyy. Therefore, na: € Var(y) is a backbone op. O

Theorem 2. LocAL-BAckBONE[DEFHORNN3CNF] is W[1]-hard, already for instance@p, x, k) wherep has
at most one unit clause.

Proof. We show W[1]-hardness by reducing frorAR@RT-HYPERPATH Let (¢, s, t, k) be an instance of i ©ORT-
HYPERPATH We can assume thate 3CNF. We construct an instan¢e,,, ¢, k') of LOCAL-BACKBONE. Here
k' =k + 1. For eachy’ C ¢ we define a formula,, by letting Var(,) = Var(y') and:

Yo = {{s}}U¢".

Clearlyy, € DEFHORN N 3CNF andy, has only a single unit clause. We claim tffat,, ¢, k') € LOCAL-
BAackBONE if and only if (¢, s, t, k) € SHORT-HYPERPATH

(=) Assume that is ak’-backbone of/,,. Sincey, € DEFHORN, we then know that there exists/a C 1,
with [¢'| < k" andy’ |= t. By Lemmd4, we know thats} € ¢'. Now lety’ C ¢ be the unique subset of clauses



such that)’ = 1,,. We know thaty’| < k. Itis easy to verify that sincé’ = ¢, we get thaty’ is ak-hyperpath
fromstot.

(<) Assume that there existskahyperpathy’ C ¢ from s to ¢ with |¢’| < k. Theni,» witnesses thatis a
k'-backbone of),,. Clearly,|v/| < k'. Also, itis straightforward to verify that since is ak-hyperpath frons
to ¢, it holds thaty.,.s = t. O

Also, restricting the problem to Horn formulas without ucliuses unfortunately does not yield fixed-parameter
tractability.

Theorem 3. LocAL-BACckBONE[NUHORN N 3CNF| is W[1]-hard.

Proof. We show the W[1]-hardness ofdcAL-BACKBONE[NUHORN N 3CNF| by reducing from 8ORT-
HYPERPATH Let (¢, s,t, k) be an instance of I ®ORT-HYPERPATH We can assume without loss of general-
ity that o € 3CNF, and that each clause in whi¢toccurs positively is of siz8. We construct an instance
(1, xs, k) of LOCAL-BACKBONE. For eachy’ C ¢ we define a formula,.

wtp' = {{_"rav _‘IvaC} : {—|CL, —|b,C} € ‘plvc 7£ t} U
{{jxavﬁxb} : {ja’ jbat} € 90/}
{{jxavxb} : {jaab} € (pl}

Clearly we have that, € HORNN 3CNF and that),, has no unit clauses. We claim that,, 5, k) € LOCAL-
BackBONE if and only if (¢, s,t, k) € SHORT-HYPERPATH

(=) Assumez, is ak-backbone ofiy,. Sinceiy, € HORN andw, has no unit clauses, this means there
exists a))’ C 1, with |¢)'| < k such that)’ = —z,. Lety’ C ¢ be the unique subset of clauses such that
Y =1, We know thaty’| < k. In order to show thap’ is a hyperpath from to ¢, we assume to the contrary
that it is not. We now define the assignmenby letting u(x,,) = T for all v € Var(p) such that there exists a
hyperpathy” C ¢ from s to v and lettingu(x, ) = L for all otherv € Var(p). We know thatu does not satisfy
1, only if 1 does not satisfy, A z;, for some{—z,, -z} € 1, and if there exists a hyperpath fronto both
a andb. However, by the construction @f,, this can only be the case if there exists a hyperpétic ¢’ from
s to t, which contradicts our assumption. Thus we know fhaatisfies), as well ast,. This is a contradiction
to our previous conclusion thatdoes not satisfy,. Therefore, we can conclude thatis a hyperpath frons
to t. From this follows thatp, s, ¢, k) € SHORT-HYPERPATH

(<) Assume there exists lahyperpathy’ C ¢ from s to t. Now consider),. Since|¢’| < k, we know
that|i,/| < k. Also, since we know that{a, b}, t) € ¢’ for somea,b € V, we know{—z,, -z} € 1. Now
assume for an arbitrary assignmenthat i = ¢, andp = z,. By a simple inductive argument, using the
definition of,, we then get that = z,, for all u for which there exists a hyperpath frosmo w. In particular,
we getu = z, A x,. However, sincd—z,, ~xp} € 1,, We get a contradiction to the fact that= .. Thus
we can conclude that,, = —xz. Therefore(y,, x5, k) € LOCAL-BACKBONE. O

Krom formulas Let us now turn to the case of Krom formulas. Restricting ttabfem of finding backbones in
arbitrary formulas to Krom formulas reduces the classicahplexity from co-NP-completeness to polynomial
time solvability. Interestingly, unlike the case for Homrinulas, the decrease in complexity in this case also
holds for finding local backbon&sl.:inding a minimum-size unsatisfiable subset ofrdf formula can be done

in polynomial time [3]. This immediately implies thaM3LL -UNSATISFIABLE-SUBSET|KROM] is polynomial-
time solvable, and therefore, by Lemila 2y¢AL-BACKBONE[KROM] is also polynomial-time solvable (and
thus also fixed-parameter tractable).

Proposition 1. LocAL-BACKBONE[KROM] is polynomial-time solvable.

Hardness for finding small unsatisfiable subsets We would like to point out that all hardness results for
the various restrictions of @CAL-BACKBONE also hold for MALL -UNSATISFIABLE-SUBSET under the corre-

sponding restrictions. This is because the reduction irptbef of Lemmd 2 works for all classes of formulas
that are closed under variable instantiations. For ingtathe reduction in the proof of Lemrh& 2 together with

1In a previous version of this papér[13], we mistakenly ckaihthat finding local backbones in Krom formulas is W[1]-hard



TheoreniB tells us thatMALL -UNSATISFIABLE-SUBSET[HORN N 3CNF| is W[1]-hard. This does not follow
from the reduction that Fellows et al.|[9] use to prove the JM{drdness of BALL -UNSATISFIABLE-SUBSET.
In particular, the following previously unstated resultdch

Corollary 1. SMALL -UNSATISFIABLE-SUBSET|C] is W[1]-hard for eactC € {DEFHORNN3CNF, NUHORNN
3CNF}.

In fact, these fixed-parameter intractability results foraSL -UNSATISFIABLE-SUBSET give us the following
NP-hardness results.

Corollary 2. LetC € {3CNFN DEFHORN,3CNF N NUHORN}. Given a formulay € C and an integetk,
deciding whethep contains an unsatisfiable subset of sizé is NP-hard.

Proof. The fpt-reductions given in the proofs of Lemraas 2[@nd 3 arebfém§ P and 3 can be used as polynomial
many-one reductions from the NP-hard problem of finding guaiof certain minimum size in agraph. O

5 Local Backbones of Formulas with Bounded Variable Occurrace

When considering the restriction oflcAL-BACKBONE to formulas where variables occur a bounded number of
times, we get a fixed-parameter tractability result at [abts fixed-parameter tractability result is closely retate
to the result that BALL -UNSATISFIABLE-SUBSET is fixed-parameter tractable for instances restrictedasses

of formulas that have locally bounded treewidth [9]. Felost al. used a meta theorem to prove this. We give a
direct algorithm to solve BALL -UNSATISFIABLE-SUBSET[VO,] in fixed-parameter linear time.

Let (¢, k) be an instance of ALL -UNSATISFIABLE-SUBSET[VO,]. The following procedure decides
whether there exists an unsatisfiable sulggef ¢ of size at mosk, and computes such a subset if it exists.
We leto* = {c € ¢ : |¢| < k}. It suffices to consider subsets @f, since any unsatisfiable subsgtC ¢
contains a minimally unsatisfiable subgét C ', and by Tarsi’s Lemma we know that’ contains only clauses
of size smaller that.

Without loss of generality, we assume that the incidencplgcd ¢* is connected. Otherwise, we can solve
the problem by running the algorithm on each of the connettetiponents. We guess a clause ¢*, we let
F1 = {c}, and we let all variables be unmarked initially. We compate; for 1 < ¢ < k by means of the
following (non-deterministic) rule:

1. take an unmarked variables Var(F;);

2. guess a non-empty subg&tC F, for F, = {c € ¢*: z € Var(c) };
3. letF, 1y := F; U FY;

4. markz.

If at any point all variables iF; are marked, we stop computidg,,. For anyF;, if | F;| > k we fail. For each
F;, we check whetheF; is unsatisfiable. If it is unsatisfiable, we return with= F;. If it is satisfiable and if it
contains no unmarked variables, we fail.

Itis easy to see that this algorithm is sound. If saph& ¢* is returned, thery’ is unsatisfiable and’| < k.

In order to see that the algorithm is complete, assume tkee #xists some unsatisfialgte C o* with |¢'| < k.
Then, since we know that the incidence graptF6is connected, we know th&t’ can be constructed as one of
the F; in the algorithm.

To see that this algorithm witnesses fixed-parameter lityeare bound its running time. We have to execute
the search process at most once for each claugé.dht each point in the execution of the algorithfj,contains
at mostk variables. Therefore, there are at mbsthoices to take an unmarked variableSince each variable
occurs in at most clauses, for each’, used in the rule we kno\#,| < d. Thus, there are at mo2t possible
guesses foF” in each execution of the rule. Since we iterate the rule at intisies, we consider at mogt24)"
setsF”, each of sizeD(k?). Thus each (un)satisfiability check can be don®i*) time. Therefore, the total
running time of the algorithm i®(k*29n), for n the size of the instance.

This algorithm also gives us a direct algorithm that shove$ HocaL-BACKBONE[VO,] is fixed-parameter
linear.



input : an instanc€y, x, k) of ITERATIVE-LOCAL-BACKBONE
output: yesiff (p, x, k) € ITERATIVE-LOCAL-BACKBONE

(2
conseq «+ 0;
for i «+ 1to |Lit(¢)| do

foreachliteral [ € Lit(+) do

if (1], k) € SMALL-UNSATISFIABLE-SUBSETthen
| conseq « consequU {I};

P 1/J|conseq;

return {z, -2} N conseq # ()

Algorithm 1: Deciding ITERATIVE-LOCAL-BACKBONE with a SVALL -UNSATISFIABLE-SUBSET oracle.

Theorem 4. LoCAL-BACKBONE[VO,] is fixed-parameter linear.

Proof. The result follows directly by using the reduction in the @frof Lemmé&2 in combination with the above
algorithm. O

6 Iterative Local Backbones

We now consider the (parameterized) complexity of findirgative local backbones. It is easy to see that
ITERATIVE-LOCAL-BACKBONE is in para-NP. This is witnessed by a straightforward nosadheinistic fpt-
algorithm, that guesses a sequencenolvitnesses(y;, ;) with |¢;| < k, and that verifies whethep, C
elq,,....1._,y and whethep; = [;.

Some of the results we obtained for the problem of findingllbaakbones can be carried over. In all settings
that yield fixed-parameter tractability fordcAL-BACKBONE we obtain that TERATIVE-L OCAL-BACKBONE is
fixed-parameter tractable as well.

Theorem 5. LetC be a class of formulas such thabcaL-BACKBONE[C] is fixed-parameter tractable ar@lis
closed under variable instantiation. ThéneRATIVE-LOCAL-BACKBONE[C] is fixed-parameter tractable.

Proof. We give an algorithmto solverERATIVE-L OCAL-BACKBONEIC] that calls a subroutine to solve instances
of SMALL -UNSATISFIABLE-SUBSET|C]. This algorithm is given in the form of pseudo-code as Algon[l. By
the fact that is closed under variable instantiations we are able to agglyeduction in the proof of Lemna 2.
Thus, we can assume that the question of whether som& contains an unsatisfiable subset of size at nkost
can be solved irf (k)|||| time, for some computable functighand some constant Then, the entire algorithm
runs inO(f(k)||»||T2) time. This proves the claim. O

Another result that carries over from the case of finding lbeekbones is the fixed-parameter intractability of
finding iterative local backbones in Horn formulas withoutticlauses.

Corollary 3. ITERATIVE-LOCAL-BACKBONE[NUHORNN 3CNF] is W[1]-hard.

Proof. Observe that the proofs of Lemrhh 3 and Theokém 3 imply tha &lieady W[1]-hard to determine
whether a formula € NUHORNN 3CNF has a subset’ C ¢ of size exactlyk witnessing that any. € Var(y)
is ak-backbone. From this, it immediately follows that deteriminwhether(p, , k) € ITERATIVE-LOCAL-
BACKBONE is W[1]-hard as well. O

We identify several tractable cases faERATIVE-LOCAL-BACKBONE. The problem of finding iterative local
backbones in definite Horn formulas is polynomial time sblealnterestingly, for this restriction the problem of
finding (non-iterative) local backbones remains W[1]-h&dnilarly, finding iterative local backbones in Krom
formulas is solvable in polynomial time as well. This lattesult already follows by Propositiéd 1. We will
however give an alternative (and simpler) algorithm to firedative local backbones in Krom formulas. In order
to show that finding iterative local backbones in definite tdformulas is tractable, we will use the following
observation.



Observation 1. Let ¢ be any propositional formula, ldtbe any literal such that there exists@@d C ¢ with
|| < kandy' =1, and letyy = ¢|;. Thenz € Var(y) is an iterativek-backbone of) if and only if it is an
iterative k-backbone ofp.

Theorem 6. ITERATIVE-LOCAL-BACKBONE[DEFHORN] is polynomial-time solvable.

Proof. We show that for any definite Horn formula and anyk > 1 the set of iterativek-backbones ofp
coincides with the set of variablese Var(y) such thatp = z. The claim then follows, since the entailment
relationi= can be decided in linear time for definite Horn formul(as [5].

Fix an arbitrary integek > 1 and an arbitrary definite Horn formula Since definite Horn formulas cannot
entail negative literals, we know that each iterafivbackbone: of ¢ is also a semantic consequenceofNow,
let z € Var(p) be an arbitrary atom and assume that= z. So there exist variables, ..., z,, € Var(p)
such thatz,, = x and for eachr; we have either (i{x;} € ¢ or (i) {-zi,,...,~z;, 2} € ¢ for some
i1 < .-+ < 4 < i. We prove by induction om: that eachr; is an iterativek-backbone. Take an arbitrauny.
By the induction hypothesis, we can assume that exefpr j < 7 is an iterativek-backbone ofp. We proceed
by case distinction for the justification af in the sequence. In case (i), we know that} € . Therefore,
it directly follows thatz; is ak-backbone ofp, and thus is an iterativk-backbone too. In case (i), we know
that{—z;,,...,~z;,2;} € pforsomei; < --- < i; <i. By the induction hypothesis, we know that eagh
is an iterativek-backbone ofp. By assumption, we have that = z;, for eachz;,. By Observationll, we get
thatx; is an iterativek-backbone ofy if and only if it is an iterativek-backbone Ofﬁ{zil,...,ml}- It holds that
{z;} € Py ey } Thus,z; is an iterativek-backbone ofp. O

Theorem 7. ITERATIVE-LOCAL-BACKBONE[KROM] is polynomial-time solvable.

Proof. We show that the iterativk-backbones of a Krom formula coincide with those backbones gfthat
can be identified by iterated application of the followingdgeruf the implication graph ofp contains a path from
a literall € {x, —z} to its complement of length at most:, conclude that: is a backbone and set := ¢};.
Detection of such a path can be done in polynomial time. AsonostO(|Var(y)|) iterated applications of this
rule suffice to reach a fixpoint. All that remains is to show¢berespondence.

The correspondence claim follows from the following prapetet! € Lit(y). If impl(¢) contains a path
[ —* [ that uses at mostclauses and that doubly usesof these clauses, then there exist litefals. . , 1,1 €
Lit(¢) such that (i)l,,,+1 = [ and (i) for eachl < i < m + 1 the graph imgly|g, .., ,}) contains a path
I; —* I; that uses at most clauses and does not doubly use any clause. We prove this biainduction on
m. The case forn = 0 is trivial. Consider the case fon > 1. Since the patlh —* [ doubly uses some clause,
we know thatl —* a — b —* b — @ —* [, for somea, b € Lit(y). We can assume without loss of generality
that the pattb —' b does not doubly use any clause. If this is not the case, thebpat' b contains a subpath
¢ —* cthat does not doubly uses any clauses, and we could geilestiead ofb. Also, we know thal < k. It
is easy to see that imfgh|,) contains the path—* a — @ —* [, which uses at most clauses and doubly uses
m — 1 of these clauses. By the induction hypothesis, we obtairtiiese exist’, ...,/ such that/, =1 and
for eachl < i < m the graph imp(|90|{l/17...71271}) contains a patltz —* [! that uses at mogt clauses and does
not doubly use any clause. Now lgt= b andi; = I;_, forall 2 < i < m+ 1. Itis straightforward to verify that
l1,..., L2y satisfy the required properties. O

Somewhat related to our mechanism of computing enforcedrasents via iterated-backbones is the mecha-
nism used to definenit-refutation complete formulas of leve[12,[19]. This mechanism is based on mappings
r, from CNF formulas to CNF formulas. For a nonnegative intégethe mapping is defined inductively
as follows. In the case fdt = 0, we letrg(¢) = {L} if L € ¢, andro(p) = ¢ otherwise. In the case for
k> 0, we letry(p) = ri(p|:) if there exists a literal € Lit(y) such thatr,_;(¢];) = {L}, andri(p) = ¢
otherwise. In particular, the mappimg computes the result of applying unit propagation. Note tihatesult of
ri(¢) is the application of a number of forced assignmentg,tae., r,(p) = |, for someL C Lit(y) such
that for alll € L we havey |= I. We let LY¢() denote the set of forced literals that are computea;bhy.e.,
LYC(p) = L C Lit(yp) such that(p) = ¢|... Similarly, we letL!-8 () denote the set of forced literals that are
found by computing iterativé-backbones.

The following observations relate the two mechanisms. ¢ e an arbitrary CNF formula. We have that
LYC(p) = LB (y). Infact, this set contains exactly those enforced litettzas can be found by unit propagation.
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Also, for anyk > 2 we have that ! (¢) C LYS(y). The inclusion follows from the fact that each minimal
subsety’ of size at most: that enforces a literal has at most literals (which is a direct result of Tarsi’s
Lemma). Wheneveris identified as an enforced literal in iteratikebackbone computation, it can then also be
computed by, by first guessing, and subsequently obtaining a contradiction for each itisttion of the other
variables in Varg’). In order to see that the inclusion is strict, consider #vaify of formulas(y,,),en, Where
on ={{2ixip1}:1<i<n}U{-z,,~x}. Foreachp,, we know thatp,, = —z;. Furthermore, we have
that—z; € LY%(¢,,), butz; is not an iterativek-backbone ofp,, for anyk < n.

7 Experimental Results

In order to illustrate the relevance of the concept of loGdkibones and iterative local backbones, we provide
some empirical evidence of the distribution of (iteratil@al backbones in instances from different domains.
We considered both randomly generated instances (3CN&nicess with various variable-clause ratios around
the phase transition) and instances originating from prapfi5,[17], circuit fault analysis [23], inductive infer-
ence [23], and bounded model checkihgl [26]. We considerdédsatisfiable instances. For practical reasons,
we used a method that gives us a lower bound on the numliebatkbone variables. By reducing the separate
LOoCAL-BACKBONE problems to $SIALL -UNSATISFIABLE-SUBSET, we can use algorithms computing subset-
minimal unsatisfiable subsets to approximate the numbeteddtive local backbones (we used MUSE€r2 [2]).
In order to get the exact number, we would have to computdreity-minimal unsatisfiable subsets, which is
difficult in practice.

The experimental results are shown in Figdre 2. For eacheofigtances, we give the percentage of backbones
that are of ordek (dashed lines) and the percentage of backbones that aezatfut ordek (solid lines), as well
as the total number of backbones and the total number ofedaukhere are instances with several backbones,
most of which have relatively small order. This is the casetlfi@ instances from the domains of planning
(logistic9, circuit fault analysisgsa7552and bounded model checkinlgnic-ibn). It is worth noting that already
more than 75 percent of the backbones in all the considaredibminstances are of iterative order 2. We also
found instances that have no backbones of small order or aif gerative order. This is the case for the instances
from the domain of inductive inferencié32) and the randomly generated instances. Some of thesedestdo
have backbones, while others have no backbones at all.

It would be interesting to confirm these findings by a morenogs experimental investigation.

8 Conclusions

We have drawn a detailed complexity map of the problem of figdocal backbones and iterative local back-
bones, in general and for formulas from restricted clas8eglitionally, we have provided some first empirical
results on the distribution of (iterative) local backbomesome benchmark SAT instances. We found that in
structured instances from different domains backbonesfageite low (iterative) order. This suggests that the
notions of local backbones and iterative local backbonedeaused to identify structure in SAT instances.

Some of our findings are somewhat surprising. (1) Findinglldackbones in Horn formulas is fixed-
parameter intractable, whereas backbones for this cldesmiilas can be found in polynomial time. (2) In certain
cases finding iterative local backbones is computatioriier than finding (non-iterative) local backbones. (3)
Local backbones and iterative local backbones seem to bieat elicator of structure than backbones. Random
instances do have backbones, but these are of high ordeteaativie order.

Backbones and local backbones are implied unit clausesighitrbe interesting to extend our investigation
to implied clauses of larger fixed size, binary clauses itigaar.
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Figure 2: Percentage of backbones that are of order at in¢gdashed) and of iterative order at mas{solid), for SAT
instances from planninddgistics.[a—d] 828—-4713 variables, 6718-21991 clauses, 437-838 baeghaircuit fault analysis
(ssa7552-[038,158-16011363-1501 variables, 3032—-3575 clauses, 405-838 baekhdmounded model checkingnfc-
ibm-[2,5,7], 2810-9396 variables, 11683-41207 clauses, 405-557 tiaek)) inductive inferencé@f2[b—e][1-3], 222-824
variables, 1186—-20862 clauses, 0-208 backbones) andmaB8®&T instancesr@ndom 200 variables, 820-900 clauses,
1-131 backbones).
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