
II. Characterizing students:

1. Methodology: Cluster-based feature selection
 a. Kernel K-means clustering of snapshots with
 Gaussian Kernels. Dissimilarity Matrix based
 on Euclidian Distance. Silhouette value.
 b. Each snapshot assigned to corresponding cluster New feature set per student: number of diffe-
 rent clusters visited, and of all cluster changes; a measure of the variance of the number of
 successive snapshots within the same cluster; time to solution; total count of clusters visited.

2. Methodology: Brut-force Averaging
 Take the mean across the corresponding features of the second half of a student’s set of snapshots.

III. Classification of the Help Data:

- Binary classification (i.e. a student got help or not): nonlinear Support Vector Machine (SVM) with
 a Gaussian kernel of the student characterization data. 10-folds cross-validation.
- Triple Class Classification (i.e. 0,<=3 or >3 times help): k-nearest-neighbors; 10-fold cross-validation
- Feature Selection: For the 2.Methodology, we additionally performed Feature Selection.

Student Coding Styles as Predictors of Help-Seeking
Behavior

Engin Bumbacher, Alfredo Sandes, Paulo Blikstein
{buben, alfredos, paulob} @ stanford.edu; tltl.stanford.edu

Abstract

Conclusions and Next Steps
Data Sources

 Recent research in CS education has leveraged machine learning
techniques to capture students’ progressions through assignments
in programming courses based on their code submissions [1]. With
this in mind, we present two related methodologies for creating a
set of descriptors of the students’ progression based on their
coding styles as captured by different non-semantic and semantic
features of their code submissions. Preliminary findings show both
sets of descriptors extracted from a single assignment could be
predictive of whether or not a student got help throughout the
entire quarter. Based on these findings, we plan on developing a
model of the impact of teacher intervention on a student's
pathway through homework assignments.

I. Characterizing code snapshots:

-  Non-semantic text features – number of lines,
 of comments, and of comment blocks
-  Semantic text features specifically chosen for
 this problem - number of variable declara-
 tions, of functions and subfunctions; number
 and nesting level of conditional statements
 and loops. These features best describe the
 constrained solution space of the assignment.

 Using simple representations of a student’s progress in a
single assignment, we were able to predict student help-
seeking behavior above chance across the whole quarter.
Interestingly, the accuracy is better for the ‘brut-force’
methodology which might be due to a data-internal bias.
However, the cluster-based feature methodology has a more
robust performance. The results of this preliminary study
suggest that student coding patterns might be indicative of
relevant behavioral or cognitive processes of students
learning to program that give rise to certain help-seeking
behaviors.
 In future work, we intend incorporate temporal dimension
with a Markov model of assignment progress that can suggest
potential points for intervention that are most effective.

References:
[1] Blikstein, P. (2011) Using Learning Analytics to Assess

 Students’ Behavior in Open-Ended Programming Tasks.
 Learning Analytics and Knowledge conference

Methods Results

Background and Purpose
 Our general research examines the relationship between
students’ coding styles and their overall help-seeking behaviors;
we want to know when students learning to program get help, why
they get help, and how the help impacts their progression. We
hope that this work could be used to determine potential points
on a student’s learning path where help interventions would be
most effective; this could transform into a technology feature for
recommendation of “help” in tutor learning systems.
 This poster presents a preliminary study within this major
research project.

Target Population:
 - 370 students of Stanford intro class on programming in Java.

Codes:
 - Time-stamped code “snapshots” for a single assignment;
 students had to write a program that outputs the max and min
 values of an arbitrary list of.
 - Snapshots are taken every time a student tries to compile.
 - 8,772 snapshots for the target assignment.

Help Data:
 - Logged data from in-person help sessions at an on-campus
 homework help service of teaching assistants (TAs).
 - 1,148 visits in the help center from 172 distinct students over
 the entire quarter: 91 went 1-3 times; 81 students went >3 times

Terminology
Help-Seeking Behavior : Whether or not a student seeks TA help
Coding Style : Subspace of the ensemble of code snapshots in the

 the space of non-semantic and semantic features.

Classification
of

intervention
data

Characterizing
students

Characterizing
code

snapshots
Set of semantic and non-

semantic features

K-Means
clustering

New student
feature set

Binary
Classification

Mean code
snapshots

Binary & Multiple
Classification

Fe
at

ur
e

S
el

ec
tio

n

Fig 1. Schema of the Methodologies

Methodology Labels

Features

Accuracy
Lines Comm.

Lines
Vars in

Mainmthd
Vars in

Submthds
Submthds if 1st

level
if 2nd
level

if 3rd
level

else
1st

level

else
2nd
level

else
3rd

level

while
1st

level

while
2nd
level

while
3rd

level
Cluster Features Binary ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 66.50%

Mean Snapshots Binary ✔ ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 ✔
 72.2%

Mean Snapshots Multi-Class ✔
 ✔
 ✔
 ✔ ✔ ✔ 64.1%

Fig 2. Classification Results and Feature Selection

Fig 3. Dissimilarity Matrix of the k-means clusters with 2 snapshots representative of their clusters

Classification Performance (Fig. 2)

- The kernelized SVM predicts whether a student got help with
 an accuracy, a precision and recall
 a. of 66.5%, 63.6% and 71.1% respectively when trained on
 cluster-based features;
 b. of 72.2%, 55% and 65.2% respectively, optimized when
 trained on the mean values of the selected features
 shown in Fig. 2.

- The kNN triple-class classifier predicts whether a student got
 little or a lot of help (as defined previously) poorly, with an
 accuracy, precision and recall of 64.1%, 46.2% and 44.2%
 respectively.

Clustering Results (Fig. 3)

The dissimilarity matrix after clustering the student snapshots
and arranging them according to their clusters shows good
separation. Silhouette value maximization and Davies-Bouldin
minimization lead to an optimal number of 16 clusters
(Silhouette value of 0.72 and DB-Index of 0.43).

Illustration of how codes within different clusters can differ
from each other: the code snapshot on the right of the
dissimilarity matrix has two if statements nested within a
loop; the code on the left has two if statements nested within
a loop, which is in turn nested in another if statement.

