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Abstract

A backbone of a propositional CNF formula is a variable whosetruth value is the same in every truth
assignment that satisfies the formula. The notion of backbones for CNF formulas has been studied in various
contexts. In this paper, we introduce local variants of backbones, and study the computational complexity of
detecting them. In particular, we considerk-backbones, which are backbones for sub-formulas consisting of
at mostk clauses, and iterativek-backbones, which are backbones that result after repeatedinstantiations of
k-backbones. We determine the parameterized complexity of deciding whether a variable is ak-backbone or an
iterativek-backbone for various restricted formula classes, including Horn, definite Horn, and Krom. We also
present some first empirical results regarding backbones for CNF-Satisfiability (SAT). The empirical results we
obtain show that a large fraction of the backbones of structured SAT instances are local, in contrast to random
instances, which appear to have few local backbones.

1 Introduction

A backboneof a propositional formulaϕ is a variable whose truth value is the same for all satisfyingassignments
of ϕ. The term originates in computational physics [24], and thenotion of backbones has been studied for SAT
in various contexts. Backbones have also been considered inother contexts (e.g., knowledge compilation [4])
and for other combinatorial problems [25]. If a backbone andits truth value are known, then we can simplify the
formula without changing its satisfiability, or the number of satisfying assignments. Therefore, it is desirable to
have an efficient algorithm for detecting backbones. In general, however, the problem of identifying backbones
is coNP-complete (this follows from the fact that a literall is enforced by a formulaϕ if and only if ϕ ∧ ¬l is
unsatisfiable).

A variable can be a backbone because oflocal propertiesof the formula (such backbones we calllocal
backbones). As an extreme example consider a CNF formula that containsa unit clause. In this case we know
that the variable appearing in the unit clause is a backbone of the formula. More generally, we define theorder
of a backbonex of a CNF formulaϕ to be the cardinality of a smallest subsetϕ′ ⊆ ϕ such thatx is a backbone
of ϕ′, and we refer to backbones of order≤ k ask-backbones. Thus, unit clauses give rise to 1-backbones.

A natural generalization ofk-backbones are variables whose truth values are enforced byrepeatedly assign-
ing k-backbones to their appropriate truth value and simplifying the formula according to this assignment. We
call variables that are assigned by this iterative processiterativek-backbones(for a formal definition, see Sec-
tion 2.1). For instance, iterative1-backbones are exactly those variables whose truth values are enforced by unit
propagation. Theiterative orderof a backbonex is the smallestk such thatx is an iterativek-backbone.

Finding Local Backbones For every constantk, we can clearly identify allk-backbones and iterativek-back-
bones of a CNF formulaϕ in polynomial time by simply going over all subsets ofϕ of size at mostk (and
iterating this process if necessary). However, ifϕ consists ofm clauses, then this brute-force search requires
us to consider at leastmk subsets, which is impractical already for small values ofk. It would be desirable to
have an algorithm that detects (iterative)k-backbones in timef(k)||ϕ||c wheref is a function,||ϕ|| denotes the
length of the formula, andc is a constant. An algorithm with such a running time would render the problem
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C LOCAL-BACKBONE[C] ITERATIVE-LOCAL-BACKBONE[C]

CNF W[1]-c (Thm 2) W[1]-h (Cor 3)
DEFHORN W[1]-c (Thm 2) P (Thm 6)
NUHORN W[1]-c (Thm 3) W[1]-h (Cor 3)
KROM P (Prop 1) P (Thm 7)
VOd FPT (Thm 4) FPT (Thm 5)

Table 1: Map of parameterized complexity results. (The classesC of formulas are defined in Section 2.1.)

fixed-parameter tractablewith respect to parameterk [6]. In this paper we study the question of whether the
identification of (iterative)k-backbones of a CNF formula is fixed-parameter tractable or not, considering various
restrictions on the CNF formula. We therefore define the following template for parameterized problems, where
C is an arbitrary class of CNF formulas.

LOCAL-BACKBONE[C]
Instance:a CNF formulaϕ ∈ C, a variablex of ϕ, and an integerk ≥ 1.
Parameter:The integerk.
Question:Is x ak-backbone ofϕ?

The problem ITERATIVE-LOCAL-BACKBONE is defined similarly. It is not hard to see that LOCAL-BACK-
BONE[C] is closely related to the problem of finding a small unsatisfiable subset of a CNF formula (this is proven
below in Lemmas 1 and 2). More precisely, for every classC, the problem LOCAL-BACKBONE[C] has the same
parameterized complexity as the following problem, studied by Fellows et al. [9].

SMALL -UNSATISFIABLE-SUBSET[C]
Instance:a CNF formulaϕ ∈ C, and an integerk ≥ 1.
Parameter:The integerk.
Question:Is there an unsatisfiable subsetϕ′ ⊆ ϕ consisting of at mostk clauses?

This problem is of relevance also for classesC for which the satisfiability is decidable in polynomial time. For
instance, given an inconsistent knowledge base in terms of an unsatisfiable set of Horn clauses, one might want
to detect the cause for the inconsistency in terms of a small unsatisfiable subset.

Results We draw a detailed parameterized complexity map of the considered problems LOCAL-BACKBONE[C],
ITERATIVE-LOCAL-BACKBONE[C], and SMALL -UNSATISFIABLE-SUBSET[C], for various classesC. Table 1
provides an overview of our complexity results (FPT indicates that the problem is fixed-parameter tractable,
W[1]-hardness indicates strong evidence that the problem is not fixed-parameter tractable; see Section 2.2 for
details).

It is interesting to observe that the non-iterative problems tend to be at least as hard as the iterative problems.
The polynomial time solvability of finding iterative local backbones in definite Horn formulas is also interesting,
especially in the light of the intractability of the corresponding problem of finding (non-iterative) local backbones.

We also provide some first empirical results on the distribution of local backbones in some benchmark SAT
instances. We consider structured instances and random instances. For the structured instances that we consider
we observe that a large fraction of the backbones are of relatively small iterative order. In contrast, the backbones
of the random instances that we consider are of large iterative order. The results suggest that the distribution of
the iterative order of backbones might be an indicator for a hidden structure in SAT instances.

Related Work The notion of backbones has initially been studied in the context of optimization problems in
computational physics [24]. The notion has later been applied to several combinatorial problems [25], including
SAT. The relation between backbones and the difficulty of finding a solution for SAT has been studied by
Kilby et al. [18], by Parkes [22] and by Slaney and Walsh [25].The complexity of finding backbones has been
studied theoretically by Kilby et al. [18]. The notion of backbones has also been used for improving SAT solving
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algorithms by Dubois and Dequen [7] and by Hertli et al. [14].The problem of identifying unsatisfiable subsets
of size at mostk has been considered by Fellows et al. [9], who proved that this problem (parameterized onk) is
W[1]-complete. Furthermore, they showed by the same reduction that finding ak-step resolution refutation for
a given formula is W[1]-complete as well. Related notions oflocally enforced literals have also been studied,
including a notion of generalized unit-refutation [12, 19].

2 Preliminaries

2.1 CNF Formulas, Unsatisfiable Subsets and Local Backbones

A literal is a propositional variablex or a negated variable¬x. The complementx of a positive literalx is
¬x, and the complement¬x of a negative literal¬x is x. A clauseis a finite set of literals, not containing a
complementary pairx, ¬x. A unit clauseis a clause of size 1. We let⊥ denote the empty clause. Aformula in
conjunctive normal form (or CNF formula) is a finite set of clauses. We define thelength||ϕ|| of a formulaϕ
to be

∑

c∈ϕ |c|; the number of clauses ofϕ is denoted by|ϕ|. A formulaϕ is ak-CNF formula if the size of
each of its clauses is at mostk. A 2-CNF formula is also called a Krom formula. A clause is aHorn clauseif
it contains at most one positive literal. A Horn clause containing exactly one positive literal is adefinite Horn
clause. Formulas containing only Horn clauses are calledHorn formulas. Definite Horn formulasare defined
analogously. We denote the class of all Krom formulas by KROM, the class of all Horn formulas by HORN and
the class of all definite Horn formulas by DEFHORN. We let NUHORN denote the class of Horn formulas not
containing unit clauses (such formulas are always satisfiable). Letd be an integer. The class of CNF formulas
such that each variable occurs at mostd times is denoted by VOd.

For a CNF-formulaϕ, the set Var(ϕ) denotes the set of all variablesx such that some clause ofϕ contains
x or ¬x; the set Lit(ϕ) denotes the set of all literalsl such that some clause ofϕ containsl or l. A formula
ϕ is satisfiableif there exists an assignmentτ : Var(ϕ) → {0, 1} such that every clausec ∈ ϕ contains some
variablexwith τ(x) = 1 or some negated variable¬xwith τ(x) = 0 (we say that such an assigmentτ satisfiesϕ);
otherwise,ϕ is unsatisfiable. ϕ is minimally unsatisfiableif ϕ is unsatisfiable and every proper subset ofϕ is
satisfiable. It is well-known that any minimal unsatisfiableCNF formula has more clauses than variables (this is
known as Tarsi’s Lemma [1, 20]). For two formulasϕ, ψ, whenever all assignments satisfyingϕ also satisfyψ,
we writeϕ |= ψ. The reductϕ|L of a formulaϕ with respect to a set of literalsL ⊆ Lit(ϕ) is the set of clauses of
ϕ that do not contain anyl ∈ L with all occurrences ofl for all l ∈ L removed. For singletonsL = {l}, we also
write ϕ|l. We say that a classC of formulas isclosed under variable instantiationif for everyϕ ∈ C and every
l ∈ Lit(ϕ) we have thatϕ|l ∈ C. For an integerk, a variablex is ak-backboneof ϕ, if there exists aϕ′ ⊆ ϕ such
that |ϕ′| ≤ k and eitherϕ′ |= x or ϕ′ |= ¬x. A variablex is abackboneof a formulaϕ if it is a |ϕ|-backbone.
Note that the definition of the backbone of a formulaϕ that is used in some of the literature includes all literals
l ∈ Lit(ϕ) such thatϕ |= l. For an integerk, a variablex is an iterative k-backboneof ϕ if either (i) x is a
k-backbone ofϕ, or (ii) there existsy ∈ Var(ϕ) such thaty is ak-backbone ofϕ, and for somel ∈ {y,¬y},
ϕ |= l andx is an iterativek-backbone ofϕ|l.

For a Krom formulaϕ, we let impl(ϕ) be theimplication graph(V,E) of ϕ, whereV = { x,¬x : x ∈
Var(ϕ) } andE = { (a, b), (b, a) : {a, b} ∈ ϕ }. We say that a pathp in this graphuses a clause{a, b} of ϕ if
either one of the edges(a, b) and(b, a) occurs inp; we say thatp doubly usesthis clause if both edges occur inp.

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory. For more details, we refer to text
books on the topic [6, 10, 21]. An instance of a parameterizedproblem is a pair(I, k) whereI is the main part of
the instance, andk is the parameter. A parameterized problem isfixed-parameter tractableif instances(I, k) can
be solved by a deterministic algorithm that runs in timef(k)|I|c, wheref is a computable function ofk, andc is
a constant (algorithms running within such time bounds are called fpt-algorithms). If c = 1, we say the problem
is fixed-parameter linear. FPT denotes the class of all fixed-parameter tractable problems. Using fixed-parameter
tractability, many problems that are classified as intractable in the classical setting can be shown to be tractable
for small values of the parameter.
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Parameterized complexity also offers acompleteness theory, similar to the theory of NP-completeness. This
allows the accumulation of strong theoretical evidence that a parameterized problem is not fixed-parameter
tractable. Hardness for parameterized complexity classesis based on fpt-reductions, which are many-one re-
ductions where the parameter of one problem maps into the parameter for the other. More specifically, a pa-
rameterized problemL is fpt-reducible to another parameterized problemL′ (denotedL ≤fpt L

′) if there is a
mappingR from instances ofL to instances ofL′ such that (i)(I, k) ∈ L if and only if (I ′, k′) = R(I, k) ∈ L′,
(ii) k′ ≤ g(k) for a computable functiong, and (iii)R can be computed in timeO(f(k)|I|c) for a computable
functionf and a constantc.

Central to the completeness theory is the hierarchy FPT⊆W[1] ⊆W[2] ⊆ · · · ⊆ para-NP. Each intractabil-
ity class W[t] contains all parameterized problems that canbe reduced to a certain parameterized satisfiability
problem under fpt-reductions. The intractability class para-NP includes all parameterized problems that can be
solved by a nondeterministic fpt-algorithm. Fixed-parameter tractability of any problem hard for any of these
intractability classes would imply that the Exponential Time Hypothesis fails [10, 16] (i.e., the existence of a
2o(n) algorithm forn-variable3SAT).

3 Local Backbones and Small Unsatisfiable Subsets

The straightforward reductions in the proofs of the following two lemmas, illustrate the close connection between
LOCAL-BACKBONE and SMALL -UNSATISFIABLE-SUBSET.

Lemma 1. SMALL -UNSATISFIABLE-SUBSET≤fpt LOCAL-BACKBONE.

Proof. Let (ϕ, k) be an instance of SMALL -UNSATISFIABLE-SUBSET. We construct an instance(ϕ′, z, k) of
LOCAL-BACKBONE, by lettingϕ′ = { c ∪ {z} : c ∈ ϕ } for somez 6∈ Var(ϕ). We claim that(ϕ, k) ∈ SMALL -
UNSATISFIABLE-SUBSET if and only if (ϕ′, z, k) ∈ LOCAL-BACKBONE.

(⇒) Assume(ϕ, k) ∈ SMALL -UNSATISFIABLE-SUBSET. Then there exists an unsatisfiableϕ′′ ⊆ ϕ with
|ϕ′′| ≤ k. Now considerχ = { c ∪ {z} : c ∈ ϕ′′ }. Clearly,χ ⊆ ϕ′ and|χ| ≤ k. Also, sinceϕ′′ is unsatisfiable,
we getχ |= z. Thusχ witnesses thatz is ak-backbone ofϕ′.

(⇐) Assume(ϕ′, k, z) ∈ LOCAL-BACKBONE. Since¬z does not occur inϕ′, this means that there exists
a ϕ′′ ⊆ ϕ′ with |ϕ′′| ≤ k such thatϕ′′ |= z. Now takeχ = { c\{z} : c ∈ ϕ′′ }. We get thatχ ⊆ ϕ and
|χ| ≤ k. Also, we know thatχ is unsatisfiable, since otherwise it would not hold thatϕ′′ |= z. Therefore,
(ϕ, k) ∈ SMALL -UNSATISFIABLE-SUBSET.

The reduction in the proof of Lemma 2 shows that instances(ϕ, z, k) of LOCAL-BACKBONE lead to equiva-
lent instances of SMALL -UNSATISFIABLE-SUBSET by simply taking the disjoint union of the reducts ofϕ with
respect to bothz and¬z.

Lemma 2. LOCAL-BACKBONE ≤fpt SMALL -UNSATISFIABLE-SUBSET.

Proof. Let (ϕ, z, k) be an instance of LOCAL-BACKBONE. We construct an instance(ψ, k) of SMALL -UNSATISFI-
ABLE-SUBSET. For every variablex ∈ Var(ϕ) we take two copiesx1, x2. For i ∈ {1, 2} we letϕi be a copy
of ϕ using the variablesxi. Now we defineψ = ϕ1|z1 ∪ ϕ2|¬z2 . In other words,ψ is the union of two disjoint
copies of the reducts ofϕ with respect toz and¬z. We claim that(ϕ, z, k) ∈ LOCAL-BACKBONE if and only if
(ψ, k) ∈ SMALL -UNSATISFIABLE-SUBSET.

(⇒) Assumez is ak-backbone ofϕ. This means there exists aϕ′ ⊆ ϕ with |ϕ′| ≤ k such that eitherϕ′ |= z

or ϕ′ |= ¬z. Assume without loss of generality thatϕ′ |= z. Thenϕ′|¬z is unsatisfiable. One can see this as
follows. Assume the contrary, i.e., thatϕ′|¬z is satisfiable. This means there is a valuationV that satisfies all
clauses inϕ′|¬z . LetV ′ be a valuation forϕ′ defined by

V ′(x) =

{

0 if x = z

V (x) otherwise.

We show thatV satisfiesϕ′. For each clausec ∈ ϕ′ such that¬z ∈ c, we clearly have thatV ′ satisfiesc, because
V ′(z) = 0. For all other clausesc ∈ ϕ′ with ¬z 6∈ c, we knowV ′ satisfiesc, by the following argument.
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Becausec′ = c\{z} ∈ ϕ′|¬z, we know thatV satisfies some literal inc′. Therefore, we know thatV ′ satisfies
c. This is a contradiction to the fact thatϕ′ |= z. Thus,ϕ′|¬z is unsatisfiable. Furthermore, we know that
|(ϕ′|¬z)| ≤ |ϕ′| ≤ k. Also, sinceϕ′ ⊆ ϕ, we know thatϕ′|¬z ⊆ ϕ|¬z. Then, by the fact thatϕ2|¬z2 is a copy of
ϕ|¬z, we know that(ψ, k) ∈ SMALL -UNSATISFIABLE-SUBSET.

(⇐) Assume(ψ, k) ∈ SMALL -UNSATISFIABLE-SUBSET. This means there exists an unsatisfiableψ′ ⊆ ψ

with |ψ′| ≤ k. Sinceψ = ϕ1|z1 ∪ ϕ2|¬z2 andϕ1|z1 andϕ2|¬z2 are disjoint, we can assume without loss of
generality that eitherψ′ ⊆ ϕ1|z1 or ψ′ ⊆ ϕ2|¬z2 . Suppose thatψ′ ⊆ ϕ2|¬z2 , and the other case is similar. We
then know that there is a subsetϕ′ ⊆ ϕ such thatψ′ is a copy ofϕ′|¬z. Take such aϕ′ of minimal size. We then
know that there is no clausec ∈ ϕ′ such that¬z ∈ c. Therefore, we know that|ϕ′| = |ψ′| ≤ k. We now show
thatϕ′ |= z. Assume the contrary, i.e., that there exists an assignmentV with V (z) = 0 that satisfiesϕ′. Then
this V would also satisfyϕ′|¬z. From this one can straightforwardly construct an assignment that satisfiesψ′,
which contradicts our assumption thatψ′ is unsatisfiable. Thusϕ′ witnesses thatz is ak-backbone ofϕ.

Theorem 1. LOCAL-BACKBONE is W[1]-complete.

Proof. Since SMALL -UNSATISFIABLE-SUBSET is W[1]-complete [9], the result follows from Lemmas 1 and
2.

4 Local Backbones of Horn and Krom Formulas

Horn formulas Restricting the problem of finding backbones in arbitrary formulas to Horn formulas reduces
the classical complexity from co-NP-completeness to polynomial time solvability. It is a natural question whether
the parameterized complexity of finding local backbones decreases in a similar way when the problem is restricted
to Horn formulas. We will show that this is not the case. In order to do so, we define the parameterized problem
SHORT-HYPERPATH, show that it is W[1]-hard, and then provide fpt-reductionsfrom SHORT-HYPERPATH.

For a Horn formulaϕ ands, t ∈ Var(ϕ), we say that a subformulaϕ′ ⊆ ϕ is ahyperpathfrom s to t if (i)
t = s or (ii) c = {x1, . . . , xn, t} ∈ ϕ′ andϕ′\c is a hyperpath froms to xi for each1 ≤ i ≤ n. If |ϕ| ≤ k then
ϕ is called ak-hyperpath. The parameterized problem SHORT-HYPERPATH takes as input a Horn formulaϕ,
two variabless, t ∈ Var(ϕ) and an integerk. The problem is parameterized byk. The question is whether there
exists ak-hyperpath froms to t. For a more detailed discussion on the relation between (backward) hyperpaths
in hypergraphs and hyperpaths as defined above, we refer to a survey article by Gallo et al. [11].

For the hardness proof of SHORT-HYPERPATH, we reduce from the W[1]-complete problem MULTICOLORED-
CLIQUE [8]. The MULTICOLORED-CLIQUE problem takes as input a graphG, some integerk, and a proper
k-coloringc of the vertices ofG. The problem is parameterized byk. The question is whether there is a properly
coloredk-clique inG.

Lemma 3. SHORT-HYPERPATH is W[1]-hard, even for instances(ϕ, s, t, k) whereϕ ∈ 3CNF.
Proof. We give a reduction from MULTICOLORED-CLIQUE. Let (G, k, c) be an instance of MULTICOLORED-
CLIQUE, whereG = (V,E) andV1, . . . , Vk are the equivalence classes ofV induced by thek-coloringc. We
construct an instance(ϕ, s, t, k′) of SHORT-HYPERPATH, wherek′ = k +

(

k
2

)

+ 1 and

Var(ϕ) = {s, t} ∪ V ∪ { pi,j : 1 ≤ i < j ≤ k };
ϕ = ϕV ∪ ϕp ∪ ϕt;

ϕV = { {¬s, v} : v ∈ V };
ϕp = { {¬vi,¬vj , pi,j} : 1 ≤ i < j ≤ k, vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈ E };
ϕt = {{¬pi,j : 1 ≤ i < j ≤ k } ∪ {t}}.

This construction is illustrated for an example withk = 3 in Figure 1. We claim that(G, k, c) ∈ MULTI-
COLORED-CLIQUE if and only if (ϕ, s, t, k′) ∈ SHORT-HYPERPATH.

(⇒) Assume(G, k, c) ∈ MULTICOLORED-CLIQUE. Then there exists a cliqueV ′ of G with |V ∩ Vi| = 1
for all 1 ≤ i ≤ k. We construct ak′-hyperpathϕ′ from s to t. We define:

ϕV ′ = { ({s}, v) : v ∈ V ′ } ∪ ϕt ∪
{ ({vi, vj}, pi,j) : 1 ≤ i < j ≤ k, vi ∈ Vi ∩ V ′, vj ∈ Vj ∩ V ′, {vi, vj} ∈ E }

It is straightforward to verify thatϕV ′ is ak′-hyperpath froms to t.

5



1

2

3

·
·
·
·
·

· · · · ·

· · · · ·

(a) A 3-partite graphG with a clique
(in black).

·
·
·
·
·

· · · · ·

· · · · ·

s
p1,2

p2,3

p1,3

t

(b) The B-hyperpath inH of sizek′
= 3+

(

3

2

)

+1 from s to t corresponding
to the clique.

Figure 1: Illustration of the reduction in the proof of Lemma3 for the case of a 3-colored clique.

(⇐) Assume(ϕ, s, t, k′) ∈ SHORT-HYPERPATH. Then there exists ak′-hyperpathϕ′ from s to t. We know
thatϕt ⊆ ϕ′, sinceϕt contains the unique clause inϕ with t occurring positively. Since|ϕ′| ≤ k′, we know that
in order forϕ′ to be a hyperpath froms to t, we have|ϕV ∩ϕ′| = k and|ϕp∩ϕ′| =

(

k
2

)

. It is then straightforward
to verify that the setV ′ = { v ∈ V : {¬s, v} ∈ ϕ′ } witnesses thatG has ak-clique containing one node in each
Vi.

To see that clauses of size at most3 in the hyperpath suffice, we slightly adapt the reduction. The only clause
we need to change is the single clausee ∈ ϕt. This clausee is of the form{¬p1, . . . ,¬pm, t}, form =

(

k
2

)

. We
introduce new variablesv1, . . . , vm and replacee by them+ 1 many clauses{¬p1, v1}, {¬vi−1,¬pi, vi} for all
1 < i ≤ m and{¬vm, t}. Clearly, the resulting Horn formula only has clauses of size at most3. This adapted
reduction works with the exact same line of reasoning as the reduction described above, with the only change that
k′ = k + 2

(

k
2

)

+ 1.
Note that even the slightly stronger claim holds thatG has a properly coloredk-clique if and only if there

exists a (subset) minimalk′-B-hyperpathϕ′ ⊆ ϕ for which we have|ϕ′| = k′.

We are now in a position to prove the W[1]-hardness of LOCAL-BACKBONE[HORN]. In fact, we show that finding
local backbones is already W[1]-hard for definite Horn formulas with a single unit clause. We also show that this
hardness crucially depends on allowing unit clauses in the formula, since for definite Horn formulas without unit
clauses the problem is trivial. In fact, the complexity jumps to W[1]-hardness already when allowing a single unit
clause.

Lemma 4. Definite Horn formulas without unit clauses have no backbones.

Proof. Consider the two valuationsI⊤ andI⊥, whereI⊤(x) = ⊤ andI⊥(x) = ⊥ for all x ∈ Var(ϕ). Since
ϕ ∈ DEFHORN andϕ has no unit clauses, we know that each clause has one positiveand at least one negative
literal. Thus bothI⊤ andI⊥ satisfyϕ. Therefore, nox ∈ Var(ϕ) is a backbone ofϕ.

Theorem 2. LOCAL-BACKBONE[DEFHORN∩3CNF] is W[1]-hard, already for instances(ϕ, x, k) whereϕ has
at most one unit clause.

Proof. We show W[1]-hardness by reducing from SHORT-HYPERPATH. Let (ϕ, s, t, k) be an instance of SHORT-
HYPERPATH. We can assume thatϕ ∈ 3CNF. We construct an instance(ψϕ, t, k

′) of LOCAL-BACKBONE. Here
k′ = k + 1. For eachϕ′ ⊆ ϕ we define a formulaψϕ′ , by letting Var(ψϕ′) = Var(ϕ′) and:

ψϕ′ = {{s}} ∪ ϕ′.

Clearlyψϕ ∈ DEFHORN ∩ 3CNF andψϕ has only a single unit clause. We claim that(ψϕ, t, k
′) ∈ LOCAL-

BACKBONE if and only if (ϕ, s, t, k) ∈ SHORT-HYPERPATH.
(⇒) Assume thatt is ak′-backbone ofψϕ. Sinceψϕ ∈ DEFHORN, we then know that there exists aψ′ ⊆ ψϕ

with |ψ′| ≤ k′ andψ′ |= t. By Lemma 4, we know that{s} ∈ ψ′. Now letϕ′ ⊆ ϕ be the unique subset of clauses
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such thatψ′ = ψϕ′ . We know that|ϕ′| ≤ k. It is easy to verify that sinceψ′ |= t, we get thatϕ′ is ak-hyperpath
from s to t.

(⇐) Assume that there exists ak-hyperpathϕ′ ⊆ ϕ from s to t with |ϕ′| ≤ k. Thenψϕ′ witnesses thatt is a
k′-backbone ofψϕ. Clearly,|ψϕ′ | ≤ k′. Also, it is straightforward to verify that sinceϕ′ is ak-hyperpath froms
to t, it holds thatψϕ′ |= t.

Also, restricting the problem to Horn formulas without unitclauses unfortunately does not yield fixed-parameter
tractability.

Theorem 3. LOCAL-BACKBONE[NUHORN∩ 3CNF] is W[1]-hard.

Proof. We show the W[1]-hardness of LOCAL-BACKBONE[NUHORN ∩ 3CNF] by reducing from SHORT-
HYPERPATH. Let (ϕ, s, t, k) be an instance of SHORT-HYPERPATH. We can assume without loss of general-
ity that ϕ ∈ 3CNF, and that each clause in whicht occurs positively is of size3. We construct an instance
(ψϕ, xs, k) of LOCAL-BACKBONE. For eachϕ′ ⊆ ϕ we define a formulaψϕ′ .

ψϕ′ = { {¬xa,¬xb, xc} : {¬a,¬b, c} ∈ ϕ
′, c 6= t } ∪

{ {¬xa,¬xb} : {¬a,¬b, t} ∈ ϕ′ }
{ {¬xa, xb} : {¬a, b} ∈ ϕ′ }

Clearly we have thatψϕ ∈ HORN∩ 3CNF and thatψϕ has no unit clauses. We claim that(ψϕ, xs, k) ∈ LOCAL-
BACKBONE if and only if (ϕ, s, t, k) ∈ SHORT-HYPERPATH.

(⇒) Assumexs is a k-backbone ofψϕ. Sinceψϕ ∈ HORN andψϕ has no unit clauses, this means there
exists aψ′ ⊆ ψϕ with |ψ′| ≤ k such thatψ′ |= ¬xs. Let ϕ′ ⊆ ϕ be the unique subset of clauses such that
ψ′ = ψϕ′ . We know that|ϕ′| ≤ k. In order to show thatϕ′ is a hyperpath froms to t, we assume to the contrary
that it is not. We now define the assignmentµ by lettingµ(xv) = ⊤ for all v ∈ Var(ϕ) such that there exists a
hyperpathϕ′′ ⊆ ϕ′ from s to v and lettingµ(xv) = ⊥ for all otherv ∈ Var(ϕ). We know thatµ does not satisfy
ψϕ′ only if µ does not satisfyxa ∧ xb for some{¬xa,¬xb} ∈ ψϕ′ and if there exists a hyperpath froms to both
a andb. However, by the construction ofψϕ′ , this can only be the case if there exists a hyperpathϕ′′ ⊆ ϕ′ from
s to t, which contradicts our assumption. Thus we know thatµ satisfiesψϕ′ as well asxs. This is a contradiction
to our previous conclusion thatµ does not satisfyxs. Therefore, we can conclude thatϕ′ is a hyperpath froms
to t. From this follows that(ϕ, s, t, k) ∈ SHORT-HYPERPATH.

(⇐) Assume there exists ak-hyperpathϕ′ ⊆ ϕ from s to t. Now considerψϕ′ . Since|ϕ′| ≤ k, we know
that |ψϕ′ | ≤ k. Also, since we know that({a, b}, t) ∈ ϕ′ for somea, b ∈ V , we know{¬xa,¬xb} ∈ ψϕ′ . Now
assume for an arbitrary assignmentµ thatµ |= ψϕ′ andµ |= xs. By a simple inductive argument, using the
definition ofψϕ′ , we then get thatµ |= xu for all u for which there exists a hyperpath froms to u. In particular,
we getµ |= xa ∧ xb. However, since{¬xa,¬xb} ∈ ψϕ′ , we get a contradiction to the fact thatµ |= ψϕ′ . Thus
we can conclude thatψϕ′ |= ¬xs. Therefore,(ψϕ′ , xs, k) ∈ LOCAL-BACKBONE.

Krom formulas Let us now turn to the case of Krom formulas. Restricting the problem of finding backbones in
arbitrary formulas to Krom formulas reduces the classical complexity from co-NP-completeness to polynomial
time solvability. Interestingly, unlike the case for Horn formulas, the decrease in complexity in this case also
holds for finding local backbones.1 Finding a minimum-size unsatisfiable subset of a KROM formula can be done
in polynomial time [3]. This immediately implies that SMALL -UNSATISFIABLE-SUBSET[KROM] is polynomial-
time solvable, and therefore, by Lemma 2, LOCAL-BACKBONE[KROM] is also polynomial-time solvable (and
thus also fixed-parameter tractable).

Proposition 1. LOCAL-BACKBONE[KROM] is polynomial-time solvable.

Hardness for finding small unsatisfiable subsets We would like to point out that all hardness results for
the various restrictions of LOCAL-BACKBONE also hold for SMALL -UNSATISFIABLE-SUBSET under the corre-
sponding restrictions. This is because the reduction in theproof of Lemma 2 works for all classes of formulas
that are closed under variable instantiations. For instance, the reduction in the proof of Lemma 2 together with

1In a previous version of this paper [13], we mistakenly claimed that finding local backbones in Krom formulas is W[1]-hard.
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Theorem 3 tells us that SMALL -UNSATISFIABLE-SUBSET[HORN∩ 3CNF] is W[1]-hard. This does not follow
from the reduction that Fellows et al. [9] use to prove the W[1]-hardness of SMALL -UNSATISFIABLE-SUBSET.
In particular, the following previously unstated results hold.

Corollary 1. SMALL -UNSATISFIABLE-SUBSET[C] is W[1]-hard for eachC ∈ {DEFHORN∩3CNF,NUHORN∩
3CNF}.

In fact, these fixed-parameter intractability results for SMALL -UNSATISFIABLE-SUBSET give us the following
NP-hardness results.

Corollary 2. Let C ∈ {3CNF∩ DEFHORN, 3CNF∩ NUHORN}. Given a formulaϕ ∈ C and an integerk,
deciding whetherϕ contains an unsatisfiable subset of size≤ k is NP-hard.

Proof. The fpt-reductions given in the proofs of Lemmas 2 and 3 and Theorems 2 and 3 can be used as polynomial
many-one reductions from the NP-hard problem of finding a clique of certain minimum size in a graph.

5 Local Backbones of Formulas with Bounded Variable Occurrence

When considering the restriction of LOCAL-BACKBONE to formulas where variables occur a bounded number of
times, we get a fixed-parameter tractability result at last.This fixed-parameter tractability result is closely related
to the result that SMALL -UNSATISFIABLE-SUBSET is fixed-parameter tractable for instances restricted to classes
of formulas that have locally bounded treewidth [9]. Fellows et al. used a meta theorem to prove this. We give a
direct algorithm to solve SMALL -UNSATISFIABLE-SUBSET[VOd] in fixed-parameter linear time.

Let (ϕ, k) be an instance of SMALL -UNSATISFIABLE-SUBSET[VOd]. The following procedure decides
whether there exists an unsatisfiable subsetϕ′ ⊆ ϕ of size at mostk, and computes such a subset if it exists.
We letϕ⋆ = { c ∈ ϕ : |c| < k }. It suffices to consider subsets ofϕ⋆, since any unsatisfiable subsetϕ′ ⊆ ϕ

contains a minimally unsatisfiable subsetϕ′′ ⊆ ϕ′, and by Tarsi’s Lemma we know thatϕ′′ contains only clauses
of size smaller thank.

Without loss of generality, we assume that the incidence graph ofϕ⋆ is connected. Otherwise, we can solve
the problem by running the algorithm on each of the connectedcomponents. We guess a clausec ∈ ϕ⋆, we let
F1 := {c}, and we let all variables be unmarked initially. We computeFi+1 for 1 ≤ i ≤ k by means of the
following (non-deterministic) rule:

1. take an unmarked variablez ∈ Var(Fi);

2. guess a non-empty subsetF ′
z ⊆ Fz for Fz = { c ∈ ϕ⋆ : z ∈ Var(c)};

3. letFi+1 := Fi ∪ F ′
z ;

4. markz.

If at any point all variables inFi are marked, we stop computingFi+1. For anyFi, if |Fi| > k we fail. For each
Fi, we check whetherFi is unsatisfiable. If it is unsatisfiable, we return withϕ′ = Fi. If it is satisfiable and if it
contains no unmarked variables, we fail.

It is easy to see that this algorithm is sound. If someϕ′ ⊆ ϕ⋆ is returned, thenϕ′ is unsatisfiable and|ϕ′| ≤ k.
In order to see that the algorithm is complete, assume that there exists some unsatisfiableϕ′ ⊆ ϕ⋆ with |ϕ′| ≤ k.
Then, since we know that the incidence graph ofF ′ is connected, we know thatF ′ can be constructed as one of
theFi in the algorithm.

To see that this algorithm witnesses fixed-parameter linearity, we bound its running time. We have to execute
the search process at most once for each clause ofϕ⋆. At each point in the execution of the algorithm,Fi contains
at mostk variables. Therefore, there are at mostk choices to take an unmarked variablez. Since each variable
occurs in at mostd clauses, for eachFz used in the rule we know|Fz| ≤ d. Thus, there are at most2d possible
guesses forF ′

z in each execution of the rule. Since we iterate the rule at most k times, we consider at most(k2d)k

setsF ′, each of sizeO(k2). Thus each (un)satisfiability check can be done inO(2k) time. Therefore, the total
running time of the algorithm isO(kk2dkn), for n the size of the instance.

This algorithm also gives us a direct algorithm that shows that LOCAL-BACKBONE[VOd] is fixed-parameter
linear.
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input : an instance(ϕ, x, k) of ITERATIVE-LOCAL-BACKBONE

output: yes iff (ϕ, x, k) ∈ ITERATIVE-LOCAL-BACKBONE

ψ ← ϕ;
conseq← ∅;
for i← 1 to |Lit(ϕ)| do

foreach literal l ∈ Lit(ψ) do
if (ψ|l, k) ∈ SMALL -UNSATISFIABLE-SUBSET then

conseq← conseq ∪ {l};
ψ ← ψ|conseq;

return {x,¬x} ∩ conseq 6= ∅

Algorithm 1: Deciding ITERATIVE-LOCAL-BACKBONE with a SMALL -UNSATISFIABLE-SUBSET oracle.

Theorem 4. LOCAL-BACKBONE[VOd] is fixed-parameter linear.

Proof. The result follows directly by using the reduction in the proof of Lemma 2 in combination with the above
algorithm.

6 Iterative Local Backbones

We now consider the (parameterized) complexity of finding iterative local backbones. It is easy to see that
ITERATIVE-LOCAL-BACKBONE is in para-NP. This is witnessed by a straightforward nondeterministic fpt-
algorithm, that guesses a sequence ofn witnesses(ϕi, li) with |ϕi| ≤ k, and that verifies whetherϕi ⊆
ϕ|{l1,...,li−1} and whetherϕi |= li.

Some of the results we obtained for the problem of finding local backbones can be carried over. In all settings
that yield fixed-parameter tractability for LOCAL-BACKBONE we obtain that ITERATIVE-LOCAL-BACKBONE is
fixed-parameter tractable as well.

Theorem 5. LetC be a class of formulas such thatLOCAL-BACKBONE[C] is fixed-parameter tractable andC is
closed under variable instantiation. ThenITERATIVE-LOCAL-BACKBONE[C] is fixed-parameter tractable.

Proof. We give an algorithm to solve ITERATIVE-LOCAL-BACKBONE[C] that calls a subroutine to solve instances
of SMALL -UNSATISFIABLE-SUBSET[C]. This algorithm is given in the form of pseudo-code as Algorithm 1. By
the fact thatC is closed under variable instantiations we are able to applythe reduction in the proof of Lemma 2.
Thus, we can assume that the question of whether someϕ ∈ C contains an unsatisfiable subset of size at mostk

can be solved inf(k)||ϕ||c time, for some computable functionf and some constantc. Then, the entire algorithm
runs inO(f(k)||ϕ||c+2) time. This proves the claim.

Another result that carries over from the case of finding local backbones is the fixed-parameter intractability of
finding iterative local backbones in Horn formulas without unit clauses.

Corollary 3. ITERATIVE-LOCAL-BACKBONE[NUHORN∩ 3CNF] is W[1]-hard.

Proof. Observe that the proofs of Lemma 3 and Theorem 3 imply that it is already W[1]-hard to determine
whether a formulaϕ ∈ NUHORN∩ 3CNF has a subsetϕ′ ⊆ ϕ of size exactlyk witnessing that anyx ∈ Var(ϕ)
is ak-backbone. From this, it immediately follows that determining whether(ϕ, x, k) ∈ ITERATIVE-LOCAL-
BACKBONE is W[1]-hard as well.

We identify several tractable cases for ITERATIVE-LOCAL-BACKBONE. The problem of finding iterative local
backbones in definite Horn formulas is polynomial time solvable. Interestingly, for this restriction the problem of
finding (non-iterative) local backbones remains W[1]-hard. Similarly, finding iterative local backbones in Krom
formulas is solvable in polynomial time as well. This latterresult already follows by Proposition 1. We will
however give an alternative (and simpler) algorithm to find iterative local backbones in Krom formulas. In order
to show that finding iterative local backbones in definite Horn formulas is tractable, we will use the following
observation.
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Observation 1. Let ϕ be any propositional formula, letl be any literal such that there exists aϕ′ ⊆ ϕ with
|ϕ′| ≤ k andϕ′ |= l, and letψ = ϕ|l. Thenx ∈ Var(ψ) is an iterativek-backbone ofψ if and only if it is an
iterativek-backbone ofϕ.

Theorem 6. ITERATIVE-LOCAL-BACKBONE[DEFHORN] is polynomial-time solvable.

Proof. We show that for any definite Horn formulaϕ and anyk ≥ 1 the set of iterativek-backbones ofϕ
coincides with the set of variablesx ∈ Var(ϕ) such thatϕ |= x. The claim then follows, since the entailment
relation|= can be decided in linear time for definite Horn formulas [5].

Fix an arbitrary integerk ≥ 1 and an arbitrary definite Horn formulaϕ. Since definite Horn formulas cannot
entail negative literals, we know that each iterativek-backbonex of ϕ is also a semantic consequence ofϕ. Now,
let x ∈ Var(ϕ) be an arbitrary atom and assume thatϕ |= x. So there exist variablesx1, . . . , xm ∈ Var(ϕ)
such thatxm = x and for eachxi we have either (i){xi} ∈ ϕ or (ii) {¬xi1 , . . . ,¬xil , xi} ∈ ϕ for some
i1 < · · · < il < i. We prove by induction onm that eachxi is an iterativek-backbone. Take an arbitraryxi.
By the induction hypothesis, we can assume that everyxj for j < i is an iterativek-backbone ofϕ. We proceed
by case distinction for the justification ofxi in the sequence. In case (i), we know that{xi} ∈ ϕ. Therefore,
it directly follows thatxi is ak-backbone ofϕ, and thus is an iterativek-backbone too. In case (ii), we know
that{¬xi1 , . . . ,¬xil , xi} ∈ ϕ for somei1 < · · · < il < i. By the induction hypothesis, we know that eachxij
is an iterativek-backbone ofϕ. By assumption, we have thatϕ |= xij for eachxij . By Observation 1, we get
thatxi is an iterativek-backbone ofϕ if and only if it is an iterativek-backbone ofϕ{xi1

,...,xil
}. It holds that

{xi} ∈ ϕ{xi1
,...,xil

}. Thus,xi is an iterativek-backbone ofϕ.

Theorem 7. ITERATIVE-LOCAL-BACKBONE[KROM] is polynomial-time solvable.

Proof. We show that the iterativek-backbones of a Krom formulaϕ coincide with those backbones ofϕ that
can be identified by iterated application of the following rule: if the implication graph ofϕ contains a path from
a literal l ∈ {x,¬x} to its complementl of length at mostk, conclude thatx is a backbone and setϕ := ϕ|l.
Detection of such a path can be done in polynomial time. Also,at mostO(|Var(ϕ)|) iterated applications of this
rule suffice to reach a fixpoint. All that remains is to show thecorrespondence.

The correspondence claim follows from the following property. Let l ∈ Lit(ϕ). If impl(ϕ) contains a path
l→∗ l that uses at mostk clauses and that doubly usesm of these clauses, then there exist literalsl1, . . . , lm+1 ∈
Lit(ϕ) such that (i)lm+1 = l and (ii) for each1 ≤ i ≤ m + 1 the graph impl(ϕ|{l1,...,li−1}) contains a path
li →∗ li that uses at mostk clauses and does not doubly use any clause. We prove this claim by induction on
m. The case form = 0 is trivial. Consider the case form ≥ 1. Since the pathl →∗ l doubly uses some clause,
we know thatl →∗ a → b →∗ b → a →∗ l, for somea, b ∈ Lit(ϕ). We can assume without loss of generality
that the pathb →l b does not doubly use any clause. If this is not the case, the path b →l b contains a subpath
c →∗ c that does not doubly uses any clauses, and we could selectc instead ofb. Also, we know thatl ≤ k. It
is easy to see that impl(ϕ|b) contains the pathl →∗ a → a →∗ l, which uses at mostk clauses and doubly uses
m − 1 of these clauses. By the induction hypothesis, we obtain that there existl′1, . . . , l

′
m such thatl′m = l and

for each1 ≤ i ≤ m the graph impl(ϕ|{l′
1
,...,l′

i−1
}) contains a pathl′i →

∗ l′i that uses at mostk clauses and does
not doubly use any clause. Now letl1 = b andli = l′i−1 for all 2 ≤ i ≤ m+1. It is straightforward to verify that
l1, . . . , lm+1 satisfy the required properties.

Somewhat related to our mechanism of computing enforced assignments via iteratedk-backbones is the mecha-
nism used to defineunit-refutation complete formulas of levelk [12, 19]. This mechanism is based on mappings
rk from CNF formulas to CNF formulas. For a nonnegative integerk, the mappingrk is defined inductively
as follows. In the case fork = 0, we letr0(ϕ) = {⊥} if ⊥ ∈ ϕ, andr0(ϕ) = ϕ otherwise. In the case for
k > 0, we letrk(ϕ) = rk(ϕ|l) if there exists a literall ∈ Lit(ϕ) such thatrk−1(ϕ|l) = {⊥}, andrk(ϕ) = ϕ

otherwise. In particular, the mappingr1 computes the result of applying unit propagation. Note thatthe result of
rk(ϕ) is the application of a number of forced assignments toϕ, i.e., rk(ϕ) = ϕ|L for someL ⊆ Lit(ϕ) such
that for all l ∈ L we haveϕ |= l. We letLUC

k (ϕ) denote the set of forced literals that are computed byrk, i.e.,
LUC
k (ϕ) = L ⊆ Lit(ϕ) such thatrk(ϕ) = ϕ|L. Similarly, we letLILB

k (ϕ) denote the set of forced literals that are
found by computing iterativek-backbones.

The following observations relate the two mechanisms. Letϕ be an arbitrary CNF formula. We have that
LUC
1 (ϕ) = LILB

1 (ϕ). In fact, this set contains exactly those enforced literalsthat can be found by unit propagation.

10



Also, for anyk ≥ 2 we have thatLILB
k (ϕ) ( LUC

k (ϕ). The inclusion follows from the fact that each minimal
subsetϕ′ of size at mostk that enforces a literall has at mostk literals (which is a direct result of Tarsi’s
Lemma). Wheneverl is identified as an enforced literal in iterativek-backbone computation, it can then also be
computed byrk by first guessingl, and subsequently obtaining a contradiction for each instantiation of the other
variables in Var(ϕ′). In order to see that the inclusion is strict, consider the family of formulas(ϕn)n∈N, where
ϕn = { {¬xi, xi+1} : 1 ≤ i < n } ∪ {¬xn,¬x1}. For eachϕn, we know thatϕn |= ¬x1. Furthermore, we have
that¬x1 ∈ LUC

2 (ϕn), butx1 is not an iterativek-backbone ofϕn for anyk < n.

7 Experimental Results

In order to illustrate the relevance of the concept of local backbones and iterative local backbones, we provide
some empirical evidence of the distribution of (iterative)local backbones in instances from different domains.
We considered both randomly generated instances (3CNF instances with various variable-clause ratios around
the phase transition) and instances originating from planning [15, 17], circuit fault analysis [23], inductive infer-
ence [23], and bounded model checking [26]. We considered only satisfiable instances. For practical reasons,
we used a method that gives us a lower bound on the number ofk-backbone variables. By reducing the separate
LOCAL-BACKBONE problems to SMALL -UNSATISFIABLE-SUBSET, we can use algorithms computing subset-
minimal unsatisfiable subsets to approximate the number of iterative local backbones (we used MUSer2 [2]).
In order to get the exact number, we would have to compute cardinality-minimal unsatisfiable subsets, which is
difficult in practice.

The experimental results are shown in Figure 2. For each of the instances, we give the percentage of backbones
that are of orderk (dashed lines) and the percentage of backbones that are of iterative orderk (solid lines), as well
as the total number of backbones and the total number of clauses. There are instances with several backbones,
most of which have relatively small order. This is the case for the instances from the domains of planning
(logistics), circuit fault analysis (ssa7552) and bounded model checking (bmc-ibm). It is worth noting that already
more than 75 percent of the backbones in all the consideredbmc-ibminstances are of iterative order 2. We also
found instances that have no backbones of small order or of small iterative order. This is the case for the instances
from the domain of inductive inference (ii32) and the randomly generated instances. Some of these instances do
have backbones, while others have no backbones at all.

It would be interesting to confirm these findings by a more rigorous experimental investigation.

8 Conclusions

We have drawn a detailed complexity map of the problem of finding local backbones and iterative local back-
bones, in general and for formulas from restricted classes.Additionally, we have provided some first empirical
results on the distribution of (iterative) local backbonesin some benchmark SAT instances. We found that in
structured instances from different domains backbones areof quite low (iterative) order. This suggests that the
notions of local backbones and iterative local backbones can be used to identify structure in SAT instances.

Some of our findings are somewhat surprising. (1) Finding local backbones in Horn formulas is fixed-
parameter intractable, whereas backbones for this class offormulas can be found in polynomial time. (2) In certain
cases finding iterative local backbones is computationallyeasier than finding (non-iterative) local backbones. (3)
Local backbones and iterative local backbones seem to be a better indicator of structure than backbones. Random
instances do have backbones, but these are of high order and iterative order.

Backbones and local backbones are implied unit clauses. It might be interesting to extend our investigation
to implied clauses of larger fixed size, binary clauses in particular.
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Figure 2: Percentage of backbones that are of order at mostk (dashed) and of iterative order at mostk (solid), for SAT
instances from planning (logistics.[a–d], 828–4713 variables, 6718–21991 clauses, 437–838 backbones), circuit fault analysis
(ssa7552-[038,158–160], 1363–1501 variables, 3032–3575 clauses, 405–838 backbones), bounded model checking (bmc-
ibm-[2,5,7], 2810–9396 variables, 11683–41207 clauses, 405–557 backbones), inductive inference (ii32[b–e][1–3], 222–824
variables, 1186–20862 clauses, 0–208 backbones) and random 3SAT instances (random, 200 variables, 820–900 clauses,
1–131 backbones).
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