Skip to main content

Cluster-Based Prediction of Mathematical Learning Patterns

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7926))

Abstract

This paper introduces a method to predict and analyse students’ mathematical performance by detecting distinguishable subgroups of children who share similar learning patterns. We employ pairwise clustering to analyse a comprehensive dataset of user interactions obtained from a computer-based training system. The available data consist of multiple learning trajectories measured from children with developmental dyscalculia, as well as from control children. Our online classification algorithm allows accurate assignment of children to clusters early in the training, enabling prediction of learning characteristics. The included results demonstrate the high predictive power of assignments of children to subgroups, and the significant improvement in prediction accuracy for short- and long-term performance, knowledge gaps, overall training achievements, and scores of further external assessments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amershi, S., Conati, C.: Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments. Journal of Educational Data Mining, 18–71 (2009)

    Google Scholar 

  2. Baker, R.S.J.d., Pardos, Z.A., Gowda, S.M., Nooraei, B.B., Heffernan, N.T.: Ensembling predictions of student knowledge within intelligent tutoring systems. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 13–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Baschera, G.M., Gross, M.: Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training. International Journal of AIED 20(4), 333–360 (2010)

    Google Scholar 

  4. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. UMUAI 4, 253–278 (1994)

    Google Scholar 

  5. Gong, Y., Beck, J.E., Ruiz, C.: Modeling multiple distributions of student performances to improve predictive accuracy. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 102–113. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Gross, M., Vögeli, C.: A Multimedia Framework for Effective Language Training. Computer & Graphics 31, 761–777 (2007)

    Article  Google Scholar 

  7. Haffner, J., Baro, K., Parzer, P., Resch, F.: Heidelberger Rechentest (HRT): Erfassung mathematischer Basiskomptenzen im Grundschulalter (2005)

    Google Scholar 

  8. Haghir Chehreghani, M., Busetto, A.G., Buhmann, J.M.: Information theoretic model validation for spectral clustering. In: Proc. AISTATS, pp. 495–503 (2012)

    Google Scholar 

  9. Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 1–14 (1997)

    Article  Google Scholar 

  10. Kardan, S., Conati, C.: A framework for capturing distinguishing user interaction behaviours in novel interfaces. In: Proc. EDM, pp. 159–168 (2011)

    Google Scholar 

  11. Käser, T., Kucian, K., Ringwald, M., Baschera, G.M., von Aster, M., Gross, M.: Therapy software for enhancing numerical cognition. In: Interdisciplinary Perspectives on Cognition, Education and the Brain, vol. 7, pp. 219–228 (2011)

    Google Scholar 

  12. Käser, T., Busetto, A.G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., Gross, M.: Modelling and optimizing the process of learning mathematics. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 389–398. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Kast, M., Meyer, M., Vögeli, C., Gross, M., Jäncke, L.: Computer-based Multisensory Learning in Children with Developmental Dyslexia. Restorative Neurology and Neuroscience 25(3-4), 355–369 (2007)

    Google Scholar 

  14. King, W., Giess, S., Lombardino, L.: Subtyping of children with developmental dyslexia via bootstrap aggregated clustering and the gap statistic: comparison with the double-deficit hypothesis. Int. J. Lang. Comm. Dis. 42(1), 77–95 (2007)

    Article  Google Scholar 

  15. Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin, E., von Aster, M.: Mental Number Line Training in Children with Developmental Dyscalculia. NeuroImage 57(3), 782–795 (2011)

    Article  Google Scholar 

  16. Mislevy, R.J., Almond, R.G., Yan, D., Steinberg, L.S.: Bayes nets in educational assessment: Where the numbers come from. In: Proc. UAI, p. 518 (1999)

    Google Scholar 

  17. Pardos, Z.A., Gowda, S.M., Baker, R.S., Heffernan, N.T.: The sum is greater than the parts: ensembling models of student knowledge in educational software. SIGKDD Explor. Newsl. 13(2), 37–44 (2012)

    Article  Google Scholar 

  18. Pardos, Z.A., Trivedi, S., Heffernan, N.T., Sárközy, G.N.: Clustered knowledge tracing. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 405–410. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis - a new alternative to knowledge tracing. In: Proc. AIED, pp. 531–538 (2009)

    Google Scholar 

  20. Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of the number of clusters. In: Proc. ICML, pp. 727–734 (2000)

    Google Scholar 

  21. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of non-metric proximity data. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1540–1551 (2003)

    Article  Google Scholar 

  22. Trivedi, S., Pardos, Z.A., Heffernan, N.T.: Clustering students to generate an ensemble to improve standard test score predictions. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 377–384. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Trivedi, S., Pardos, Z.A., Sárközy, G.N., Heffernan, N.T.: Co-clustering by bipartite spectral graph partitioning for out-of-tutor prediction. In: Proc. EDM, pp. 33–40 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Käser, T., Busetto, A.G., Solenthaler, B., Kohn, J., von Aster, M., Gross, M. (2013). Cluster-Based Prediction of Mathematical Learning Patterns. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds) Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science(), vol 7926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39112-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39111-8

  • Online ISBN: 978-3-642-39112-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics