
Reaction Systems Made Simple
A Normal Form and a Classification Theorem

Luca Manzoni and Antonio E. Porreca

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{luca.manzoni,porreca}@disco.unimib.it

Abstract. Reaction systems are models of computation inspired by the
interactions between biochemical reactions. We define a notion of multi-
step simulation among reaction systems and derive a classification with
respect to the amount of resources (reactants and inhibitors) involved in
the reactions. We prove that one reactant and one inhibitor per reaction
are sufficient to simulate arbitrary systems. Finally, we show that the
equivalence relation of mutual simulation induces exactly five linearly
ordered classes of reaction systems.

1 Introduction

Reaction systems, introduced by Ehrenfeucht and Rozenberg [3, 4], are a for-
malised abstraction of biochemical processes in which the dynamics are discrete
in both space and time and are described in terms of reactions. A reaction is
modelled as a set of reactants, necessary for the reaction to take place, a set
of inhibitors, whose presence blocks the reaction from occurring, and a set of
products.

Reaction systems may be considered a qualitative model, as opposed to a
quantitative one, as we only focus on the presence or absence of chemical species,
and not on the precise amounts. In particular, multiple reactions having common
reactants do not interfere; indeed, all reactions that are enabled at a certain
time step happen simultaneously. Another feature of reaction systems which
differentiates them from other biologically inspired computational models is the
lack of permanency: the state of the system only consists of the products of the
reactions that took place in the last time step, without preserving the entities
that were not involved in any reaction.

Mathematically, a reaction systems defines a transition function (the result
function) between states, i.e., sets of entities (chemical species), which completely
describes the dynamics of the system. In many cases, the study of the properties
of reaction systems involves the comparison of the result functions of different
systems or classes of systems. A natural way to understand the modelling power
of reaction systems is to consider their behaviour when the amount of resources
(reactants and inhibitors per reactions) is limited. It was proved [2, 5] that there

exist infinite proper hierarchies of classes of result functions: by allowing more
resources, more functions become definable by reaction systems.

While the analysis of result functions is a direct way to compare reaction
systems, the classification it provides has a very high granularity. Requiring
the equality of the whole dynamics can be restrictive for certain applications
where we are interested in a higher-level view of the behaviour of the systems.
As an analogy, consider a simulation between Turing machines: we are often
not interested in a step-by-step correspondence of configurations, and we allow
the simulation to be slower than the original machine. In a similar fashion,
in this paper we define a notion of simulation in which the simulating system
is allowed to use several steps to simulate a single step of the other system;
auxiliary entities (analogous to an alphabet extension) may also be involved
in the simulation. The resulting equivalence relation of mutual simulability is
coarser than equality of result functions, but still captures the intuitive idea of
“having the same behaviour”.

This paper is structured as follows. In Section 2 we recall the definitions and
notation related to reaction systems. In Section 3, we introduce the notion of
k-simulation and prove that any reaction system can be k-simulated by using
only one reactant and one inhibitor per reaction. In Section 4 we study reaction
systems with no reactants or no inhibitors, and prove that exactly five linearly
ordered equivalence classes exist. Finally, in Section 5 we discuss the results and
provide some possible directions for further research.

2 Basic Notions

In this paper we denote sets by upper-case letters, reactions and atomic elements
by lower-case letters, and reaction systems by calligraphic letters. Given a set X,
we denote by 2X the power set of X.

A reaction is formally defined as follows.

Definition 1. Given a finite set S (the background set), a reaction over S is a
triple of sets a = (Ra, Ia, Pa) ∈ 2S × 2S × 2S. We call Ra the set of reactants,
Ia the set of inhibitors, and Pa the set of products.

Since we will show that one reactant and one inhibitor suffice to simulate any
reaction system (see Theorem 1), in this paper we also admit empty reactant
and inhibitor sets, as in the original definition [4], in order to investigate the
expressivity of the resulting reactions and to prove that they are strictly weaker
than reactions involving both kinds of resources.

Definition 2. A reaction system is a pair A = (S,A) where S is a finite set
and A a set of reactions over S.1

A state of a reaction system A = (S,A) is any subset of S. The dynamics of
a reaction systems are defined as follows.
1 We may assume, without loss of generality, the existence of a countably infinite
universe including every background set.

Definition 3. Let A = (S,A) be a reaction system, a = (Ra, Ia, Pa) ∈ A, and
T ⊆ S. We say that a is enabled by T iff Ra ⊆ T and Ia ∩ T = ∅.

The result of a on T is defined as

resa(T) =

{
Pa if a is enabled by T

∅ otherwise.

The result of A on T is defined as

resA(T) =
⋃
a∈A

resa(T).

The state sequence of a reaction system A with initial state T is given by
successive iterations of the result function:(

resnA(T)
)
n∈N =

(
T, resA(T), res2A(T), . . .

)
.

Since the background set of a reaction system is finite, the state space is also
finite; hence, every state sequence is ultimately periodic.

3 A Normal Form for Reaction Systems

We begin by observing that, for each reaction system, there exists another re-
action system having the same result function (hence the same behaviour) but
using only one product per reaction.

Proposition 1 (Brijder, Ehrenfeucht, Rozenberg [1]). For each reaction
system A = (S,A) there exists a reaction system A′ = (S,A′) over the same
background set having reactions with at most one product per reaction and such
that resA(T) = resA′(T) for all T ⊆ S. ut

We classify reaction systems according to the maximum amount of reactants
and inhibitors appearing in their reactions; the number of products is not used
as a parameter due to the proposition above.

Definition 4. For all i, r ∈ N, we denote by RS(r, i) the class of reaction sys-
tems A = (S,A) such that, for all (Ra, Ia, Pa) ∈ A, we have |Ra| ≤ r and
|Ia| ≤ i. We also define the classes RS(∞, i) =

⋃
r∈NRS(r, i), RS(r,∞) =⋃

i∈NRS(r, i), and RS(∞,∞) =
⋃

r,i∈NRS(r, i).

The classification into classes of the form RS(r, i) is exhaustive, and the
class RS(∞,∞) contains all reaction systems.

In order to compare reaction systems with respect to their ability to generate
state sequences, we define a notion of simulation less restrictive than equality of
result functions: here, the simulating system may use several steps to simulate a
single step of the original system. This is consistent with notions of simulation
employed for many computational models (e.g., Turing machines), when we are
not interested in the strict correspondence of every pair of configurations, but
only in the overall behaviour of the two systems.

Definition 5 (k-simulation). Let A = (S,A) and A′ = (S′, A′), with S ⊆ S′,
be reaction systems, and let k ∈ N. We say that A′ k-simulates A iff, for all
T ⊆ S and all n ∈ N, we have

resnA(T) = resknA′ (T) ∩ S.

In other words, when considering the sequences of states of A and A′ starting
from T , the n-th state of A coincides with the (kn)-th state of A′ with respect
to the elements of S (some auxiliary elements of S′ − S may also occur).

We use the notion of k-simulation to define a relation on classes of reaction
system.

Definition 6. Let X and Y be classes of reaction systems, and let k ∈ N. We
define the binary relation �k as follows: X �k Y iff for all A ∈ X there exists
a reaction system in Y that `-simulates A for some ` ≤ k.

We say that X � Y iff X �k Y for some k ∈ N. We write X ≈k Y if X �k Y
and Y �k X, and X ≈ Y for X � Y ∧ Y � X. Finally, the notation X ≺ Y is
shorthand for X � Y ∧ Y 6� X.

Notice that X ⊆ Y implies X �1 Y , since any reaction system is trivially
1-simulated by itself.

A k-simulation and an `-simulation can be composed into a (k`)-simulation.

Lemma 1. X �k Y and Y �` Z implies X �k` Z. ut

From this lemma, we immediately get the following result:

Proposition 2. The relation � is a preorder. Hence, the relation ≈ is an equiv-
alence relation. ut

We now begin analysing the relationships among the classes of reaction sys-
tems defined above. The first step is to show that a reaction system can always
be simulated using only one reactant.

Lemma 2. RS(r, i) �3 RS(1, r) for all r ≥ 1, i ≥ 1.

Proof. Let A = (S,A) ∈ RS(r, i). Let A′ = (S′, A′) be a reaction system
with S′ = S ∪ Ŝ ∪ S̄ ∪ 2S , where Ŝ = {ŝ : s ∈ S} and S̄ = {s̄ : s ∈ S}.
The power set of S is included in S′ in order to encode subsets of S as atomic
elements in A′. The set A′ contains, for each s ∈ S, the reactions

(∅, {s}, {s̄}) ({s},∅, {ŝ}). (1)

Furthermore, for each reaction a = (Ra, Ia, Pa) ∈ A, with Ra = {x1, . . . , xp}
and Ia = {y1, . . . , yq}, the set A′ contains the following reactions:

(∅, {x̄1, . . . , x̄p}, {Ra}) (2)
({ŷ1},∅, {Ia}), . . . , ({ŷq},∅, {Ia}) (3)
({Ra}, {Ia}, Pa) (4)

In order to prove that A′ 3-simulates A, we show that the following statement
holds: if n is a multiple of 3 (i.e., n = 3m for some m), then

resnA′(T) ∩ S = res
n/3
A (T); (5)

if n = 3m + 1, then

resnA′(T) ∩ (Ŝ ∪ S̄) =
{
ŷ : y ∈ res

(n−1)/3
A (T)

}
∪
{
x̄ : x /∈ res

(n−1)/3
A (T)

}
, (6)

and if n = 3m + 2, then

resnA′(T) ∩ 2S =
{
Ra : Ra ⊆ res

(n−2)/3
A (T)

}
∪{

Ia : Ia ∩ res
(n−2)/3
A (T) 6= ∅

}
. (7)

By induction on n: if n = 0, then (5) holds by definition.
If n > 0 has the form 3m + 1, then by induction hypothesis we have

resn−1A′ (T) ∩ S = res
(n−1)/3
A (T).

Notice that the only reactions producing elements of Ŝ or S̄ are those in (1),
which, for every s ∈ S, produce ŝ if s ∈ resn−1A′ (T), and s̄ otherwise. As a
consequence, statement (6) holds.

If n > 0 has the form 3m + 2, then by induction hypothesis we have

resn−1A′ (T) ∩ (Ŝ ∪ S̄) =
{
ŷ : y ∈ res

(n−2)/3
A (T)

}
∪
{
x̄ : x /∈ res

(n−2)/3
A (T)

}
.

The only reactions having elements of 2S as products are (2) and (3): for every
reaction a ∈ A, the set {Ra} is produced iff for all x ∈ Ra we have x̄ /∈ resn−1A′ (T),
which is equivalent (by induction hypothesis) to x ∈ res

(n−2)/3
A (T). Furthermore,

for every a ∈ A, the set {Ia} is produced iff there exists at least one y ∈ Ia
such that ŷ ∈ resn−1A′ (T), which in turn means that y ∈ res

(n−2)/3
A (T). Hence,

statement (7) holds.
Finally, if n > 0 has the form 3m, by induction hypothesis we have

resn−1A′ (T) ∩ 2S =
{
Ra : Ra ⊆ res

(n−3)/3
A (T)

}
∪{

Ia : Ia ∩ res
(n−3)/3
A (T) 6= ∅

}
.

The only reactions having products in S are of the form (4). For every reaction
a = (Ra, Ia, Pa) ∈ A, the corresponding reaction ({Ra}, {Ia}, Pa) ∈ A′ is enabled
in A′ at time n − 1 iff a is enabled in A at time n−3

3 = n
3 − 1. Hence, the two

reaction systems A and A′ have the same state (ignoring symbols in S′ − S) at
time n

3 and n respectively, as required.
In particular, statement (5) holds for all n, i.e., A′ 3-simulates A. ut

Now we show that the number of inhibitors can also be reduced to one.

Lemma 3. RS(r, i) �2 RS(max{r, 1}, 1).

Proof. Let A = (S,A) ∈ RS(r, i). Consider the reaction system A′ = (S′, A′)
with S′ = S ∪ 2S and A′ containing, for each reaction a = (Ra, Ia, Pa) ∈ A with
Ia = {s1, . . . , sn}, the following reactions:

({s1},∅, {Ia}), . . . , ({sn},∅, {Ia}) (Ra,∅, {Ra}) ({Ra}, {Ia}, Pa).

In order to prove that A′ 2-simulates A, we can show by induction that

resnA′(T) = res
n/2
A (T) (8)

if n is even, and

resnA′(T) =
{
Ra : Ra ⊆ res

(n−1)/2
A (T)

}
∪
{
Ia : Ia ∩ res

(n−1)/2
A (T) 6= ∅

}
if n is odd; the conditions are easily seen to hold by considering the form of the
reactions of A′. The result then follows immediately from (8). ut

By combining the previous two lemmata, we are finally able to show that one
reactant and one inhibitor can simulate any reaction systems, thus providing a
normal form into which every reaction system can be reduced.

Theorem 1 (Normal form). RS(∞,∞) ≈6 RS(1, 1).

Proof. By definition we have RS(1, 1) ⊆ RS(∞,∞), thus it follows immedi-
ately that RS(1, 1) �6 RS(∞,∞). Conversely, if r ≥ 1 and i ≥ 1 we have
RS(r, i) �3 RS(1, r) by Lemma 2 andRS(1, r) �2 RS(max{1, 1}, 1) = RS(1, 1)
by Lemma 3, hence RS(i, r) �6 RS(1, 1) by transitivity (Lemma 1). Since
RS(r, i) �1 RS(r + 1, i + 1), the result holds even if i = 0 or r = 0. ut

4 Classification of Reaction Systems

Having established a minimum amount of resources needed to simulate general
reaction systems, we are interested in analysing the behaviour of weaker systems,
i.e., with reactions involving no reactants or no inhibitors.

First of all, we show that the number of reactants in a reaction with no
inhibitors can be halved, provided that their initial number is greater than two.

Lemma 4. RS(r, 0) �2 RS
(⌈

r
2

⌉
, 0
)
for all r > 2.

Proof. Let A = (S,A) ∈ RS(r, 0). We simulate A with another reaction system
A′ = (S′, A′), where S′ = S ∪ 2S .

Each reaction a = (Ra,∅, Pa) ∈ A is simulated by at most three reactions
in A′. We can write Ra as the union of (non necessarily distinct) sets R1 and R2

consisting of at most
⌈
r
2

⌉
elements each. The reaction a is then simulated by

(R1,∅, {R1}) (R2,∅, {R2}) ({R1, R2},∅, Pa).

Notice that A′ ∈ RS
(⌈

r
2

⌉
, 0
)
. In order to show that A′ 2-simulates A, we prove

by induction on n that

– if n is even, then resnA′(T) ∩ S = res
n/2
A (T);

– if n is odd, then for all a = (Ra,∅, Pa) ∈ A we have Ra ⊆ res
(n−1)/2
A (T) iff

there exist (non necessarily distinct) sets Q1, Q2 ⊆ S such that Ra = Q1∪Q2

and Q1, Q2 ∈ resnA′(T).

If n = 0, then the condition clearly holds, since res0A′(T) ∩ S = T = res0A(T).
If n > 0 is odd, by induction hypothesis resn−1A′ (T)∩S = res

(n−1)/2
A (T). Hence,

for all a ∈ A, we have Ra ⊆ res
(n−1)/2
A (T) iff Ra ⊆ resn−1A′ (T)∩ S; this is equiva-

lent to the existence ofQ1, Q2 ⊆ resn−1A′ (T) such thatQ1∪Q2 = Ra; in particular,
by letting Q1 = R1 and Q2 = R2 as described above, we get Q1, Q2 ∈ resnA′(T)
by applying the reactions. Conversely, if there exist sets Q1, Q2 ⊆ S such that
Ra = Q1 ∪Q2 and Q1, Q2 ∈ resnA′(T), these are necessarily produced by the two
reactions (Q1,∅, {Q1}) and (Q2,∅, {Q2}), implying Q1, Q2 ⊆ resn−1A′ (T), that
is Ra ⊆ resn−1A′ (T) ∩ S = res

(n−1)/2
A (T).

Now assume n > 0 and even. Let x ∈ resnA′(T)∩S. Then x ∈ Pa for some reac-
tion a′ = ({R1, R2},∅, Pa) ∈ A′ enabled at time n−1, hence R1, R2 ∈ resn−1A′ (T).
The reaction a′ has a corresponding reaction a = (Ra,∅, Pa) ∈ A with Ra =

R1∪R2. Then, by induction hypothesis, we have Ra ⊆ res
(n−2)/2
A (T): reaction a is

enabled in A at time n−2
2 , producing x at time n

2 . Conversely, let x ∈ res
n/2
A (T).

Then x ∈ Pa for some reaction a = (Ra,∅, Pa) ∈ A and Ra ⊆ res
(n−2)/2
A (T); by

induction hypothesis then Ra ⊆ resn−2A′ (T)∩S. Since A′ contains reactions of the
forms (R1,∅, {R1}), (R2,∅, {R2}), and ({R1, R2},∅, Pa) with R1 ∪ R2 = Ra,
the element x is produced in two steps, i.e., x ∈ resnA′(T) ∩ S.

In particular, we have res2nA′(T) ∩ S = resnA(T) for all n ∈ N. ut

By iterating Lemma 4 the number of reactants can be reduced to two.

Proposition 3. RS(∞, 0) ≈ RS(2, 0).

Proof. By definition we have RS(2, 0) �1 RS(∞, 0). By applying Lemma 4
repeatedly we obtain RS(r, 0) �r RS(2, 0), implying RS(∞, 0) � RS(2, 0). ut

In a reaction system where only one reactant per reaction is allowed, each
element appearing at a given time in the state of the system can be either
traced back to a single element of the initial state, or it is always generated,
independently of the initial state.

Lemma 5. Let A = (S,A) ∈ RS(1, 0). Then, for all T ⊆ S, for all n ∈ N, for
all x ∈ resnA(T) either there exists y ∈ T such that x ∈ resnA({y}), or we have
x ∈ resnA(∅).

Proof. By induction on n. When n = 0 we have res0A(T) = T and x ∈ T . Hence,
it suffices to choose y = x.

Now assume n > 0 and let x ∈ resnA(T). There are two cases: either x is
generated by a reaction (∅,∅, {x}) ∈ A, or by a reaction ({z},∅, {x}) ∈ A for
some z ∈ S. In the first case, we have x ∈ resnA(∅). Otherwise, by induction
hypothesis, there are two sub-cases:

– either z ∈ resn−1A (∅), and then x ∈ resnA(∅), or
– there exists y ∈ T such that z ∈ resn−1A ({y}), and then x ∈ resnA({y}). ut

As a consequence, reaction systems where two reactants per reaction are al-
lowed can produce more complex state sequences than those with only one reac-
tant, since the generation of products may depend on the simultaneous presence
of several reactants.

Proposition 4. RS(1, 0) ≺ RS(2, 0).

Proof. Clearly RS(1, 0) �1 RS(2, 0).
Let A = (S,A) ∈ RS(2, 0) be defined by S = {x, y, z} and the reaction

({x, y},∅, {z}). Suppose that A′ ∈ RS(1, 0) k-simulates A for some k. We have
resA({x, y}) = {z}, hence reskA′({x, y}) ∩ S = {z}. By Lemma 5, one of the two
following conditions holds:

z ∈ reskA′(∅) (9)

z ∈ reskA′({w}) for some w ∈ {x, y}. (10)

If (9) holds, then we have z ∈ reskA′(∅) ∩ S 6= resA(∅) = ∅, contradicting
the fact that A′ k-simulates A. On the other hand, if (10) holds, we have z ∈
reskA′({w}) ∩ S 6= resA({w}) = ∅, once again a contradiction.

Therefore A cannot be k-simulated by any reaction system in RS(1, 0). ut

In the absence of inhibitors, at least one reactant is needed in order to obtain
state sequences that actually depend on the initial state.

Proposition 5. RS(0, 0) ≺ RS(1, 0).

Proof. Clearly RS(0, 0) �1 RS(1, 0).
We prove that there exists A = (A,S) ∈ RS(1, 0) such that no A′ =

(A′, S′) ∈ RS(0, 0) simulates A. Observe that resnA′(T) = resA′(∅) for all T ⊆ S′

and n ≥ 1, i.e, the evolution of A′ reaches a fixed point immediately after the
first step, irrespective of the initial state. On the other hand, if A is defined by
S = {x} with the reaction ({x},∅, {x}), we have

resA(∅) = ∅ 6= {x} = resA({x}).

Hence RS(1, 0) 6� RS(0, 0). ut

Unlike reactants, any number of inhibitors can be simulated by a single one.

Proposition 6. RS(0,∞) ≈3 RS(0, 1).

Proof. Trivially, RS(0, 1) �3 RS(0,∞) holds.
Let A = (S,A) ∈ RS(0,∞), and let A′ = (S′, A′) ∈ RS(0, 1) with S′ =

S ∪ S̄ ∪ 2S , where S̄ = {x̄ : x ∈ S}. For each x ∈ S, A′ contains the reaction

(∅, {x}, {x̄}) (11)

and, for each a = (∅, Ia, Pa) with Ia = {x1, . . . , xp}, the reactions

(∅, {x̄1}, {Ia}), . . . , (∅, {x̄p}, {Ia}) (12)
(∅, {Ia}, Pa). (13)

We prove, by induction on n, that for all T ⊆ S we have

resnA′(T) ∩ S = res
n/3
A (T) if n = 3m; (14)

x̄ ∈ resnA′(T) ⇐⇒ x /∈ res
(n−1)/3
A (T) if n = 3m + 1; (15)

Ia ∈ resnA′(T) ∩ 2S ⇐⇒ Ia ∩ res
(n−2)/3
A (T) 6= ∅ if n = 3m + 2. (16)

For n = 0, we have res0A′(T) ∩ S = T = res0A(T).
If n > 0 is a multiple of 3, then by induction hypothesis

Ia ∈ resn−1A′ (T) ∩ 2S ⇐⇒ Ia ∩ res
(n−3)/3
A (T) 6= ∅.

Notice that, if X ∈ resn−1A′ (T) ∩ 2S , then necessarily X = Ia for some a ∈ A, as
the only reactions producing elements of 2S have the form (12). For each reaction
a ∈ A we have a corresponding reaction a′ of type (13), and a is inhibited at
time n−3

3 in A iff ′ is inhibited at time n− 1 in A′: statement (14) follows.
If n > 0 with n = 3m + 1, by induction hypothesis we have

resn−1A′ (T) ∩ S = res
(n−1)/3
A (T).

We have x̄ ∈ resnA′(T) iff the reaction (∅, {x}, {x̄}) was enabled at time n − 1,
that is x /∈ resn−1A′ (T) ∩ S = res

(n−1)/3
A (T) as required.

Finally, if n > 0 with n = 3m + 2, by induction hypothesis

x̄ ∈ resn−1A′ (T) ⇐⇒ x /∈ res
(n−2)/3
A (T).

Let a ∈ A. We have Ia ∈ resnA′(T) ∩ 2S iff at least one of the reactions of the
form (12) was enabled at time n − 1. This means that there exists x ∈ Ia such
that x̄ /∈ resn−1A′ (T) and x ∈ res

(n−2)/3
A (T). Equivalently, Ia ∩ res

(n−2)/3
A (T) 6= ∅.

This proves (16).
The statement of the proposition immediately follows from (14). ut

Perhaps surprisingly, reactants can also be simulated by a single inhibitor.

Lemma 6. RS(∞, 0) �2 RS(0, 1).

Proof. Let A = (S,A) ∈ RS(∞, 0). Let A′ = (S′, A′) ∈ RS(0, 1) with S′ =
S ∪ 2S and having, for each reaction a = (Ra,∅, Pa) with Ra = x1, . . . , xp, the
following set of reactions:

(∅, {x1}, {Ra}), . . . , (∅, {xp}, {Ra}) (17)
(∅, {Ra}, Pa). (18)

Let T ⊆ S. We prove, by induction on n, that

resnA′(T) ∩ S = res
n/2
A (T) if n is even (19)

Ra ∈ resnA′(T) ⇐⇒ Ra * res
(n−1)/2
A (T) if n is odd. (20)

For n = 0 we have res0A′(T) ∩ S = T = res0A(T).
For even n > 0 we have, by induction hypothesis,

Ra ∈ resn−1A′ (T) ⇐⇒ Ra * res
(n−2)/2
A (T).

Notice that the only reactions in A′ with products in S have the form (18), and
they are enabled at time n−1 iff Ra ⊆ res

(n−2)/2
A (T), i.e., iff reaction a is enabled

in A at time n−2
2 . Condition (19) follows.

For odd n > 0, by induction hypothesis we have

resn−1A′ (T) ∩ S = res
(n−1)/2
A (T)

The only reactions of A′ having products in 2S have the form (17). The ele-
ment Ra is produced iff there exists x ∈ Ra with x /∈ resn−1A′ (T) ∩ S, i.e., iff
reaction a is not enabled in A at time n−1

2 , as in (20).
The statement of the lemma follows from (19). ut

The following two lemmata provide a property of the result function of reac-
tion systems without inhibitors and without reactants, respectively.

Lemma 7. If A = (S,A) ∈ RS(∞, 0), then the function resA is monotone, i.e.,
T1 ⊆ T2 implies resA(T1) ⊆ resA(T2) for all T1, T2 ⊆ S. As a consequence, the
function resnA is monotone for all n ∈ N.

Proof. For each reaction a ∈ A, if a is enabled by T1 then it is also enabled by
T2 ⊇ T1, as a has no inhibitors. Thus, resa(T1) ⊆ resa(T2), and

resA(T1) =
⋃
a∈A

resa(T1) ⊆
⋃
a∈A

resa(T2) = resA(T2).

The function resnA is monotone by induction on n. ut

In a similar way, the next result can be proved.

Lemma 8. If A = (S,A) ∈ RS(0,∞), then the function resA is anti-monotone,
i.e., T1 ⊆ T2 implies resA(T1) ⊇ resA(T2) for all T1, T2 ⊆ S. As a consequence,
the function resnA is anti-monotone for odd n, and monotone for even n. ut

These properties imply that reaction systems using one inhibitor exclusively
can produce state sequences that no reaction system using only two reactants
(or, by Proposition 3, any number of reactants) can generate.

Proposition 7. RS(2, 0) ≺ RS(0, 1).

Proof. By Lemma 6 we have RS(2, 0) �2 RS(0, 1).
Let A = (S,A) ∈ RS(0, 1) be defined by S = {x} and (∅, {x}, {x}) as the

only reaction. By Lemma 8, the function resA is anti-monotone (furthermore,
it is not monotone as it is not the identity function). By Lemma 7, for any
A′ ∈ RS(2, 0) the function reskA′ is monotone for all k ∈ N. Therefore, A′
cannot k-simulate A. ut

Finally, we show that both reactants and inhibitors are needed in order to
simulate arbitrary state sequences, thus proving the minimality of the normal
form of Theorem 1.

Proposition 8. RS(0, 1) ≺ RS(1, 1).

Proof. Trivially, we have RS(0, 1) �1 RS(1, 1).
Consider the reaction system A = (S,A) ∈ RS(1, 1) defined by S = {x, y}

and the reaction ({x}, {y}, {x, y}). We have

resA(∅) = ∅ resA({x}) = {x, y} resA({x, y}) = ∅.

Hence, resA is neither monotone nor anti-monotone. No A′ ∈ RS(0, 1) can
simulate A, since (by Lemma 8) the function reskA′ is monotone for even k and
anti-monotone for odd k. ut

All the results proved in this paper can be summarised by the following the-
orem, which provides a complete classification of reaction systems with respect
to the number of reactants and inhibitors per reaction.

Theorem 2. The relation � is a total preorder on the set of classes of reac-
tion systems of the form RS(r, i). The classes are comparable according to the
following diagram for all r, i ≥ 2:

RS(0, 0) ≺ RS(1, 0) ≺ RS(2, 0) ≺ RS(0, 1) ≺ RS(1, 1)

≈ ≈ ≈

RS(r, 0) ≺ RS(0, i) ≺ RS(r, i)

≈ ≈ ≈

RS(∞, 0) ≺ RS(0,∞) ≺ RS(∞,∞)

In particular, the relation ≈ induces exactly five equivalence classes. ut

5 Further Remarks

After having introduced the notion of k-simulation, we have proved that every
reaction system A = (S,A) ∈ RS(r, i) can be simulated by using one reactant

and one inhibitor per reaction. We have then analysed reaction systems with no
reactants or no inhibitors, showing that there exist a finite, linear hierarchy of
non-equivalent classes of reaction systems.

The simulating reaction system A′ has a linear slowdown, that is, simulat-
ing n steps of the original system is performed in kn steps, and k is usually
independent of |S|, |A|, r, and i. The only exception is the simulation in O(rn)
steps of an RS(r, 0) reaction system by means of an RS(2, 0) reaction system.
Furthermore, the size of A′ can be always made polynomial with respect to the
size of A: even if we often include, for the sake of simplicity, the whole power set
of S in the background set of A′, only a polynomial number of elements (depend-
ing on |S| and on the number of reactions of A) actually appear as reactants,
inhibitors, or products: hence, the remaining ones can be simply removed. The
number of reactions of A′ is also polynomial with respect to the size of A.

Although in this paper we focused only on system were the input is all given
in the initial state, the original definition [4] allows the system to receive further
input (i.e., new elements to be inserted in the state of the system) at every step.
It is possible to extend the definition of k-simulation to this case, and prove all
the results above in the new setting.

5.1 Open Problems

An open problem involves the minimality of k in certain k-simulations described
here. For instance, the k-simulation of Proposition 6 is provably minimal by
anti-monotonicity (Lemma 8); similarly, in Lemma 6 the simulation cannot be
performed in one step (by Lemmata 7 and 8). In the r-simulation of Proposition 3
the dependency on r is probably unavoidable. On the other hand, it is unknown
whether there exist reaction systems necessarily requiring a 6-simulation in order
to reduce reactants and inhibitors to one. Furthermore, most k-simulations in
this paper employ auxiliary elements, and it seems unlikely that they can always
be eliminated. Can we at least ensure that every (kn)-th state of the simulating
system is identical to the n-th state of the simulated one?

References

1. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life, Lecture
Notes in Computer Science, vol. 6610, pp. 191–202. Springer (2011)

2. Ehrenfeucht, A., Main, M., Rozenberg, G.: Functions defined by reaction systems.
International Journal of Foundations of Computer Science 22(1), 167–168 (2011)

3. Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S.,
Calude, E., Dinneen, M.J. (eds.) Developments in Language Theory, 8th Interna-
tional Conference, DLT 2004, Lecture Notes in Computer Science, vol. 3340, pp.
27–29. Springer (2005)

4. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75,
263–280 (2007)

5. Salomaa, A.: Functions and sequences generated by reaction systems. Theoretical
Computer Science 466, 87–96 (2012)

