Skip to main content

Geometric Methods for Analysing Quantum Speed Limits: Time-Dependent Controlled Quantum Systems with Constrained Control Functions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7956))

Abstract

We are interested in fundamental limits to computation imposed by physical constraints. In particular, the physical laws of motion constrain the speed at which a computer can transition between well-defined states. Here, we discuss speed limits in the context of quantum computing. We derive some results in the familiar representation, then demonstrate that the same results may be derived more readily by transforming the problem description into an alternative representation. This transformed approach is more readily extended to time-dependent and constrained systems. We demonstrate the approach applied to a spin chain system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrecut, M., Ali, M.K.: The adiabatic analogue of the Margolus–Levitin theorem. Journal of Physics A: Mathematical and General 37(15), L157 (2004)

    Google Scholar 

  2. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Physics Reports 470(5-6), 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bump, D.: Lie Groups. Springer (2004)

    Google Scholar 

  4. Gasiorowicz, S.: Quantum Physics. John Wiley & Sons (1995)

    Google Scholar 

  5. Jia, B., Lee, X.-G.: Quantum states and complex projective space. ArXiv Mathematical Physics e-prints (2007)

    Google Scholar 

  6. Jones, P.J., Kok, P.: Geometric derivation of the quantum speed limit. ArXiv Mathematical Physics e-prints 82(2), 022107 (2010)

    Google Scholar 

  7. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics. Birkhäuser, Basel (2002)

    MATH  Google Scholar 

  8. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley (1996)

    Google Scholar 

  9. Lee, K.-Y., Chau, H.F.: Relation between quantum speed limits and metrics on U(n). Journal of Physics A Mathematical General 46(1), 015305 (2013)

    Google Scholar 

  10. Lloyd, S.: Ultimate physical limits to computation. Nature 406(6799), 1047–1054 (1999)

    Article  Google Scholar 

  11. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D120, 188–195 (1998)

    Google Scholar 

  12. Mohn, P.: Magnetism in the Solid State: An Introduction. Springer (2003)

    Google Scholar 

  13. Stone, M.H.: On one-parameter unitary groups in Hilbert space. Ann. Math. 33(2), 643–648 (1932)

    Article  Google Scholar 

  14. Wells, R.O.N.: Differential Analysis on Complex Manifolds. Graduate Texts in Mathematics. Springer (1980)

    Google Scholar 

  15. Werschnik, J., Gross, E.K.U.: Quantum Optimal Control Theory. ArXiv e-prints, arXiv:0707.1883 (July 2007)

    Google Scholar 

  16. Zwierz, M.: Comment on “Geometric derivation of the quantum speed limit”. ArXiv Mathematical Physics e-prints 86(1), 016101 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Russell, B., Stepney, S. (2013). Geometric Methods for Analysing Quantum Speed Limits: Time-Dependent Controlled Quantum Systems with Constrained Control Functions. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds) Unconventional Computation and Natural Computation. UCNC 2013. Lecture Notes in Computer Science, vol 7956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39074-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39074-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39073-9

  • Online ISBN: 978-3-642-39074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics