Skip to main content

Graph Characterization Using Gaussian Wave Packet Signature

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7953))

Included in the following conference series:

Abstract

In this paper we present a new approach for characterizing graphs using the solution of the wave equation. The wave equation provides a richer and potentially more expressive means of characterizing graphs than the more widely studied heat equation. Unfortunately the wave equation whose solution gives the kernel is less easily solved than the corresponding heat equation. There are two reasons for this. First, the wave equation can not be expressed in terms of the familiar node-based Laplacian, and must instead be expressed in terms of the edge-based Laplacian. Second, the eigenfunctions of the edge-based Laplacian are more complex than that of the node-based Laplacian. In this paper we present a solution to the wave equation, where the initial condition is Gaussian wave packets on the edges of the graph. We propose a global signature of the graph which is based on the amplitudes of the waves at different edges of the graph over time. We apply the proposed method to both synthetic and real world datasets and show that it can be used to characterize graphs with higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xiao, B., Yu, H., Hancock, E.R.: Graph matching using manifold embedding. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 352–359. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Zhang, F., Hancock, E.R.: Graph spectral image smoothing using the heat kernel. Pattern Recognition, 3328–3342 (2008)

    Google Scholar 

  3. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comp. Grarph Forum, 1383–1392 (2010)

    Google Scholar 

  4. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: A quantum mechanical approach to shape analysis. Tech. rep., TU München, Germany (2011)

    Google Scholar 

  5. Friedman, J., Tillich, J.P.: Wave equations for graphs and the edge based laplacian. Pacific Journal of Mathematics, 229–266 (2004)

    Google Scholar 

  6. Friedman, J., Tillich, J.P.: Calculus on graphs. CoRR (2004)

    Google Scholar 

  7. Wilson, R.C., Aziz, F., Hancock, E.R.: Eigenfunctions of the edge-based laplacian on a graph. Linear Algebra and its Applications 438, 4183–4189 (2013)

    Article  MathSciNet  Google Scholar 

  8. Aziz, F., Wilson, R.C., Hancock, E.R.: Shape analysis using the edge-based laplacian. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 382–390. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. ElGhawalby, H., Hancock, E.R.: Graph embedding using an edge-based wave kernel. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 60–69. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Aziz, F., Wilson, R.C., Hancock, E.R.: Gaussian wave packet on a graph. Graph-based Representation (2013)

    Google Scholar 

  11. Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs. Pattern Recognition (2009)

    Google Scholar 

  12. Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Transaction on Neural Networks and Learning Systems 24, 977–989 (2013)

    Article  Google Scholar 

  13. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from appearance. International Journal of Computer Vision 14, 5–24 (1995)

    Article  Google Scholar 

  14. Harris, C., Stephens, M.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, Manchester, UK, pp. 147–151 (1988)

    Google Scholar 

  15. Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)

    Book  Google Scholar 

  16. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via Ihara coefficients. IEEE Tran. on Neural Networks 22, 233–245 (2011)

    Article  Google Scholar 

  18. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations, vol. 1, pp. 281–297. University of California Press (1967)

    Google Scholar 

  19. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aziz, F., Wilson, R.C., Hancock, E.R. (2013). Graph Characterization Using Gaussian Wave Packet Signature. In: Hancock, E., Pelillo, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2013. Lecture Notes in Computer Science, vol 7953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39140-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39140-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39139-2

  • Online ISBN: 978-3-642-39140-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics