Skip to main content

Hyperspectral Images as Function-Valued Mappings, Their Self-similarity and a Class of Fractal Transforms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Abstract

A formulation of hyperspectral images as function-valued mappings is introduced, along with a set of simple models of affine self-similarity for digital hyperspectral images. As in the case of greyscale images, these models examine how well vector-valued image subblocks are approximated by other subblocks, as measured by the distribution of approximation errors. This set of models includes both same-scale and cross-scale modes of approximation, the latter of which provides the basis of a method of fractal transforms over hyperspectral images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S.K., Vrscay, E.R., Tsurumi, S.: A simple, general model for the affine self-similarity of images. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 192–203. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. AVIRIS hyperspectral image, Yellowstone calibrated scene 0, available from Information Processing Group website, Jet Propulsion Laboratory, California Institute of Technology, http://compression.jpl.nasa.gov/hyperspectral/

  3. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1988)

    MATH  Google Scholar 

  4. Brunet, D., Vrscay, E.R., Wang, Z.: Structural similarity-based affine approximation and self-similarity of images revisited. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part II. LNCS, vol. 6754, pp. 264–275. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modelling and Simulation 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, C.: Hyperspectral Data Exploitation, Theory and Applications. John Wiley and Sons, Hoboken (2007)

    Book  Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Ebrahimi, M., Vrscay, E.R.: Solving the inverse problem of image zooming using “Self-examples”. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 117–130. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Elad, M., Datsenko, D.: Example-based regularization deployed to super-resolution reconstruction of a single image. The Computer Journal 50, 1–16 (2007)

    Google Scholar 

  10. Etemoglu, C., Cuperman, V.: Structured vector quantization using linear transforms. IEEE Trans. Sig. Proc. 51, 1625–1631 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fisher, Y. (ed.): Fractal Image Compression: Theory and Application. Springer, New York (1995)

    Google Scholar 

  12. Hyperspectral images of natural scenes 2004, “Scene 2” (2004), http://personalpages.manchester.ac.uk/staff/david.foster/default.htm

  13. La Torre, D., Vrscay, E.R., Ebrahimi, M., Barnsley, M.F.: Measure-valued images, associated fractal transforms and the self-similarity of images. SIAM J. Imaging Sci. 2, 470–507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, N.: Fractal Imaging. Academic Press, New York (1997)

    MATH  Google Scholar 

  15. Michailovich, O., La Torre, D., Vrscay, E.R.: Function-valued mappings, total variation and compressed sensing for diffusion MRI. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol. 7325, pp. 286–295. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Motta, G., Rizzo, F., Storer, J.A. (eds.): Hyperspectral Data Compression. Springer Science+Business Media, Inc., New York (2006)

    MATH  Google Scholar 

  17. Wang, Z., Bovik, A.C.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Sig. Proc. Mag. 26, 98–117 (2009)

    Article  Google Scholar 

  18. Zhang, D., Wang, Z.: Image information restoration based on long-range correlation. IEEE Trans. Cir. Syst. Video Tech. 12, 331–341 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vrscay, E.R., Otero, D., La Torre, D. (2013). Hyperspectral Images as Function-Valued Mappings, Their Self-similarity and a Class of Fractal Transforms. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics