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Abstract. This work proposes a computational approach supporting
the simulation of human automation interaction in aviation. The devel-
opment of an advanced human agent model that accounts for workload
limitations, imperfect mental models and consequences on the operator’s
situation awareness provides new insight for future certification proce-
dures regarding human interaction with complex automated systems.

1 Introduction

Commercial pilots are faced with growing complexity of automated flight sys-
tems. Although most of these new systems are known to be robust to small
disturbances and failures, humans still play a crucial role for advanced deci-
sion making in off-nominal situations and accidents still occur because of poor
human-automation interaction. Usual mechanisms to investigate the influence
of new automation on human automation interactions includes extensive use of
simulation and human-in-the-loop (HITL) experimentation. But simulators and
HITL experiments are expensive, time-consuming and not comprehensive as far
as diversity of scenarios is concerned. Therefore we need to improve our sim-
ulation capabilities by developing realistic computational human agent models
taking into account human limitations.

Maintaining a good understanding of the situation including the behavior of
the automated flight systems is critical for the flight crews to make appropriate
decisions in both nominal and off-nominal cases. Therefore a realistic human
agent model should account for the situation awareness of the flight crew. The
concept of situation awareness [5] is a good base of projection of the pilot’s
immediate understanding of the situation but it is not sufficient to explain its
evolution. Certain operators are able to maintain a good situation awareness
despite of off-nominal external inputs or degraded monitoring capabilities by
developing an accurate mental model of the system. However, when the operator
has a deficient mental model of the automation, his situations awareness tends
to decline and result in loss of control situations.

A key contributor in the difficulty pilots have in maintaining both adequate
situation awareness and an accurate mental model is the large number of au-
tomation modes, transition rules and their relative opacity to the pilot. This
is particularly noticeable for transition scenarios that are rarely faced by the
crew. The specifics of these transition scenarios tend to be forgotten but may be
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critical to fully understand off-nominal situations. As the primary mechanism
to import the knowledge of the systems dynamics, rules and procedures to the
flight crew, additional training has been the typical response to poor human
automation interaction. Enhanced training improves the comprehensiveness of
the operator’s mental model of the system, but has its limits, especially in light
of tight training budgets. And as the mental efforts needed to maintain a good
situation awareness are correlated to the number of dynamics/rules to remember
and consider, i.e to the complexity of the automated systems, some have begun
to question the wisdom of including even more specialized automation into the
flight deck, and how to adequately certify future flight deck automation.

This works proposes a computational method to implement mental models
and simplified agent training as well as workload limitations into a work sim-
ulation tool, taking into consideration implicit knowledge alteration of discrete
mode based dynamics and simulate the consequences of inaccurate mental mod-
els on Situation Awareness. Such an approach could allow future certification
procedures to account for faulty mental models which are a serious cause of
human automation interaction breakdowns in aviation.

2 Work Models and Mental Models: Background

2.1 Modeling Work Domains

Vicente [12] defines a work domain as the The system being controlled, indepen-
dently of any particular worker, event, task, goal, or interface. A key part of
this effort is to find an adequate formalism for work domains before integrat-
ing mental models. Rasmussen and later Vicente developed an extensive theory
of cognitive system engineering that describes the functional structure of these
work domains [12]. Pritchett et al. in turn, proposed a method to parse such
functional descriptions into computational work models [11] while preserving
the concept of situated cognition using advanced human agent models. Simu-
lating work models has been done using the work simulation framework WMC
(Work Model that Computes) used in [11].

2.2 Defining Mental Models

An extensive literature on mental models exists comprised of contributions from
multiple scientific communities. System dynamics scientists were the first to in-
troduce the concept ofmental model with Forrester [7] about industrial dynamics
applying this concept to corporate organizations and processes. Psychology and
cognitive science also put some effort at defining mental models among other
cognitive structures whereas Human Computer Interaction was the first field us-
ing the concept of mental models to address issues in human-in-the-loop systems.
Finally, Doyle and Ford drew an extensive survey of the different interpretations
of mental models of socio-technical systems in these fields to state a precise defi-
nition [3], framing the concept of mental models as enduring, but limited internal
representations of the system, its environment and procedures.
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2.3 Implicit Learning

Forrester was already addressing the changing nature of mental models : “within
one individual, a mental model changes with time and even during the flow of
a single conversation” in 1971 [8]. Javaux explained how implicit learning alters
the knowledge of finite state systems using the concept of Hebbian Learning
to update the mental representation of rules as the agent experiences transition
scenarios [9]. Hebbian learning has been extensively described in the neuroscience
literature [1,2] as a basic model of long-term synaptic plasticity.

3 Creating a Computational Work Model

Based on the approach described by Pritchett et al. [11] and using Work Models
that Computes (WMC) as a computational modeling framework, this work in-
troduces a systematic way of breaking down work models into semi-specialized
actions to enable more realistic interactions between a human agent and its
environment.

3.1 Work Model that Computes (WMC)

WMC (Work Model that Computes) is a simulation framework developed to
model realistic work environments, taking into consideration continuous dynam-
ics, discrete actions, human agent models and computing human-related metrics
such as Workload and Performance [11.] It has been used to simulate aircraft
and Air Traffic Control to test new Continuous Descent Approach patterns at
Los Angeles Airport in Kim’s work about human-automation function allocation
10.

3.2 Decomposition of Work Model Actions

The fundamental premise behind the WMC simulation modeling framework is
that the knowledge of the entire work domain can be captured independently
of the agents who are asked to perform the work. However, we want to allow a
specific instance of a human agent model to gain knowledge about the system
and this knowledge to change over time for example through training. In order
to guarantee a generic interfacing between work model and agent models while
allowing experienced agents, we need to define a certain number of conceptually
different action types.

Continuous Dynamics Actions. WMC is a continuous-time simulation en-
gine. Its therefore capable of integrating numerically differential equations allow-
ing to simulate complex non-linear system dynamics. These actions are executed
by a non-human agent and generally include controllers and can implement a
variety of numerical integration methods such as Runge Kutta.
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Discrete Dynamics Actions. Complex automated systems such as Flight
Management Systems comprise discrete modes of operations. Autopilot flight
modes is a good example of complex mode transitions potentially confusing the
pilot [9]. Since these modes change the control law and the aircraft behavior they
have to be implemented by the modeler and their transition rules are assimilated
to discrete dynamics actions.

Tasks. Although Vicente excludes task from the definition of work domains,
a work model aims to implement the work to be performed, independently of
the agent responsible for performing it. However, some attributes of the task
such as the its duration and the consequent workload are directly dependent
on the agent and are defined while linking a specific agent to the task during
the function allocation step of the simulation’s initialization. A task are usually
atomic actions such as ”Engage Autopilot” that can either be performed by the
pilot or automation.

Monitoring Actions. Monitoring actions are meant to be executed by human
agents. They implement the perception phase and therefore the first level of
Situation Awareness. The frequency can either be procedurally fixed to a certain
value or set dynamically.

Decision Actions. Decision Actions implement differential behavior. They can
be assigned to either automation or human agents. The implementation itself
only contains the procedural decision-making rules whereas mechanisms support-
ing information seeking, consideration of risks come under the implementation
of the agents and not the work model. Decision Actions implement the response
to change in the environments and therefore can schedule tasks or change the
function allocation between agents.

4 Advanced Human Agent

Agents are the other end of a situated work simulation tool such as WMC. They
do not have a priori knowledge of the work but are assigned actions from the work
model and perform them according to their internal limitations and priorities. An
automation agent will execute actions it has been assigned immediately whereas
human agents can only undertake a limited number of actions simultaneously
thus requiring any additional actions to be delayed depending of their current
workload. This works uses the concept of agents introduced by Pritchett et al.
[11] and enhances the human performance agent model used by Feigh et al.
[6] by adding new constructs believed to account for Situation Awareness and
Mental Models as shown in Figure 1. The previous labeling of actions now allows
advanced human agents to execute actions differently according to their type.
This way, monitoring actions will have an impact on the Situation Awareness
and decision actions will depend on it.
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Fig. 1. The implementation of the work model and human model are independent. The
mental model get initialized through a generic process that imports knowledge from
the work model to an instance of the human model.

4.1 Simulating Situation Awareness (SA)

Situation Awareness is a crucial aspect in the analysis of loss of control situations
[5,4]. The temporary loss of important sensors, false alarms or non-consistent in-
formation can sometimes be compensated for by a good understanding of the
current state of the system and even more through anticipation of likely next ac-
tions. Whether the operator has a good or poor situation awareness depends on
several factors such as his mental model of the system he is using and the degree
of degradation of the situation. Whatever reason is causing an alteration of situ-
ation awareness, we need to project this concept onto computational constructs
that can be used in simulation.

Perception and Workload (SA Level 1). Situation awareness Level 1 mostly
describes the comprehensiveness and accuracy of the operator’s perception of
available cues about the state of the system [5,4]. Did the driver see the car in his
right side-mirror? Did the pilot hear the aural stall warning? and so on. Certain
monitoring schemes such as the T-screening for pilots are part of the training and
are performed on a recurrent basis depending of the available mental workload.
If the pilot is talking on the radio or to his copilot, he might skip one of these
monitoring actions and his SA begins to degrade. By having the computational
human agent model stacking monitoring actions as well as communication and
actual physical actions in a active mental action list with limited capacity, we
can simulate a degradation of the monitoring process and situation awareness
L1. If the active action list gets saturated, actions get delayed or interrupted
and can be even forgotten.

Understanding and Decision-making (SA Level 2) : Bayesian Ap-
proach. Situation Awareness Level 2 describes the understanding of the
perceived cues, the identification of variables of interest (close to dangerous
boundaries for instance), and includes some of the decision making process nec-
essary for the human to consistently operate the system in response to environ-
mental inputs [5,4]. Expert human agents are believed to maintain a belief of the
state of the system as well as a degree of confidence that can be high for variables
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directly monitored on trustful instruments and very low in case of inconsistent
or out-of-date information. A novice operator is more likely to apply procedures
and rules all the time whereas a more experienced agent will selectively consider
risks and other contextual information. The expert will reason using bayesian
decision-making. Such an approach doesn’t only use the last monitored value of
a variable as a basis for decisions but also the degree of belief that one has about
it. To model such behaviors, we can introduce the mental state of the system
as a set of probability distributions. Each of them represents an actual variable
of the system and is centered on the current belief of its value and stretched in
or out as confidence decreases or increases. By assuming normally distributed
belief variables, the mean of the mental variable is the actual belief of the corre-
sponding system’s variable and the standard deviation represents the degree of
confidence. Using a gaussian representation has many advantages. First, its easy
to manipulate and really memory-efficient. Indeed, we only need to store the
mean and the standard deviation. Furthermore, this work will address mental
models and model-based observers such as Kalman filter and how they change
the operator’s state representation between or in the absence of available mon-
itoring actions. Kalman filters assumes a gaussian representation of variables.
Also these probability distribution implement a bayesian rather than frequentist
interpretation of probabilities. This means that the pilot does not sample from
the distribution by accessing his working memory but simply reads the expected
value, i.e the mean. The standard deviation does not represent his inability to
remember or access to the actual value but his confidence in the value of this
variable.

Non-gaussian Distribution and Cognitive Dissonance. In some situa-
tions, human operators can have a multi-modal belief of certain variables that
can lead to inconsistent actions or so-called cognitive dissonances. In the AF-
447 accident report by the BEA, the experts conclude several times that pilot
flying hesitated between identifying an overspeed or stalling situation leading to
non-consistent action sequences and eventually to the crash of the aircraft. In
such a case, the mental representation of the speed of the aircraft cannot be fully
captured by a gaussian variable. Allowing multi-modal probability distribution,
like a sum of gaussian distributions can provide this capability.

4.2 Mental Models

A mental model is comprised of mental (perceived) dynamics of the system that
allows the operator to update its mental belief between monitoring actions using
the knowledge of covariance between variables and exploit partial observations to
maintain a good situation awareness. Moreover, a reliable mental model allows
anticipation (SA L3) and a smarter use of the limited available workload. An
overview of how mental models fit into the simulation scheme and interact with
Situation Awareness is depicted in Figure 3.
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Fig. 2. The operator’s belief is generally centered on the actual value of the state it
represents. When sensors are not available anymore, the belief can diverge from the
actual value and even be multi-modal. In the AF447 accident case, the pilot did not
know whether he was in an overspeed or stall situation.

The following introduces two new types of actions that approximate the dy-
namics actions implemented by the modeler and whose behavior can change in
response to implicit learning.

Continuous Mental Dynamics Actions. By contributing to maintaining an
accurate mental representation of the state of the world, internal dynamics are
an important part of mental models. They reflect and approximate the actual
dynamics of the system and inform on operator’s expectation. The accuracy of
such mental dynamics depend on the training / initial knowledge of these dy-
namics, the experience/observation that the operator has of the actual dynamics
and the amount of cognitive attentional resources available at time t in the WMC
Simulation framework. Since agent models don’t have a priori knowledge of the
work model, the training of the dynamics must be added at the linkage step.
The modeler decides which dynamics he would like the human agent to know.
Dynamics hidden to the human agent will not update the human operator’s be-
lief of the related resources and lead to a lower situation awareness. On the other
side, training the operator on too many dynamics might lead to overwhelming
his limited mental capacity.

Discrete Mental Dynamics Actions and Implicit Learning. Javaux’s
work illustrates [9] how the pilot’s knowledge of discrete rules, automation mode
transition can impact situation awareness and therefore have to be part of the
mental model. An inaccurate knowledge of automatic mode reversions of the
Autopilot can lead to a problematic mode confusion. Transitions between mode
invoke complex engagement conditions and some of them are met rarely enough
to have most pilots forget about their importance [9] . Successfully retrieving
these rules from long-term memory depends on the available mental resources
and the evaluation of the conditions of transitions depend on the accuracy of
the pilot’s belief.
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Moreover, a human operator does not monitor important variables with a
fixed time step unless it is part of a given procedure. To determine when a
variable has to be re-observed, we use heuristics based on the relative changing
rate of the variable and related decision thresholds.

Thousands of hours of flight operation have an unconscious impact on pilot’s
knowledge and understanding of the aircraft and this is particularly remarkable
when it comes to the knowledge of complicated automated flight systems such as
autopilot’s modes. This alteration of knowledge can be captured by the concept
of Hebbian Learning [1,2] based on the Hebb’s rule known as a reference to
explain synaptic plasticity. This works allows the modeler to integrate Javaux’s
methodology [9] and account for implicit knowledge alteration although different
parameters involved in Hebb’s rule still need to be calibrated with real data.
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Fig. 3. Overview of the interactions between an aircraft model and a human agent
enhanced with mental model capabilities. D.A stands for decision actions, they modify
the configuration of the system based on the perceived state of the world. Red arrows
represent units of mental activity that contributes to saturate the operator’s workload
capacity.

5 Conclusion

The implementation of situation awareness capabilities and mental models into
WMC is being tested on a case study using the work model initially described
in [11,10,6]. This work model simulates air traffic and flight deck operations and
communications along the Standard Terminal Arrival Route at the airport LAX
and instantiates agents such as the pilot, the co-pilot, air traffic controllers and
automation agents. Monitoring patterns and approach procedures were also im-
plemented and the pilot received a basic training on flight dynamics. At this
stage of the implementation, the approach scenario exclusively uses the auto-
mated flight management system and the pilot remains in a monitoring role.
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We can still analyze the evolution of the situation awareness as a result of the
monitoring rate and basic internal dynamics which are key parts of the mental
model. A quantitative analysis of implicit learning will be part of a future work
involving realistic flight scenarios and a complete implementation of the different
flight modes.
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