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Abstract Data Mining on time-oriented data has many real-world ap-
plications, like optimizing shift plans for shops or hospitals, or analyzing
traffic or climate. As those data are often very large and multi-variate,
several methods for symbolic representation of time-series have been pro-
posed. Some of them are statistically robust, have a lower-bound distance
measure, and are easy to configure, but do not consider temporal struc-
tures and domain knowledge of users. Other approaches, proposed as
basis for Apriori pattern finding and similar algorithms, are strongly
configurable, but the parametrization is hard to perform, resulting in
ad-hoc decisions. Our contribution combines the strengths of both ap-
proaches: an interactive visual interface that helps defining event classes
by applying statistical computations and domain knowledge at the same
time. We are not focused on a particular application domain, but intend
to make our approach useful for any kind of time-oriented data.
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1 Introduction

In Knowledge Discovery in Databases (KDD) [1], pattern-based Data Mining
methods [2] play an important role when the user looks for specific events in-
stead of creating a general model. Such kind of Data Mining is useful in many
different application domains, like optimizing shift plans for shops or hospitals,
or analyzing traffic or climate. For most methods, (e.g., [3]), an event is a tuple
consisting of an integer representing the type of the event and the point in time
when the event happened. A pattern (or event sequence) is a triple of an array
of events with a starting and an ending time. Less formal definitions for pattern
with similar meaning are given as “a local feature of data” [2] or “a local struc-
ture in the data” [4]. As time series are often very large and multi-variate, several
methods for simplification have been developed (see Section 2). This simplifica-
tion allows more efficient algorithms for Data Mining tasks like classification,
clustering, and pattern discovery [4]. Various publications about pattern discov-
ery [3,5,6,7,8,9,10,11] require data simplified that way. Lin et al. [12] point out



that based on the generic framework for temporal Data Mining [13], the first step
for all data mining methods is “generating a simplification that fits into memory
while retaining the essential features of interest”. If the simplified representation
of the data is symbolic (also considered discrete), methods from text processing
and bioinformatics can also be used for time-oriented data [14,12]. We call the
data we are dealing with time-oriented data instead of time series, as we focus
on the fact that this kind of data can be multi-variate and the variables can be
correlated [15]. In datasets, time usually acts as a reference domain, with each
time reference pointing to one or more data values in the form R — C, with R
being a set of references and C a set of data values [16]. Time as a reference
domain also comprises a number of important structural aspects [15], some of
which are already dealt with in Data Mining [10,11]. Domain experts dealing
with time-oriented data often consider the structure of time an aspect of utmost
importance [17,18]. In this publication, we deal with simplification along the
various data domains, while keeping the information along the reference domain
(e.g., time) as unchanged as possible. Thus, other methods can be used to mine
this information.

Current methods for temporal pattern discovery either assume that the data
dimension already is symbolic [5,6,3,7,8,9] or include a very simple means of
user-based simplification, without dealing with user interface issues [10], or do-
ing that in a very limited manner [11]. Methods that deal with simplification of
data [19,20,14,12], on the other hand, tend to have a simplistic view on time as
reference domain, considering only a list of concurrent data tuples. Therefore,
performing such methods can “spillage” information contained in the time do-
main. Moreover, they are focused on automated Data Mining methods and do
not support user interaction regarding special important event classes. To bridge
this gap, we present a novel visual interface that allows users to define and mod-
ify event classes either manually by giving restrictions in the data dimensions, or
using a statistical method similar to [12]. Our interface gives immediate visual
feedback on the effects of these modifications. Contrary to existing methods, our
data simplification works on multi-variate data. It is statistically robust, and has
a lower-bounding distance measure. Moreover, it preserves the (temporal) refer-
ence dimension for possible mining at later stages. Above all, our interactive user
interface includes human users into the process, providing access to their domain
knowledge. By doing so, we transform the existing approaches with more lim-
ited uses into a flexible tool that allows direct interaction between humans and
a computer-based algorithm. The data structures and the code for calculating
the event classes are already implemented. All the user interface (UI) elements
have been designed and the code for calculations and visualizations has been
implemented, but the connection as shown in Section 3 has to be implemented
as well. So while we are showing mockups for the Ul elements, the visualizations
inside and the presented values are correct. Our Ul is not focused on one single
application domain, yet we provide an example from shift plan analysis for shops
in Section 4.
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Figure 1. A time series is discretized in SAX by using statistically determined break-
points to map the PAA approximation into event classes [12]

2 Related Work

In this section, we focus on three questions: (1) how is data simplification cur-
rently applied, (2) which algorithms that require simplified data could be im-
proved by better simplifications methods, and (3) how are interactive visual
interfaces already successfully applied in KDD.

Methods for Data Simplification. Dealing with data locally is a newer
method than developing a global model [4,21]. The first such methods [20,19]
therefore were compared to global methods, like Singular Value Decomposi-
tion, Discrete Fourier Transformation, and Discrete Wavelet Transformation.
The Piecewise Aggregate Approximation (PAA) by Keogh et al. [20,19] can
be considered as a kind of rasterization: time-oriented data with n points in
time is converted to time-oriented data with w points in time. The authors
call this “dimensionality reduction” because they treat time series as vectors in
high-dimensional space. The amount of data is reduced along this dimension.
However, the total number of variables in the dataset is unchanged. The only
parameter that can be given by users for this transformation is the number of
target references w. The PAA approximation can also be considered data simpli-
fication, but the resulting data is still value-based, while important information
contained in the time reference might be hidden. PAA approximation is also
part of SAX [14,12]. In SAX, a time series is first normalized to a mean value of
0 and a standard deviation of 1. The authors show that most time series have
Gaussian distributed data values by analyzing various time series by means de-
scribed by Larsen and Marx [22]. While this may not be true for all time series,
we agree with Lin et al. [12] that this kind of time series is frequent enough that
it deserves primary consideration. After applying the PAA, a resulting shortened
time series is transformed to a symbolic (discrete) representation by allocating
each of the w time windows to one of a number of event classes. The event classes
are chosen on a statistical basis: Each class contains the same number of values
(see Fig. 1). Lin et al. claim that the equiprobability of classes is important for
several further analysis methods that can be performed after SAX, giving some
examples [23,24]. For the same reason, they provide an Euclidean distance mea-
sure for their output. To preserve temporal information, we do not include the
PAA-based rasterization in our work. The discretization step can be performed
without rasterization. Another approach for data simplification is the rough set



approach [25,26], used to include ontologies and/or domain knowledge. In the
context of Data Mining, these comprise various methods to give event classes
and their characteristics names and meaning.

Time-centered Algorithms for Pattern Finding. Lin et al. [14,12] fo-
cus on methods from text processing and bioinformatics as target of their work.
When time is more than a simple counter of steps, however, different methods
are capable of detecting more information. Most of those methods go back to
the work by Agrawal et al. [5] who only consider patterns of events happen-
ing simultaneously (in their case, an event is the purchase of a product). They
also consider time, but only as a method of separating different pattern candi-
dates. However, they already perform planning towards further steps with more
complex patterns that can overstretch time steps [6]. The events in those pub-
lications, like the purchase of a product, are inherently discrete data. Mannila
et al. [3] focus further on sequences of events at different points in time. They
also explicitly consider the time step at which one event occurs. They consider
events to be determined by some external algorithm. Magnusson [7] is among
the first to consider the time intervals between events, which is an important
step to increase the consideration of time. His T-patterns are tree-shaped and
therefore differ from the patterns in most other publications that are sequences.
The work is focused on behavior analyses, so the events are found by some algo-
rithm or even manually. Chen et al. [8] introduce the I-Apriori algorithm which
extends the Apriori algorithm for pattern finding [4] by the consideration of in-
tervals between events. Hu et al. [9] provide a similar approach where the focus
is on patterns with events that do not need to be consecutive, as long as the
time intervals are kept. Both approaches deal with events that either result from
purchase and are inherently discrete, or assume that the data domain has been
simplified to discrete events. Bertone et al. [10,11] provide a similar approach
with user configurable time intervals that can have variable length and consider
calendar aspects. They also mention the definition of events as multi-variate
value combinations given by users. Therefore, Bertone et al. are also consider-
ing multi-variate data, but give limited explanation how users should deal with
the complex event definition step. Summarizing those approaches, events are
either considered as given, or the authors include a rather simple event finding
process. Such simple event finding methods result in ad-hoc decisions that are
not guaranteed to work, even if performed by very experienced users with do-
main knowledge. Therefore, we see a great need to find a better method of data
simplification that results in more applicable event classes.

Samples for Application of Interactive Visual Interfaces in KDD.
The Data Mining methods presented in the last subsection conduct pattern dis-
covery as an automated task. Laxman et al. [4] discuss the advantages of this
approach. However, interactive visual interfaces can greatly improve the appli-
cability of the pattern finding process. Tominski [27] gives an overview how
interactive visual interfaces are already used to find and display events accord-
ing to the requirements and domain knowledge of users. He also provides an
overview and formal model how events can be found with an interactive visual



interface. Our interactive visual interface is developed with the guidelines from
this publication in mind. The VISITORS system [28,29] has an interactive visual
interface to explore and query patient data over time. It supports multi-variate
data and combines both actual values and events. The events are determined
by knowledge-based temporal abstraction methods. Similarly, Lifelines2 [30] is a
system to explore events in time-oriented patient data. It provides specific inter-
action techniques such as alignment and temporal summaries. It expects data
to be either of a categorical scale or simplified in advance. The simplified data
resulting from application of our contribution are possible events that can be fur-
ther analyzed by these systems. Activitree [31] provides a powerful interactive
visual interface that users can employ to choose which patterns are important
while performing algorithms, like those based on the Apriori approach [4]. As
these examples show how interactive visual interfaces can improve various steps
of Data Mining, we are heeding the call and present an interactive visual inter-
face for the data simplification step of value discretization which has received
insufficient attention in most existing work.

3 Interactive Visual Data Simplification

To present our interface, we need to (1) lay out the requirements, (2) describe
the sample dataset we have used to design it, (3) show the interface itself, and
(4) pay special attention to multi-variate data.

3.1 Requirements

We deal with multi-variate data as this kind of data is common among time-
oriented data [15]. The number of variables can also be considered the number of
dimensions in the multi-variate data space. The output should consist of a time
reference and a single discrete data value. Each output element represents one
single “event”. Events can occur many times in any temporal order. However,
the total number of different events is limited. All events that share the same
characteristics and are grouped together by the user or by some kind of auto-
mated similarity computation are considered an “event class”. In the current
state of development, our user interface does not support giving events classes
names or putting them into an ontology, however we are aware of the possible
advantages of such expansions. We want users to be able to apply their domain
knowledge and freely configure event classes. At the same time, we want to en-
sure equiprobable event classes, so that our approach can keep up with SAX
[14,12] for Data Mining methods that require this kind of data discretization as
input. Compared to SAX, we have to perform more complex statistical calcu-
lations in order to deal with multi-variate data. To combine the statistical and
the manual approach, we need to provide three alternatives of defining the event
borders between event classes:

Giving a target number of event classes. This results in classes with bor-
ders provided by the algorithm, similar to SAX, [14,12], but considerably more



complex when there is more than one data variable.

Completely free parametrization similar to the one proposed by Bertone
et al. [10,11]. Event classes resulting from such kind of parametrization are not
equiprobable. However, it is possible to have the set of event classes partitioned
into groups, with each merged group being as probable as any other group.
Giving target value ranges that are supposed to be allocated into sep-
arate classes. The algorithm uses these ranges to calculate a number of classes
(which cannot be chosen by the user in this case) with class borders at the given
range borders. Below we show how these borders can be set.

All three alternatives should be performable at the same time. Making changes in
one of those three alternatives has to be reflected immediately in the parameters
for the other alternatives. At the same time, we need an interactive visualization
for the data as well as the event classes.

3.2 OQOur Example Dataset

We used a synthetic dataset that is similar to the dataset analyzed by Bertone et
al. [10,11]. The original dataset from that publication is not open to the public,
therefore we use this alternative. The dataset covers data of a shop over one year.
It is measured on a one-hour-raster a three data variables: employees, customers,
and turnover. The dataset has the following characteristics:

— All values are higher on weekdays and lower on weekends.

— When customers and employees are high at the same time, turnover is high.

— When customers or employees are high while the other of those two values

is low, turnover is average.

— When customers and employees are low, turnover is also low.

We will present our user interface using this dataset as exemplary input-data.

3.3 The User Interface

The user interface consists of three main parts which in turn contain different

parts themselves (see Fig. 2, the parts described below are marked by red text):

1. At the top, some basic commands are presented. We include an undo button
that reverts the last action.

2. At the left, we have an area where users can edit the parameters of event
classes: (a) At the top, the user can specify if given variables are statistically
linked or independent from each other. The user does so by clicking on the
variable, shifting it between the “statistically linked” and “independent”
area. We will explain the meaning of this classification below. (b) In the
middle, event classes can be configured using statistical properties. (c) At
the bottom, manual event classes can be defined using specific values.

3. At the right, the raw data and events are visualized. The interactive visual-
ization allows for modification by users. (a) At the top, the dataset is shown
(a line plot in Fig. 2). (b) At the bottom, the event classes are shown (a
scatter plot in Fig. 2).
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Figure 2. Our user interface with (1) the basic commands (2.a/b) automated statis-
tical calculation of three event classes, (3.a) a line plot, and (3.b) a value and class
distribution scatter plot

Event classes are calculated in two stages. The first stage is based on sta-
tistical calculations. Fig. 1 already showed how equiprobable event classes are
calculated in SAX. We extended this method to n value dimensions. Due to cor-
relation effects, the classes cannot be related to low or high values for multiple
dimensions. Instead, we use distance from the mean as criterion. Fig. 3.a) shows
customers and turnover of our example dataset in a 2D scatter plot with three
classes. Fig. 3.c) shows all variables of our example dataset (i.e., customers, em-
ployees, and turnover data) in a 3D scatter plot with three classes. Interpreting
the 3D view is not always straightforward and easy (see below). Therefore, we
project the 3D scatter plot visualization on a plane spanned by two variables
that can be switched by the user. In our user interface, we support two variants
of configuring equiprobable event classes: (1) A target number can be given by
the user. The system calculates equiprobable classes as done by SAX, but it
works for any number of variables instead of only one. (2) Class border values
can be given for any variable. The data value space can be set in normalized form
(with mean of zero and standard deviation of one), or the absolute values can
be used. With respect to the correlation between variables, changing the borders
along one variable changes the number of classes as well as the borders along
the other variables. The borders are forming hyperellipsoids (ellipsoids for three
variables, ellipses for two variables). For normalized values, the border values
are given on the coordinate axis of one variable, with the other variables having
values of zero. Otherwise, the respective mean values are used. For each value a
hyperellipsoid representing a class border is formed, with its actual shape given
by the correlation of the variables. Additional borders are added to the given
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Figure 3. a) The customers and turnover part of or example data in a 2D scatterplot.
The green ellipses are the class borders. b) A combination of manual and calculated
event classes in a 3D-view. ¢) Our example data in a 3D scatterplot from several
directions. The green ellipsoids are the class borders.

borders in order to keep the number of events per class equiprobable, so it is
likely that the algorithm will add further border position values. The various
settings can all be modified; the system automatically updates the dependent
values accordingly.

When the user is about to change a value, this change is reflected in the
whole user interface: In case the user modifies the parameters in the text boxes
on the left, the text is entered in blue as long as Enter has not been pressed.
The newly calculated class-borders are indicated by blue ellipses in addition to
the current class-borders which are shown in green (see Fig. 4). Two situations
result in the system showing “possible future” values: Hovering the mouse over
an arrow (see Fig. 4) or editing a value in a text box. By pressing the Enter key,
the change is permanent (unless Undo is used). By pressing Fsc, the text box
and all values are resetted.

Variables that are not included in statistical event class definition (because
the user has shifted them to manual event class definition) are ignored at this
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Figure4. Our user interface while the user hovers the mouse over the button for
increasing the number of classes. The values that would become actual by clicking are
shown in blue, as are the class borders that would result from this user interaction.

stage. A data element is placed in a certain class no matter what data values are
given for ignored variables. The number of data elements for the equiprobability
calculation considers several data elements as identical, even if they differ along
the ignored variables.

For variables that are set to be independent, manual event class definition
can be performed. This is done in a second stage after statistical calculations.
The manual event class definition works as described by Bertone et al. [10,11].
The vertical “+” button adds new event classes. The horizontal “+” button
to the right of an existing event class adds new constraints for this class (see
Fig. 5). All data elements that do not fit to the constraints are placed in an
“other” event class. The data value space can be set to normalized values or as
absolute values. The class borders resulting from this stage are added to the class
borders from the first stage. If classes from the first stage are further intersected
in the second stage, equiprobability for the resulting classes cannot be imparted.
However, the combinations of classes that emerge from the second stage are still
equiprobable. If no manual event class definition is performed, only the classes
from the first stage exist. When changes are about to be made to manual event
class definition, they are reflected at all parts of the user interface in blue color.
This works the same way as described above for statistical event class definition.

Fig. 2, 4, 5, and 8 show how the dataset is visualized (upper right). We
provide three different visualizations of the dataset:

Line Plot is a widely known method for visualizing time-oriented data [32] (see

Fig. 2 and 4). Time is plotted over the horizontal axis, while the value of a

variable determines the position at the vertical axis. Multiple variables are
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Figure 5. Our user interface can define event classes by a combination of statistical
equiprobability present our user interface using this dataset as exemplary input-data
and manual borders. The resulting class-borders are indicated by green lines in the
projected scatter plot on the right.

shown in various shades of grey. Blue and green shades are not used because
they are needed for other user interface elements. This visualization can be
actived when users need to have a better view on data values.

Parallel Coordinates (see Fig. 6) by Inselberg and Dimsdale [33] do not show
the flow of time. Instead, each of the axes represents one variable. The po-
sition is determined by the data values. The lines connecting the axes show
the correlations between values. Therefore, this visualization can be acti-
vated when users need to investigate these correlations.

GROOVE (see Fig. 7) is a pixel-based visualization technique developed specif-
ically for time-oriented data [34]. It is based on recursive patterns [35]. Both
axes are used for time, while the data value is mapped to the color of pixels.
Instead of adapting GROOVE to show multiple data variables at once, we
use small multiples [36]. This visualization can be activated when users need
to understand temporal structures.

Fig. 2, 4, 5, and 8 also show how event classes are visualized (lower right). Four

kinds of visualization are possible:

Data Distribution and Event Classes are similar to the scatter plot [33]
that has already been shown in Fig. 3.a). The points are data elements
projected on a plane which can be selected by a tab bar over the visualization.
The borders of event classes are shown as green lines. These borders are
also projected. They represent the maximum circumference of the actual
border frames. Elliptical borders result from statistical event class definition.
Intersecting straight lines (as seen in Fig. 5) result either from manual event
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Figure 6. In the Parallel Coordinates [33] view, each data variable is represented on
one axis. A data element is represented by a polyline, connecting the corresponding
attribute values on the parallel axes. Depending on the available display area, the value
range, and the number of variables, the axes may be vertical like in the reference, or
horizontal like in this example.

class definition or are projected elliptical cylinders. Fig. 3.b) explains this
fact and shows how the classes could be represented in three dimensions.
When users are about to make changes to the event class configuration, the
new class borders that would result are shown as blue lines in addition to the
green lines showing the current borders. It is also possible to directly interact
with the class borders: They can be grabbed with the mouse and dragged.
This interaction results in the creation of new borders. This border is placed
directly at the mouse position (assuming a value of zero for the variables
that are not part of the projection plain). When the dragged border was
resulting from statistical calculation, other borders are calculated in a way
so that the classes remain equiprobable (see Fig. 8). For manually defined
classes, the definition of the class is simply changed. When pressing the Fsc
key before releasing the mouse button, the dragging is canceled.
Histogram of Event Classes is a visualization that shows how many data
elements fall in the various event classes [37]. If only statistical event class
definition is used, the classes are all the same size (and the histogram is not
needed). If manual event class definition is used, the histogram shows how the
probability of these classes are distributed (we aim for equal probabilities).
The current state is shown in black, blue lines show predicted changes when
users are currently making changes to classes. In Fig. 9, we show an example
histogram for the classes defined in Fig. 5. As some of the class borders are
defined in an equiprobable way, and some are defined manually, summing
up these bars in the right combination would result in three equal bars.
Separated Time Plots with class borders (see Fig. 10) are a mixture between
the distribution, as the points are colored according to classes, and the line
plots, as the horizontal axis shows time. They are focused on displaying the
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Figure 7. GROOVE visualizations [34] of the three variables. Each part with uni-
form hue represents one month, red means high average, blue low average. Each pixel
represents one day, bright means high value, dark means low value.

event borders. Therefore, this visualization is similar to the visualization
used to explain the event borders of SAX [12] (see Fig. 1).

STZ is a visualization method for qualitative abstractions and the associated
quantitative time-oriented data. This interactive visualization technique,
which is referred to as SemanticTimeZoom (STZ), is adopted from the
Midgaard system [38,39]. While, in previous publications the qualitative
abstractions were defined on basis of a single variable, typically based on
severity ranges from domain knowledge, we can apply here the event data
from our classification as common abstraction for all variables. Thus, the se-
quence of events is shown in combination with the development of numerical
raw data along the time axis (see Fig. 11). STZ allows the user to dynam-
ically switch between different levels of detail depending on vertical space.
At a low detail level it shows only events, which are represented by colored
boxes. Fig. 11 demonstrates the medium level, where raw data is shown as
line plot and the area is colored by event class. At high detail level the raw
data is again represented in a line plot with marks at the time points when
event classes change.

3.4 Dealing with more than three Variables

Our user interface can deal with as many variables as the computer performance
and the screen space permit. For visualizations that place the variables along
the dimensions, a projection on two dimensions is necessary. While a projection
on a pseudo-3D-view is possible, we focus on a full 2D projection because in a
pseudo 3D-view (1) the occlusion is too severe (2) the actual position of points
is too hard to grasp (3) user interactions are too complicated. An example for
these problems can be perceived in Fig. 3.b). For a straight projection on two
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Figure 8. Our user interface while the user drags the class borders at the right with
the mouse. The potential new class borders are shown in blue. On the left side, the
numerical values that represent these borders are shown, releasing the mouse sets these
values, which makes them become black.

dimensions, the values of the projected dimensions can be just ignored. This
results in exact projections for the points, for class borders the maximum values
have to be taken. So for three dimensions, the silhouette is shown. For four
dimensions, when mentally picturing an animation over three dimensions, the
ellipse is growing and shrinking again. Here, the projection shows the maximum
circumference. For five or more dimensions, there is no real imaginable model,
but the rule can still be applied. For values normalized to a mean of zero, the
maximum circumference also exists where the other dimensions have values of
zero, so dragging the class borders results in a clearly defined user interaction.
Due to the fact that the class borders are showing the maximum circumference,
several values that are outside one of the borders are projected inside the border.
Here, the different gray levels of the data points can help to some degree.

4 Usage Scenario

We perform our usage scenario on the synthetic dataset as described in Section
3. A user wants to find important patterns in the data from her shop. This is
a realistic scenario based on real-world application [10,17,18]. There are several
important tasks to solve like “how many employees should be in the shop at
a given time to maximize profit?”, with profit being driven by turnover, but
diminished by labor costs. By viewing the data in our user interface, it is likely
that specific characteristics of the dataset given in Section 3 can already be seen.
For example, the difference between weekdays and weekends becomes obvious
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Figure 9. A histogram [37] showing the distribution of events classes in the resulting
event data (in this example, the classes are taken from Fig. 5).

in the GROOVE visualizations (see Fig. 7). In our example, the GROOVE vi-
sualizations are very similar among the variables. This is due to the fact that
the correlation is rather high. This is an advantage though, as a high correla-
tion simplifies finding suitable event classes. In the example case, it means that
the shift plan is already not bad. The user tries several numbers of classes (see
Fig. 2, 4, and 8). In the end, she finds that for her business, it is important
to separate the cases of high turnover and low turnover from average turnover.
The reason is that she needs to find the definite causes for the high turnover
(hoping to reproduce them), and for low turnover (hoping to prevent them).
Sacrificing equiprobability regarding turnover might be necessary. Based on her
domain-knowledge, she deems a high turnover of about one third higher than the
standard deviation and a low turnover of about one third lower then the stan-
dard deviation as the most important cases. Therefore, she sets manual event
classes for turnover (see Fig. 5). This results in the categorization of nine dif-
ferent types of events. These classes are represented by the different gray levels
of points in the lower right of Fig. 5. Of course, this view is not the solution for
the whole task, but a crucial step that enables the application of Data Mining
methods relying on those classes. In those future steps, sample questions that
could be answered are, which situations can lead to low turnover even if there
are average customers, and how high turnover can be achieved even with average
customers. The classes for these situations are provided.

5 Expert Review

We have placed our user interface under review by two different experts who both
have been working in a university environment with close ties to industry. They
received a preliminary version of the paper and information about the focus of the
review by E-Mail and replied the same way. We analyzed the textual reports and
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Figure 10. Separated Time Plots: the vertical axes gives the normalized data value,
the horizontal axis shows time. The points are shown in three different gray levels:
each level means affiliation with one specific event class. The projected class borders
are shown in green. As more than one data dimension influences the borders, the
affiliation is not fully conferred by these borders.

implemented as much as possible in the actual paper, while scheduling the rest
for future work. As there were only two expert reviews, more complex analysis
was not necessary. Goal of the reviews was to get insights about the general
applicability of the approach and of possible user interaction pitfalls prior to
further implementation work.
Review 1 focused on the applicability of our results for KDD. This review was
done by an expert for Visual Data Mining, Temporal Data Mining, Information
Visualization and Visual Analytics who took about two hours to get familiar
with the topic and three hours for the evaluation:

The expert considers the method “definitely of high interest, as the selection of the
most suitable event classes for a given task is usually not obvious and a bad choice
may negatively influence the further steps of the analysis”. The description is rated as
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Figure 11. The SemanticTimeZoom (STZ) adopted from Midgaard [38,39] can inter-
actively combine numerical raw data with qualitative events.

“clear and well supported by references” and the expert sees “a clear advantage for the
user performing the first stages of his/her analysis, or refining not satisfactory results”.
Two problems are mentioned:

1. The expert is concerned about the number of attributes that can be accounted
for in the visual interface and demands a better explanation for such situations.
Furthermore, he proposes a Scatterplot Matrix instead of a single projection. We
improved our explanation on how to deal with more than three variables as well as
our explanation of user interactions in the data distribution views. Furthermore,
we included a discussion of the limitations of two dimensions as well as possible
future developments in Section 6.

2. The expert considers the choice of the event classes “already a part of the visual
analysis”. Therefore, in his opinion, our technique provides a bit more than only
data simplification. We pick up the topics of visual analysis, time, and steps of the
KDD process in Section 6.

In sum, it can be said that the expert was very positive about the applicability of the
method for KDD while seeing some user interface issues that we intend to deal with
in the future.

Review 2 focused on the usability of our user interactions. This review was
done by an expert for Interactive Visual Interfaces, Visual Decision Support,
Temporal Representations, HCI, Information Visualization and Visual Analytics
who took one hour to get familiar with the topic and one hour for the evaluation.
We provided a list of tasks. The expert solved these tasks by hypothetically
applying the user interface. Based on the answers, we made some changes to the
user interface. The labels of several visualizations had to be clarified. In total, the
expert had no problem dealing with the interface, but the statistical background
needed to fully employ the interface seems to be rather high. Still, we think that
a decent class definition result can be achieved by domain experts. The result
becomes better with more statistics skills and domain knowledge—which both
are even harder requirements for other methods. After answering the questions,
the reviewer gave an assessment of the usability:

1. Inconsistent: when I edit textboxes or drag ellipses, the new borders are shown
in blue. For the +/— buttons, this already happens when I hover them with the
mouse. It would be better if that happened when the buttons are pressed.

There actually is a small inconsistency here. However, in the current state of devel-
opment, textbox content is not actually changed before pressing Enter. The same
is true for the dragging of class borders: They are mot changed till releasing the



mouse. When changing the number of classes with the arrow button, the click al-
ready makes the change fized, so there is no room for a blue preview after the
hovering. We think that this has to be reevaluated on an actual implementation.

2. If T change the borders manually using some rules (with the lower left view), the
new borders are shown immediately as green lines. These lines should be blue first
and only become green after pressing Enter, removing the blue ones (see Fig. 5).
This is a good input that will be included in the implementation of the interface.

3. GROOVE uses blue. This can result in misunderstandings as blue is the result of

interactions here.
At the same time, green is always used for class borders. To solve this issue, we will
first evaluate whether GROOVE will be kept as part of the user interface. If it stays,
we will evaluate whether it can be changed to an overlay of saturation and lightness.
If this works, we will evaluate making GROOVE fully blue and interactions red.

4. Histogram: if the distributions resulting from an interaction are shown in blue
again, the current condition should be green again. However, I am not sure if this
visual metaphor should be used here, as no borders are shown, but the number of
elements in the particular classes.

We will analyze several color schemes using the working prototype.

5. There are too many possibilities to show the data, resulting in a high learning curve
and confusion while switching between two different visualizations. Why are that
many visualizations necessary? What is the advantage of GROOVE and simple line
charts over separated time plots? Why the parallel coordinates? The correlations
are hard to see in parallel coordinates and there are scatterplots anyway?

A (smaller) choice of visualizations has to be made. However, we first have to test
various visualizations and find out which ones are best, hoping that this is not too
dependent on different datasets.

6. There is much overplotting in the line charts and the legend is hard to read. Why
are the boxes not filled? They look like checkboxes.

Currently, we cannot reduce the overplotting. We will look into solutions for line
plot overplotting for the working prototype. The legend has already improved in the
new version of the mockups shown in this paper.

7. The various time visualizations show different time spans. The time spans should
be the same for all visualizations.

The wvisualizations are intended to be zoomed and panned. As the mockups are
static, they show states that we consider most illustrative.

6 Conclusion, Limitations, and Future Work

We have presented an interactive visual user interface that enables users to define
event classes among a set of time-oriented data. These event classes can be (1)
equiprobable and work similar to SAX [12], (2) freely configurable as described by
Bertone et al. [10], or a combination of automated and user-based methods. The
visual interface enables users to interactively develop suitable event classes for
their needs. Our approach is in particular oriented to support multi-variate data.
The data visualization area, and, to some degree, the event class visualization
area, help users to gain an understanding of the data by means of interactive vi-
sualization. This understanding goes beyond the data variables—it also extends
into understanding time-oriented effects. We consider this understanding advan-



tageous for performing the event class configuration and, therefore, have included
it into the user interface even though it surpasses the topic of data simplification.
Furthermore, we can conceive a more extensive user interface that also includes
other steps off KDD. In such an interface, the visualizations would be absolutely
necessary. They would also help possible expansions of the user interface that let
users provide names for event classes and their characteristics or even place them
into an ontology. For many data variables, the two-dimensional view is a strong
abstraction of the actual distribution. As a 2D-display and traditional user input
devices make showing more dimensions hard to impossible, this limitation cannot
be overcome directly. However, the application of linked views like a Scatterplot
Matrix that show projections on different dimensions might help. Still, the num-
ber of variables that our approach can deal with in a meaningful way might be
limited. To explore that actual limits of the method, a working prototype will
be used. We are in the planning stage of such a prototype that will also include
the proposed changes explained in Section 5. We can currently apply statistical
classification under the assumption that the data has a Gaussian distribution
and the Euclidian distance is an adequate measurement. Lin et al. show that
this is sufficient for many important use cases [12] (see Section 2). On the other
hand, Vlachos et al. [40] show that there are different tasks which require other
classification and distance methods. Our approach can be extended to incorpo-
rate such methods. Furthermore, our approach is developed with time-oriented
data in mind, as time is a complex data reference [15] and its complex structure
is important for users [17,18]. However, other reference dimensions, like space,
are also very important and show similar structures. As we focus on leaving time
untouched, for other methods to deal with its structure, it is easy to extend our
method to other reference domains. Many methods, like SAX, apply rasteriza-
tion of the time dimension prior to further methods, because time-oriented data
can be huge. However, rasterization can hide important information. Therefore,
finding an optimal raster size is an important issue that can be dealt with by
applying interactive visual interfaces. Others problems that are closely related
to rasterization are dealing with missing values and outliers. Time-oriented data
and the information contained in it is heavily influenced by certain aspects of
social life and other phenomena [15]. To perform KDD on time-oriented data,
special methods have been developed [10,11], but many more are needed to fully
deal with all those aspects. Inventing such methods seems to be the next im-
portant step after successfully performing data simplification. Approaches like
Activitree [31] show that interactive visual interfaces are an outstanding way to
make such methods more accessible and effective.
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