Skip to main content

Compressive Sensing Based Face Detection without Explicit Image Reconstruction Using Support Vector Machines

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Included in the following conference series:

Abstract

The novel theory of compressive sensing takes advantage of the sparsity or compressibility of a signal in a specific domain allowing the assessment of its full representation from fewer measurements. In this work we tailored the concept of compressive sensing to assess the intrinsic discriminative capability of this method to distinguish human faces from objects. Afterwards we enrolled through a feature selection study to empirically determine the minimum amount of measurements required to properly detect human faces. This work was concluded with a comparative experiment against the SIFT descriptor. We determined that using only 40 measurements conducted by compressing sensing one is capable of capturing the relevant information that enable one to properly discriminate human faces from objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candes, E., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  4. Duarte, M., Davenport, M., Wakin, M., Baraniuk, R.: Sparse signal detection from incoherent projections. In: Proceedings of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 3, p. III (2006)

    Google Scholar 

  5. Duarte, M., Sarvotham, S., Baron, D., Wakin, M., Baraniuk, R.: Distributed compressed sensing of jointly sparse signals. In: Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, pp. 1537–1541 (2005)

    Google Scholar 

  6. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007), http://dx.doi.org/10.1016/j.cviu.2005.09.012

    Article  Google Scholar 

  7. Geng, C., Jiang, X.: Face recognition using SIFT features. In: Proceedings of the 16th IEEE International Conference on Image Processing, ICIP 2009, pp. 3277–3280. IEEE Press, Piscataway (2009)

    Google Scholar 

  8. Junior, L., Thomaz, C.: Fei face database (2006), http://fei.edu.br/~cet/facedatabase.html

  9. Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., Lu, B.L.: Person-Specific SIFT Features for Face Recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 2, pp. II-593–II-596 (2007)

    Google Scholar 

  10. Lustig, M., Donoho, D.L., Pauly, J.M.: Rapid MR imaging with “compressed sensing” and randomly Under-Sampled 3DFT trajectories. In: ISMRM (2006)

    Google Scholar 

  11. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Rodriguez-Lujan, I., Huerta, R., Elkan, C., Cruz, C.S.: Quadratic programming feature selection. Journal of Machine Learning Research 11, 1491–1516 (2010)

    MATH  Google Scholar 

  13. Stein, S., Fink, G.: A new method for combined face detection and identification using interest point descriptors. In: IEEE International Conference on Automatic Face Gesture Recognition and Workshops (FG 2011), pp. 519–524 (2011)

    Google Scholar 

  14. Takhar, D., Laska, J., Wakin, M.B., Duarte, M.F., Baron, D., Sarvotham, S., Kelly, K., Baraniuk, R.: A new compressive imaging camera architecture using Optical-Domain compression. In: Proc. IS&T/SPIE Symposium on Electronic Imaging (2006)

    Google Scholar 

  15. Vapnik, V.: Statistical learning theory. Wiley (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magalhães, F., Sousa, R., Araújo, F.M., Correia, M.V. (2013). Compressive Sensing Based Face Detection without Explicit Image Reconstruction Using Support Vector Machines. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics