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Verifying a Quantitative Relaxation of Linearizability via Refinement

Kiran Adhikari

(ABSTRACT)

Concurrent data structures have found increasingly widespread use in both multicore and distributed

computing environments, thereby escalating the priority for verifying their correctness. The thread

safe behavior of these concurrent objects is often described using formal semantics known as

linearizability, which requires that every operation in a concurrent objectappears to take ef-

fect between its invocation and response.Quasi linearizabilityis a quantitative relaxation of

linearizability to allow more implementation freedom for performance optimization. However,

ensuring the quantitative aspects of this new correctness condition is an arduous task. We propose

the first method for formally verifying quasi linearizability of the implementation model of a

concurrent data structure. The method is based on checking the refinement relation between the

implementation model and a specification model via explicitstate model checking. It can directly

handle multi-threaded programs where each thread can make infinitely many method calls, without

requiring the user to manually annotate for the linearization points. We have implemented and

evaluated our method in the PAT model checking toolkit. Our experiments show that the method

is effective in verifying quasi linearizability and in detecting its violations.
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Chapter 1

Introduction

Concurrent programming has engulfed the broad horizon of both the multi-core and distributed

computing environments. As Moore’s law starts to pay littledividend in improving the per-

formance of sequential applications, programmers need to adopt the concurrent programming

paradigm to help reduce the memory contention and improve the scalability and throughput of

the applications significantly. This has led to the increasingly widespread use of concurrent data

structures in domains spanning from embedded computing to distributed systems. However, it

is often difficult to build and test the thread safe components for the concurrent programming

environment without placing undue synchronization overhead. The often large number of thread

interleavings, along with the subtle interactions of concurrent operations, makes it difficult to

obtain the correct implementations. This has escalated thepriority for verifying the correctness

of these concurrent data structures.

1
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Over the past two decades, researchers have focused on usinglinearizability as a correctness

condition for concurrent data structures. A concurrent data structure is linearizable if each of

its operations or method calls appears to take effect instantaneously at some point in time between

its invocation and response. Although being linearizable does not necessarily ensure the full-

fledged correctness of the implementation, linearizability violations are clear indicators that the

implementation is buggy. In this sense, linearizability serves as a useful criterion for implementing

concurrent data structures. However, ensuring linearizability of highly concurrent data structures is

a difficult task, due to the subtle interactions of concurrent operations and the often astronomically

many interleavings.

Although linearizability is non-blocking[10], it often imposes unnecessarily tight synchronization

requirement on the implementation and therefore limit the performance and scalability. Realizing

that a more relaxed correctness condition than linearizability suffices in many applications, Afeket

al. [1] have defined a new notion calledquasi linearizability. Quasi linearizability is a quantitative

relaxation of linearizability [9, 12, 17] to allow for more flexibility in how the data structures are

implemented. While preserving the basic intuition of linearizability, quasi linearizability relaxes

the semantics of the data structures to achieve increased runtime performance. For example, when

implementing a queue for a task scheduler in a thread pool, itis often the case that we do not need

the strict first-in-first-out (FIFO) semantics; instead, wemay want to allow the dequeue operations

to be overtaken occasionally if it helps improving the runtime performance. The only requirement

here is that such out-of-order execution should be bounded by a fixed number of steps. Similarly,

when implementing data caching in web applications, we may not need the strict semantics of
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standard data structures, since getting stale data occasionally is acceptable as long as the delay is

bounded. Furthermore in distributed systems, the counter for generating unique identifiers may

also be allowed to return out-of-order values occasionally.

1.1 Motivation

Despite the advantages of quasi linearizability and its rising popularity (e.g., [9, 12, 17]), such

relaxed consistency property is difficult to test and verify. Inspit of being an important property

of concurrent data structures, there does not yet exist any effective way of formally verifying this

relaxed correctness condition.

Although there is a large body of work on formally verifying standard linearizability, for example,

the methods based on model checking [15, 14, 24, 5], runtime verification [4], and mechanical

proofs [22, 23], they cannot directly verify quasi linearizability. Because of the inherent non-

determinism in the quasi linearizable data structures, these traditional verification methods do not

have the capability of checking teh quasi linearizability semantics. In addition to the requirement

of covering all possible interleavings of concurrent events, one needs to accurately analyze the

quantitative aspects of these interleavings to verify quasi linearizability. Another reason why

formal verification methods for quasi linearizability are lacking is because quasi linearizability

is relatively new and still under development.

In this thesis, we fill the gap by developing an effecient method to verify this quantitative relaxation

of the linearizability for concurrent data structures.
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1.2 Contribution

We propose the first automated method for formally verifyingquasi linearizability in the imple-

mentation models of concurrent data structures. There are several technical challenges. First, since

the number of concurrent operations in each thread is unbounded, the execution trace of a multi-

threaded program that uses the concurrent data structures may be infinitely long. This precludes

the use of existing methods such as LineUp [4] because they are based on checking permutations

of finite length execution histories. Second, since the method needs to be fully automated, we do

not assume that the user will provide hints or annotate the linearization points of each method.

This precludes the use of existing methods that are based on either user guidance (e.g., [22, 23]) or

annotated linearization points (e.g., [24]).

To overcome these challenges, we rely on explicit state model checking. That is, given an imple-

mentation modelMimpl and a specification modelMspec, we check whether the set of execution

traces ofMimpl is a subset of the execution traces ofMspec. Toward this end, we extend a classic

refinement checking algorithm so that it can check for the newly definedquantitative relaxationof

standard refinement relation.

Consider a quasi linearizable queue as an example. Startingfrom the pair of initial states of

a FIFO queue specification model and its quasi linearizable implementation model, we check

whether all subsequentstate transitionsof the implementation model can match some subsequent

state transitionsof the specification model. To make sure that the verificationproblem remains

decidable, we bound the capacity of the data structure in themodel, to ensure that the number of
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states of the program is finite.

We have implemented the new method in the Process Analysis Toolkit (PAT) [20], which is a

model checker for analysing concurrent systems. PAT provides the basic infrastructure for parsing

and analyzing the specification and implementation models written in a process algebra language

that resembles Tony Hoare’s Communicating Sequential Processes (CSP) [11]. Our new method

is implemented as a module in PAT, and is compared against theexisting module for checking

standard refinement relation. Our experiments on a set of popular concurrent datastructures, such

as queues, stacks or priority queues show that the new methodis effective in detecting subtle

violations of quasi linearizability. When the implementation model is indeed correct, our method

can also generate the proof of correctness quickly.

To sum up, this thesis make the following contributions:

• Propose the first method for formally verifying quasi linearizability of concurrent data struc-

tures. This is accomplished by designing a new algorithm forchecking a relaxed version of

the refinement relation between the implementation and specification models.

• Implement the new method in a software tool called PAT and demonstrate its effectiveness

on a set of quasi linearizable concurrent data structure examples including queues, stacks,

and priority queues.
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1.3 Organization

The remainder of this thesis is organized as follows.

Chapter 2 provides the overview of the notations and review the existing refinement checking

algorithm for verifying the standard linearizability.

Chapter 3 introduces the overall flow of our new relaxed linearizability checking method. This

chapter also presents a manual approach for verifying quasilinearizability based on the standard

refinement checking algorithm. This approach is proved to belabor intensive and error prone,

therefore motivating us to design a fully automated method.

Chapter 4 presents the fully automated method, which is based on a new algorithm for checking

the relaxed refinement relation. This chapter also presentsthe experimental results.

Chapter 5 gives the conclusions and outlines the future works.



Chapter 2

Background

In this chapter, the notion of linearizability and quasi linearizability are defined by using the

refinement relations between an implementation model and the specification model. We also

present the process algera semantics of the models in relation to the CSP. Finally, we introduce the

standard refinement checking algorithm as an approach to verify the linearizability. The method

relies on model checking of finite state systems specified as concurrent processes with shared

variables and take advantage of a new trace refinement checking to verify the relaxed version of

linearizable data structures.

Given a two labeled transition systems, the following section explains the formal semantics defin-

ing standard and quasi linearizability, and review an existing algorithm for checking the refinement

relation between those two labeled transition systems.

7
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2.1 Linearizability

Linearizability [10] is a safety property of concurrent systems, over sequences of actions cor-

responding to the invocations and responses of the operations on shared objects. We begin by

formally defining the shared memory model.

Definition 1 (System Models). A shared memory modelM is a 3-tuple structure(O, initO, P ),

whereO is a finite set of shared objects,initO is the initial valuation ofO, andP is a finite set of

processes accessing the objects.

Every shared object has a set of states. Each object supportsa set ofoperations, which are pairs

of invocations and matching responses. These operations are the only means of accessing the state

of the object. A shared object isdeterministicif, given the current state and an invocation of an

operation, the next state of the object and the return value of the operation are unique. Otherwise,

the shared object isnon-deterministic. A sequential specification1 of a deterministic (resp. non-

deterministic) shared object is a function that maps every pair of invocation and object state to a

pair (resp. a set of pairs) of response and a new object state.

An execution of the shared memory modelM = (O, initO, P ) is modeled by a history, which is a

sequence of operation invocations and response actions that can be performed onO by processes

in P . The behavior ofM is defined as the set,H, of all possible histories together. A historyσ

∈ H induces an irreflexive partial order<σ on operations such thatop1 <σ op2 if the response

of operationop1 occurs inσ before the invocation of operationop2. Operations inσ that are not

1More rigorously, the sequential specification is for atypeof shared objects. For simplicity, however, we refer to
both actual shared objects and their types interchangeablyin this paper.
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related by<σ are concurrent. A historyσ is sequential iff <σ is a strict total order.

Let σ|i be the projection ofσ on processpi, which is the subsequence ofσ consisting of all

invocations and responses that are performed bypi in P . Let σ|oi be the projection ofσ on object

oi in O, which is the subsequence ofσ consisting of all invocations and responses of operations

that are performed on objectoi. Every historyσ of a shared memory modelM = (O, initO, P )

must satisfy the following basic properties:

• Correct interaction: For each processpi ∈ P , σ|i consists of alternating invocations

and matching responses, starting with an invocation. This property preventspipelining2

operations.

• Closedness3: Every invocation has a matching response. This property preventspending

operations.

A sequential historyσ is legal if it respects the sequential specifications of the objects.More

specifically, for each objectoi, there exists a sequence of statess0, s1, s2, . . . of objectoi, such that

s0 is the initial valuation ofoi, and for allj = 1, 2, . . . according to the sequential specification

(the function), thej-th invocation inσ|oi together with statesj−1 will generate thej-th response

in σ|oi and statesj. For example, a sequence of read and write operations of an object is legal if

each read returns the value of the preceding write if there isone, and otherwise it returns the initial

2Pipelining operations mean that after invoking an operation, a process invokes another (same or different)
operation before the response of the first operation.

3This property is not required in the original definition of linearizability in [10]. However adding it will not affect
the correctness of our result because by Theorem 2 in [10], for a pending invocation in a linearizable history, we
can always extend the history to a complete one and preserve linearizability. We include this property to obviate the
discussion for pending invocations.
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value.

Given a historyσ, a sequential permutationπ of σ is a sequential history in which the set of

operations as well as the initial states of the objects are the same as inσ.

Definition 2 (Linearizability ). Given a modelM = (O = {o1, . . . , ok}, initO, P = {p1, . . . , pn}).

LetH be the behavior ofM. M is linearizable if for any historyσ in H, there exists a sequential

permutationπ of σ such that

1. for each objectoi (1 ≤ i ≤ k), π|oi is a legal sequential history (i.e., π respects the sequential

specification of the objects), and

2. for everyop1 and op2 in σ, if op1 <σ op2, thenop1 <π op2 (i.e., π respects the run-time

ordering of operations).

Linearizability can be equivalently defined as follows. In every historyσ, if we assign increasing

time values to all invocations and responses, then every operation can be shrunk to a single time

point between its invocation time and response time such that the operation appears to be completed

instantaneously at this time point [16, 3]. This time point is called itslinearization point.

2.2 Quasi Linearizability

For two historiesσ andσ′ such that one is the permutation of the other, we define their distance

as follows. Letσ = e1, e2, e3, . . . , en andσ′ = e′1, e
′
2, e

′
3, . . . , e

′
n. Let σ[e] andσ′[e] be the indices
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of the evente in historiesσ andσ′, respectively. The distance between the two histories, denoted

∆(σ, σ′), is defined as follows:

∆(σ, σ′) = maxe∈σ{|σ
′[e]− σ[e]|} .

In other words, the distance betweenσ andσ′ is the maximum distance that an event inσ has to

move to arrive at its position inσ′.

While measuring the distance between two histories, we often care about only a subset of method

calls. For example, in a concurrent queue, we may care about the ordering ofenqueue and

dequeue operations while ignoring calls tosize operation. In the remaining of this work, we

use wordsenq anddeq for the interests of space. Furthermore, we may allowdeq operations to

be executed out of order, but keepenq operations in order. In such case, we need a way to add

ordering constraints on a subset of the methods of the sharedobject.

Let Domain(o) be the set of all operations of a shared objecto. Let d ⊂ Domain(o) be a

subset of operations. LetPowerset(Domain(o)) be the set of all subsets ofDomain(o). Let

D ⊂ Powerset(Domain(o)) be a subset of the powerset.

Definition 3 (Quasi Linearization Factor). A quasi-linearization factoris a functionQO : D → N,

whereD is a subset of the powerset andN is the set of natural numbers.

Example 1.For a bounded queue that stores a setX of non-zero data items, we haveDomain(queue) =

{enq.x, deq.x, deq.0 | x ∈ X}, whereenq.x denotes theenqueue operation for datax, deq.x

denotes thedequeue operation for datax, anddeq.0 indicates that the queue is empty. We may



Kiran Adhikari Chapter 2. Background 12

define two subsets ofDomain(queue):

d1 = {enq.y | y ∈ Y } ,

d2 = {deq.y | y ∈ Y } .

Let D = {d1, d2}, whered1 is the subset ofdeq events andd2 is the subset ofenq events. The

distance betweenσ andσ′, after being projected to subsetsd1 andd2, is defined as∆(σ|d1 , σ
′|d2).

If we require that theenq calls follow the FIFO order and thedeq calls be out-of-order by at most

K steps, the quasi-linearization factorQ{queue} : D → N is defined as follows:

Q{queue}(d1) = 0 ,

Q{queue}(d2) = K .

Definition 4 (Quasi Linearizability). Given a modelM = (O = {o1, . . . , ok}, initO, P =

{p1, . . . , pn}). Let H be the behavior ofM. M is quasi linearizable under the quasi factor

QO : D → N if for any historyσ in H, there exists a sequential permutationπ of σ such that

• for everyop1 and op2 in σ, if op1 <σ op2, thenop1 <π op2 (i.e., π respects the run-time

ordering of operations), and

• for each objectoi (1 ≤ i ≤ k), there exists another sequential permutationπ′ of π such that

1. π′|oi is a legal sequential history (i.e.,π′ respects the sequential specification of the

objects) and

2. ∆((π|oi)|d, (π
′|oi)|d) ≤ QO(d) for all d ∈ D.
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This definition subsumes the definition for linearizabilitybecause, if the quasi factor isQO(d) = 0

for all d ∈ D, then the objects behaves as a standard linearizable data structure, e.g., a FIFO queue.

Enq(X) 

Enq(Y) (Y

Deq(X) Deq(Y) 

Enq(X) 

Enq(Y) (Y

Deq(Y) Deq(X) 

Enq(X) 
Enq(Y) 

Enq(Z) (Z)

Deq(Z) 

Only the first trace (at the top) is linearizable. The second trace is not linearizable, but is 1-quasi
linearizable. The third trace is only 2-quasi linearizable.

Figure 2.1: Execution traces of a queue.

Example 2. Consider the concurrent execution of a queue as shown in the Fig. 2.1. In the first

part, it is clear that the execution is linearizable, because it is a valid permutation of the sequential

history whereEnq(Y) takes effect beforeDeq(X). The second part is not linearizable, because

the first dequeue operation isDeq(Y) but the first enqueue operation isEnq(X). However, it is

interesting to note that the second history is not far from a linearizable history, since swapping

the order of the two dequeue events would make it linearizable. Therefore, flexibility is provided

in dequeue events to allow them to be reordered. Similarly, for the third part, if the quasi factor

is 0 (no out-of-order execution) or 1 (out-of-order by at most 1 step), then the history is not quasi

linearizable. However, if the quasi factor is 2 (out-of-order by at most 2 steps), then the third

history in Fig.2.1 is considered as quasi linearizable.
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2.3 Linearizability as Refinement

Linearizability is defined in terms of the invocations and responses of high-level operations. In

a real concurrent program, the high-level operations are implemented by algorithms on concrete

shared data structures, e.g., a linked list that implementsa shared stack object [21]. Therefore,

the execution of high-level operations may have complicated interleaving of low-level actions.

Linearizability of a concrete concurrent algorithm requires that, despite low-level interleaving, the

history of high-level invocation and response actions still has a sequential permutation that respects

both the run-time ordering among operations and the sequential specification of the objects.

For verifying standard (but not quasi) linearizability, anexisting method [15, 14] can be used

to check whether a real concurrent algorithm (we refer asimplementationin this work) refines

the high-level linearizable requirement (we refer asspecificationin this work). In this case, the

behaviors of the implementation and the specification are modeled as labeled transition systems

(LTSs), and the refinement checking is accomplished by usingexplicit state model checking.

Definition 5 (Labeled Transition System). A Labeled Transition System (LTS) is a tupleL =

(S, init, Act,→) whereS is a finite set of states;init ∈ S is an initial state;Act is a finite set of

actions; and→⊆ S ×Act× S is a labeled transition relation.

For simplicity, we writes
α
→ s′ to denote(s, α, s′) ∈→. The set of enabled actions ats is

enabled(s) = {α ∈ Act | ∃s′ ∈ S. s
α
→ s′}. A pathπ of L is a sequence of alternating states and

actions, starting and ending with statesπ = 〈s0, α1, s1, α2, · · · 〉 such thats0 = init andsi
αi+1

→ si+1

for all i. If π is finite, then|π| denotes the number of transitions inπ. A path can also be infinite,
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1 2 3 5 4
a a

b

Figure 2.2: An LTS example

i.e., containing infinite number of actions. Since the number of states are finite, infinite paths are

paths containing loops. The set of all possible paths forL is written aspaths(L).

A transition label can be either a visible action or an invisible one. Given an LTSL, the set of

visible actions inL is denoted byvisL and the set of invisible actions is denoted byinvisL. A

τ -transition is a transition labeled with an invisible action. A states′ is reachablefrom states if

there exists a path that starts froms and ends withs′, denoted bys
∗
⇒ s′. The set ofτ -successors

is τ(s) = {s′ ∈ S | s
α
→ s′ ∧ α ∈ invisL}. The set of states reachable froms by performing zero

or moreτ transitions, denoted asτ ∗(s), can be obtained by repeatedly computing theτ -successors

starting froms until a fixed point is reached. We writes
τ∗
→ s′ iff s′ is reachable froms via

only τ -transitions, i.e., there exists a path〈s0, α1, s1, α2, · · · , sn〉 such thats0 = s, sn = s′ and

si
αi+1

→ si+1 ∧ αi+1 ∈ invisL for all i . Given a pathπ, we can obtain a sequence of visible actions

by omitting states and invisible actions. The sequence, denoted astrace(π), is a trace ofL. The

set of all traces ofL, is written astraces(L) = {trace(π) | π ∈ paths(L)}.

LTSs can often be shown graphically, e.g., Fig. 2.2 shows an example LTS, where invisible transi-

tion labels are omitted for simplicity. We define the refinement relation between two LTSs, usually

called trace refinement, as follows.

Definition 6 (Refinement). Let L1 andL2 be two LTSs.L1 refinesL2, written asL1 ⊒T L2 iff
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traces(L1) ⊆ traces(L2).

In [15], we have shown that ifLimpl is an implementation LTS andLspec is the LTS of the

linearizable specification, thenLimpl is linearizable if and only ifLimpl ⊒T Lspec.

Given two labeled transition systemsMspec andMimpl representing specification and implementa-

tion LTS respectively, we say thatMimpl refinesMspec if and only if the set of execution traces in

Mimpl is a subset of the execution traces inMspec. So, the idea in refinement checking is to establish

the (weak) simulation relationship between the specification model and the implementation model.

The main approach is to perform the exhaustive search for thestate space that is build of combined

the specification-implementation. We compare every reachable state of the implementation with

that of the specification reachable via same trace. If this condition suffices, we say that theMspec

refinesMimpl, otherwise we get a counterexample which violates the check.

s1

s6

s7

s2

s3 s5

s4
e1

e7

e8

e9

e3

e2

e4

e6

e5

Figure 2.3: Specification model
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Figure 2.4: Implementation model

We start by presenting an example that illustrates the refinement checking. Fig. 2.3 shows the

specification model and Fig. 2.4 shows the implementation model. Starting from the initial state

s′1 in the implementation model, we check the existence of a state with an enabled evente1 from
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thes1 in the specification model. As, theSpecLTS also has the same transition from states1, we

continue the search by grabbing the next state. We can use Breadth-First Search (BFS) or Depth-

First Search (DFS) to search the children. Considering a LTSwith visible eventse and invisible

eventsτ , formally, we can grab the children of a state as follows:

1. if impl
τ
−→ impl′, whereτ is an internal event, thenspec′ = spec;

2. if impl
e
−→ impl′, wheree is a method call event, thenspec

e
−→ spec′;

We continue the check till all states of the implementation model is exhausted. In the given exam-

ple, all the traces in implementation model shown in Fig. 2.4are contained within the specification

model shown in Fig. 2.3, meaning implementation refines specification.

2.4 Realization of a Model

We use a tool called PAT to modelspec andimpl. It is a framework that supports the specification

and verification of concurrent models. We model concurrent systems using a process algebra that

is a variant of CSP. A LTS generated describes the behavior ofthe model. Basically CSP syntax is

used in our model with the extension of shared variable. Table 2.1 shows the process definitions

used in our model. Here CSP is extended such that shared variables are modeled alongside the

processes to implement the different behaviors of the models.

Refinement checking is the method to verify if the behaviors of implementation follow the specifi-

cation. In PAT, an assertion is specified to check the behaviors of two processes. Consider the two
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Table 2.1: Process Definitions

Process Definition

P () = Stop A process that communicates nothing.
It is also called the deadlock process.

P () = Skip Terminates an event.Skip is termination process.
P () = event{assignments} → P () Describes thatevent is performed first and then it behaves

like a processP ().
P () = P1();P2(); It is the sequential composition of two processesP1 andP2

P1() is executed first andP2() is executed after that.
P () = P1()|||P2() It is the interleaved composition of the two processes

P1() andP2().

processesP () andQ(). The statement#assert P () refines Q() checks if there is a refinement

relationship between these two processesP () andQ(). The reachability analysis is conducted by

exploring the product state transition ofP () andQ(), wherein the state that violates the refinement

relationship is searched.

2.5 Related Work

In the literature, although there exists a large body of workon formally verifying linearizability

in models of data structure implementations, none of them can verify quasi linearizability. For

example, Liu et al. [15, 14] use a process algebra based tool to verify that an implementation

model refines a specification model – the refinement relation implies linearizability. Vechev et

al. [24] use the SPIN model checker to verify linearizability in a Promela model. Cerný et al. [5]

use automated abstractions together with model checking toverify linearizability properties. There

also exists some work on proving linearizability by constructing mechanical proofs, often with
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significant manual intervention (e.g., [22, 23]).

There are also runtime verification algorithms such as Line-Up [4], which can directly check the

actual source code implementation but for violations on bounded executions and deterministic

linearizability. However, quasi linearizable data structures are inherently nondeterministic. For

example, thedeq operation in a quasi queue implementation may choose to return any of the first

k items in a queue. To the best of our knowledge, no existing method can directly verify quasi

linearizability for execution traces of unbounded length.

Besides (quasi) linearizability, there also exist many other consistency conditions for concurrent

computations, including sequential consistency [13], quiescent consistency [2], and eventual con-

sistency [25]. Some of these consistency conditions in principle may be used for checking the

correctness of data structure implementations, although so far, none of them is as widely used

as (quasi) linearizability. These consistency conditionsdo not involve quantitative aspects of the

properties. We believe that it is possible to extend our refinement algorithm to verify some of these

properties. However, we leave it for future work.

Outside the domain of concurrent data structures,serializability andatomicityare two popular

correctness properties for concurrent programs, especially at the application level. There exists a

large body of work on both static and dynamic analysis for detecting violations of such properties

(e.g., [8, 6] and [27, 7, 18, 26]). These existing methods aredifferent from ours because they are

checking different properties. Although atomicity and serializability are fairly general correctness

conditions, they have been applied mostly to the correctness of shared memory accesses at the

load/store instruction level. Linearizability, in contrast, defines correctness condition at the method
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call level. Furthermore, existing methods for checking atomicity and serializability do not deal with

the quantitative aspects of the properties.

2.6 Summary

This chapter presented a brief overview of linearizabilityand quasi linearizability in relation to

refinement. The idea of model checking by building the labeled transition systems and refinement

checking was introduced. The chapter also included the related work on formal verification of

linearizable data structures.



Chapter 3

Verifying Quasi Linearizability via

Refinement Checking

This chapter presents our two new approaches for verifying quasi linearizability. We first explore

two possible paths that allow us to verify quasi linearizability. First, we present the detailed

description of a manual verification approach and show its limitations. This motivates our work in

next chapter, which is extending the standard refinement checking algorithm to build an automated

quasi linearizable checker.

21
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3.1 Two Approaches of Verification

Our verification problem is defined as follows: Given an implementation modelMimpl, a specifi-

cation modelMspec, and a quasi factorQO, decide whetherMimpl is quasi linearizable with respect

toMspec under the quasi factorQO.

Model
New Checking Algorithm

QF

Create Manually

Standard Refinement Checking
(Impl vs. Q−Lin Spec)

Yes/No

Quasi Refinement Checking
(Impl vs. Spec)

Yes/No

Specification
Sequential
Specification

Sequential
Implementation
Concurrent

Implementation
Concurrent

QF

Transitions
Relaxing the 

On Demand
Quasi−Lin Spec

Figure 3.1: Verifying quasi linearizability: manual approach (left) and automated approach (right).

The straightforward approach for solving the problem is to leverage the procedure in Algorithm 3.

However, since the procedure checks for standard refinementrelation, not quasi refinement rela-

tion, the user has to manually construct a relaxed specification model, denotedM ′
spec, based on

the given specification modelMspec and the quasi factorQO. This so-calledmanual approachis

illustrated by Fig. 3.1 (left). The relaxed specification model M ′
spec must be able to produce all

histories that can be produced byMspec, as well as the new histories that are allowed under the

relaxed consistency condition in Definition 4.

Unfortunately, there is no systematic method, or general guideline, on constructing such relaxed
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specification models. EachM ′
spec may be different depending on the type of data structures to

be checked. And there is significant amount of creativity required during the process, to make

sure that the new specification model is both simple enough and permissive enough. For example,

to verify that aK-segmented queue [1] is quasi linearizable, we can create a relaxed specification

model whosedequeuemethod randomly removes one of the firstK data items from the otherwise

standard FIFO queue. This new modelM ′
spec will be more complex thanMspec, but can still be

significantly simpler than the full-fledged implementationmodelMimpl, which requires the use of

a complex segmented linked list.

Since the focus of this thesis is on designing a fully automated verification method, we shall briefly

illustrate the manual approach in this chapter, and then focus on developing an automated approach

in the subsequent chapter.

Our automated approach is shown in Fig. 3.1 (right). It is based on designing a new refinement

checking algorithm that, in contrast to Algorithm 3, can directly check arelaxed versionof the

standard refinement relation betweenMimpl andMspec. Therefore, the user does not need to

manually construct the relaxed specification modelM ′′
spec. Instead, inside the new refinement

checking procedure, we systematically extend states and transitions of the specification model

Mspec so that the new states and transitions as required byM ′
spec are added on the fly. This would

lead to the inclusion of a bounded degree of out-of-order execution on the relevant subset of

operations as defined by the quasi factorQO. A main advantage of our new method is that the

procedure is fully automated, thereby avoiding the user intervention, as well as the potential errors

that may be introduced during the user’s manual modeling process. Furthermore, by exploring the
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relaxed transitions on aneed-tobasis, rather than upfront as in the manual approach, we can reduce

the number of states that need to be checked.

3.2 The Manual Verification Approach

In this section, we will briefly describe the manual approachand then focus on presenting the

automated approach in the subsequent chapter. Although we do not intend to promote the manual

approach – since it is labor-intensive and error prune – thissection will illustrate the intuitions

behind our fully automated verification method.

Given the specification modelMspec and the quasi factorQO, we show how to manually construct

the relaxed specification modelM ′
spec in this section. We use the standard FIFO queue and two

versions of quasi linearizable queues as examples. The construction needs to be tailored case by

case for the different types of data structures.

Algorithm 1 Enqueue and Dequeue Pseudo code for Quasi-Specification model

1: Procedure enqAbs(tid) :=

2: if (HA < SIZE ABS+1) then
3: enq.tid.(HA+1){HA= HA+1;}
4: end if

1: Procedure deqAbs(tid) :=
2: randomvalue = randomget();
3: deqvalue[tid] = randomvalue;
4: if (HA > deqvalue[tid])then
5: deq.tid.(HA-deqvalue[tid]){HA=HA

-1;}
6: else if(HA == 0) then
7: deq.tid.false
8: end if
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Figure 3.2: Implementations of a 4-quasi queue

3.2.1 Specification ModelMspec

The standard FIFO queue with a bounded capacity can be implemented by using a linked list,

wheredeq operation removes a data item at one end of the list called theheadnode, andenq

operation adds a data item at the other end of the list called the tail node. When the queue is full,

enq does not have any impact. When the queue is empty,deq returns NULL. As an example,

consider a sequence of four enqueue eventsenq(1), enq(2), enq(3), enq(4), the subsequent

dequeue events would bedeq.1, deq.2, deq.3, deq.4, which obey the FIFO semantics. This is

illustrated by the first historyH1-a in Fig. 3.3.

In the PAT model checking environment, the specification model Mspec is written in a process
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H1-a H1-b H1-a H1-b
------- ------- ------- -------
enq(1) enq(1) enq(1) enq(1)
enq(2) enq(2) enq(2) enq(2)
enq(3) enq(3) enq(3) enq(3)
enq(4) enq(4) enq(4) enq(4)
deq()=1 deq()=1 deq()=2 deq()=2
deq()=2 deq()=2 deq()=1 deq()=1
deq()=3 deq()=4 deq()=3 deq()=4
deq()=4 deq()=3 deq()=4 deq()=3
------- ------- ------- -------

Here,deq can be out-of-order by 1. The firstdeq randomly returns a value from the set{1, 2} and
the seconddeq returns the remaining one. Then the thirddeq randomly returns a value from the
set{3, 4} and the forthdeq returns the remaining one.

Figure 3.3: Valid histories of a1-quasi linearizablequeue

algebra language, named CSP# [19]. Algorithm 1 shows the detailed explaination for creating an

abstract model in the PAT tool environment.

3.2.2 Implementation ModelMimpl:

The bounded quasi linearizable queue can be implemented by using a segmented linked list. This

is the original algorithm proposed by Afeket al. [1]. A segmented linked list is a linked list where

each list node can holdK data items, as opposed to a single data item in the standard linked list.

As shown in Fig. 3.2 (lower half), theseK data items form asegment, in which the data slots are

numbered as 1, 2,. . ., K. In general, the segment size needs to be set to(QF +1), whereQF is the

maximum number of out-of-order execution steps. The example in Fig. 3.2 has the quasi factor set

to 3, meaning that adeq operation can be executed out of order by at most 3 steps. Consequently,

the size of each segment is set to (3+1)=4. SinceQ{queue}(Denq) = 0, meaning that theenq
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Algorithm 2 Enqueue and Dequeue Pseudocode for Quasi-implementation model
1: Enq(tid) :=
2: cur node[tid] = 0; curseg[tid] = 0
3: while cur seg[tid] < SIZE SEG do
4: while cur node[tid] < QF do
5: if flag imp[cur seg[tid]][cur node[tid]] == 0 then
6: flag imp[cur seg[tid]][cur node[tid]] = 1
7: item count++
8: enq.tid.itemcount
9: break

10: else
11: cur node++
12: end if
13: end while
14: cur node = 0
15: cur seg++
16: end while
17:

18: Deq(tid) :=
19: cur seg[tid] = 0; curnode[tid] = 0
20: while cur seg < SIZE SEG do
21: while cur node < QF do
22: cur node[tid] = perm1[curnode[tid]]
23: if flag imp[cur seg[tid]][cur node[tid]] == 1 then
24: flag imp[cur seg[tid]][cur node[tid]]= 0
25: item count- -
26: deq.tid.(itemcount+1)
27: break
28: else
29: cur node++
30: end if
31: end while
32: cur seg++
33: cur node = 0
34: end while
35: if item count == 0 then
36: deq.tid.false
37: end if
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operations cannot be reordered, the data items are enqueuedregularly in the empty slots of one

segment, before theheadpoints to the next segment. But fordeq operations, we randomly remove

one existing data item from the current segment. Algorithm 2shows the detailed explaination for

creating an implementation model in the PAT tool environment.

3.2.3 Relaxed Specification ModelM ′
spec:

Not all execution traces ofMimpl are traces ofMspec. In Fig. 3.3, histories other thanH1-a are

not linearizable. However, they are all quasi linearizableunder the quasi factor 1. They may be

produced by a segmented queue where the segment size is (1+1)=2. To verify thatMimpl is quasi

linearizable, we construct a new modelM ′
spec, which includes not only all histories ofMspec but

also the histories that are allowed only under the relaxed consistency condition. In this example,

we choose to construct the new model by slightly modifying the standard FIFO queue. This is

illustrated in Fig. 3.2 (upper half), where the firstK data items are grouped into a cluster. Within

the cluster, thedeq operation may remove any of thek data items based on randomization. Only

after the firstk data items in the cluster are retrieved, will thedeq move to the nextk data items

(a new cluster). The external behavior of this model is expected to match that of the segmented

queue inMimpl: both are1-quasi linearizable.
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Algorithm 3 Standard Refinement Checking
1: Procedure Check-Refinement(impl, spec)
2: checked :=∅
3: pending.push((initimpl, initspec))
4: while pending6= ∅ do
5: (impl, spec) := pending.pop()
6: if enabled(impl) 6⊆ enabled(spec) then
7: return false

8: end if
9: checked := checked∪{(impl, spec)}

10: for all (impl′, spec′) ∈ next(impl, spec) do
11: if (impl′, spec′) /∈ checkedthen
12: pending.push((impl′, spec′))
13: end if
14: end for
15: end while
16: return true

3.2.4 Checking Refinement Relation:

OnceM ′
spec is available, checking whetherMimpl refinesM ′

spec is straightforward by using Algo-

rithm 3. Algorithm 3 shows the pseudo code of the refinement checking procedure in [15, 14].

Assume thatLimpl refinesMspec, then for each reachable transition inMimpl, denoted asimpl
e
→

impl′, there must exist a reachable transition inLspec, denoted asspec
e
→ spec′. Therefore, the

procedure starts with the pair of initial states of the two models, and repeatedly checks whether

they have matching successor states. If the answer is no, thecheck at Lines 6-8 would fail, meaning

thatLimpl is not linearizable. Otherwise, for each pair of immediate successor states(impl′, spec′),

we add the pair to thependinglist. The entire procedure continues until either (1) a non-matching

transition inLimpl is found at Lines 6-8, or (2) all pairs of reachable states arechecked, in which

caseLimpl is proved to be linearizable.
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In Algorithm 3, the subroutinenext(impl, spec) is crucially important. It takes the current states

of Limpl andLspec as input, and returns a set of state pairs of the form(impl′, spec′). Here each

pair (impl′, spec′) is one of the immediate successor state pairs of(impl, spec). They are defined

as follows:

1. if impl
τ
−→ impl′, whereτ is an internal event, then letspec′ = spec;

2. if impl
e
−→ impl′, wheree is a method call event, thenspec

e
−→ spec′;

We have assumed, without loss of generality, that the specification modelLspec is deterministic.

If the original specification model is nondeterministic, wecan always apply standardsubset con-

struction(of DFAs) to make it deterministic.

3.3 Experimental Results

For the segmented queue implementation [1], we have manually constructedM ′
spec and checked

the refinement relation in the PAT model checking environment. Our experimental results are sum-

marized in Table 3.1. Column 1 shows the different quasi factors. Column 2 shows the number of

segments – the capacity of the queue is(QF +1)×Seg. Column 3 shows the refinement checking

time in seconds. Column 4 shows the total number of visited states during refinement checking.

Column 5 shows the total number of state transitions activated during refinement checking. The

experiments are conducted on a computer with an Intel Core-i7, 2.5 GHz processor and 8 GB RAM

running Ubuntu 10.04.
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Table 3.1: Experimental results for standard refinement checking.
Quasi Factor #. Segment Verification Time (s) #. Visited State #. Transition

1 1 0.1 423 778
1 2 0.1 2310 4458
1 3 0.1 8002 15213
1 4 0.4 22327 41660
1 5 0.9 55173 101443
1 6 2.0 126547 230259
1 10 55.9 2488052 4421583
1 15 MOut - -

2 1 0.6 26605 58281
2 2 12.6 456397 970960
2 3 130.7 4484213 8742485
2 4 MOut - -

3 1 8.8 284484 638684
3 2 MOut - -

4 1 124.4 3432702 7906856
4 2 MOut - -

MOut means memory-out.

The experimental results in Table 3.1 show an exponential increase in the verification time when we

increase the size of the queue or the quasi factor. For size = 1, verification completes as soon as 0.1

seconds. When it is increased to 2, it takes around 0.6 seconds to check if the implementation

model refines specification or not. This is inevitable since the size of the state space grows

exponentially as the size increases. Furthermore, as the quasi factor increases, the verification

time is also significantly increased. We can see that for quasi factor as small as 1, it takes only 0.1

seconds to complete the verification. But, when quasi factoris increased to 2 and 3 subsequently,

there is tremendous increase in the visited states count andhence the verification time. Fig. 3.4

shows the relation of quasi factor and the verification time.The horizontal axis represents the quasi

factor. Primary vertical axis represents the verification time for the corresponding quasi factor and

the segment size. And, the secondary vertical axis represents the segment size of the queue.
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Figure 3.4: Graph showing the linearizability checking time for different QFs and segment sizes
of a queue

3.4 Limitations of the Manual Approach

The proposed method is limited by the availability of the specification model in order to compare

with the implementation models. One needs to know the possible traces for a model in order to

check the correctness of the implementation model. So, thismethod requires the user to manually

constructM ′
spec, which is a severe limitation because it is often labor intensive and error prone. For

example, consider the seemingly simple random dequeued model in Fig. 3.2. A subtle error would

be introduced if we do not use theclusterto restrict the set of data items that can be removed by

deq operation. Assume thatdeq always returns one of the firstk data items in the current queue.

Although it appears to be correct, such implementation willnot bek-quasi linearizable, because

it is possible for some data item to be over-taken indefinitely. For example, if every timedeq

choosesthe second data item in the list, we will have the followingdeq sequence:deq.2, deq.3,
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deq.4, . . ., deq.1, where the dequeue of value 1 can be delayed by an arbitrarilylong time. This

is no longer a1-quasi linearizablequeue. In other words, if the user constructM ′
spec incorrectly,

the verification result becomes invalid.

Therefore, we need to design a fully automated method to directly verify quasi linearizability of

Mimpl againstMspec under the given quasi factorQF .

3.5 Summary

In this chapter, we proposed a model checking approach to verify the quasi linearizability of a

concurrent data structure. Since, this technique is labor intensive and error prone, we proceed with

the fully automated approach for checking theQuasi Linearizabilityin the next chapter.



Chapter 4

New Algorithm for Checking the Quasi

Refinement Relation

In this chapter, we present our automated method for verifying Quasi Linearizability. We shall

start with the standard refinement checking procedure in Algorithm 3 and extend it to directly

check a relaxed version of the refinement relation betweenMimpl andMspec under a given quasi

factor. The idea is to establish the simulation relationship from specification to implementation

while allowing relaxation of the specification. This not only reduces the chances of committing

error during specification construction phase, but also automates the tool which can verify the

correctness of concurrent data structures.

34
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4.1 Motivation

The manual verification approach presented in Chapter 3 not only can check the validity of the

concurrent data structures, but also can generate the counterexample if the implementation model

does not refine the specification. However, this is obtained at the cost of extensive manual effort

used to model the quasi linearizable specification, which should contain all the possible traces that

a relaxed linearizable implementation could have. Also, the possibility of introducing errors while

writing the specification model is high. Therefore, we propose a new and fully automated method

which relaxes the specification of a model first and then conduct refinement checking to ascertain

the correctness of the implementation model.

4.2 Linearizability Checking via Quasi Refinement

The new procedure, shown in Algorithm 4, is different from Algorithm 3 as follows:

1. We customizependingto make the state exploration follow a breadth-first search (BFS). In

Algorithm 3, it can be either BFS or DFS based on whetherpendingis a queue or stack.

2. We replaceenabled(spec)with enabledrelaxed(spec,QF). It will return not only the events

enabled at currentspec state inMspec, but also the additional events allowed under the relaxed

consistency condition.

3. We replacenext(impl,spec)with next relaxed(impl,spec,QF). It will return not only the suc-

cessor state pairs in the original models, but also the additional pairs allowed under the
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Algorithm 4 Quasi Refinement Checking
1: Procedure Check-Quasi-Refinement(impl, spec, QF )
2: checked :=∅
3: pending.enqueue((initimpl, initspec))
4: while pending6= ∅ do
5: (impl, spec) := pending.dequeue()
6: if enabled(impl) 6⊆ enabled relaxed(spec, QF ) then
7: return false

8: end if
9: checked := checked∪{(impl, spec)}

10: for all (impl′, spec′) ∈ next relaxed(impl, spec, QF ) do
11: if (impl′, spec′) /∈ checkedthen
12: pending.enqueue((impl′, spec′))
13: end if
14: end for
15: end while
16: return true

relaxed consistency condition.

Conceptually, it is equivalent to first constructing a relaxed specification modelM ′
spec from (Mspec, QF )

and then computing theenabled(spec)andnext(impl,spec)on this new model. However, in this

case, we are constructingM ′
spec automatically, without the user’s intervention. Furthermore, the

additional states and edges that need to be added toM ′
spec are processed incrementally, on aneed-to

basis.

At the high level, the new procedure performs a BFS exploration for the state pair(impl, spec),

whereimpl is the state of implementation andspecis a state of specification. The initial imple-

mentation and specification events are enqueued intopendingand each time we go through the

while-loop, we dequeue frompendinga state pair, and check if all events enabled at stateimpl

match with some events enabled at statespec under the relaxed consistency condition (line 6).
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If there is any mismatch, the check fails and we can return a counterexample showing how the

violation happens. Otherwise, we continue untilpendingis empty. Lines 10-14 explore the new

successor state pairs, by invokingnext relaxedand add topendingif they have not been checked.

Subroutine enabledrelaxed(spec,QF): It takes the current statespec of modelMspec, along

with the quasi factorQF , and generates all events that are enabled at statespec.

Consider the graph in Fig. 4.1 asMspec. Without relaxation,enabled(s1)={e1}. This is equivalent

to enabled relaxed(s1, 0). However, whenQF = 1, according to the dotted edges in Fig. 4.2, the

setenabled relaxed(s1, 1)={e1, e2, e3}.

The reason whye2 ande3 become enabled is as follows: before relaxation, starting at states1, there

are two length-3(2QF + 1) event sequencesσ1 = e1, e2, e5 andσ2 = e1, e3, e4. WhenQF = 1, it

means an event can be out-of-order by at most 1 step. Therefore, the possilbe valid permutations of

σ1 is π1 = e2, e1, e5 andπ2 = e1, e5, e2, and the possible valid permutations ofσ2 is π3 = e3, e1, e4

andπ4 = e1, e4, e3 for QF = 1. In other words, at states1, eventse2, e3 can also be executed. We

will discuss the generation of valid permutation sequencesin Section 4.3.

Subroutine next relaxed(impl, spec, QF ): It takes the current stateimpl of Mimpl and the

current statespec of Mspec as input, and returns a set of state pairs of the form(impl′, spec′).

Similar to the definition ofnext(impl, spec) in Section??, we define each pair(impl′, spec′) as

follows:

1. if impl
τ
−→ impl′, whereτ is an internal event, then letspec′ = spec;
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2. if impl
e
−→ impl′, wheree is a method call event, thenspec

e
−→ spec′ where evente ∈

enabled relaxed(spec, QF ) is enabled atspec after relaxation.

For example, whenspec = s1 in Fig. 4.1, and the quasi factor is set to 1 – meaning that the event

at states1 can be out-of-order by at most one step – the procedurenext relaxed(impl,s1, 1) would

return not only(impl′, s2), but also(impl′, s6) and(impl′, s9), as indicated by the dotted edges

in Fig. 4.2. The detailed algorithm for generation of the relaxed next states in specification is

described in Section 4.3.

4.3 Generation of Relaxed Specification

In this subsection, we show how to relax the specificationMspec by adding new states and tran-

sitions – those that are allowed under the condition of quasilinearizability – to form a new

specification model. Notice that we accomplish this automatically, and incrementally, on aneed-to

basis.

For each statespec in Mspec, we compute all the event sequences starting atspec with the length

(2QF + 1). These event sequences can be computed by using a simple graph traversal algorithm,

e.g., a breadth first search.

Fig. 4.1 shows an example for the computation of these event sequences. The specification model

Mspec has the following set of states{s1, s2, s3, s4, s5}. Suppose that the current state iss1 (in

step 0), then the current frontier state set is{s1}, and the current event sequence is〈s1〉. The
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s1 s2

s3 s5

s4

e1 e3

e2
e4

e5

Figure 4.1: Specification model before
adding relaxed transitions for states1.

s1 s2

s3 s5

s4

s6 s7

s9 s10 s11
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e1

e2

e3e3

e1

e4

e1

e5

e5

e4

e3

e2

e3

e2
e4

e5

Figure 4.2: Specification model after adding
relaxed edges for states1 and quasi factor 1.

Table 4.1: Specification sequence generation at states1
BFS Steps (Frontier) EventSequences
step 0 {s1} 〈s1〉

step 1 {s2} 〈s1
e1→ s2〉

step 2 {s3, s4} 〈s1
e1→ s2

e2→ s3〉〈s1
e1→ s2

e3→ s4〉

step 3 {s5, s2} 〈s1
e1→ s2

e2→ s3
e5→ s5〉〈s1

e1→ s2
e3→ s4

e4→ s2〉

results of each BFS step are shown in Table 4.1. Instep 1, the frontier state set is{s2}, and the

event sequence becomes〈s1
e1→ s2〉. In step 2, the frontier state set is{s3, s4}, and the event

sequence is split into two sequences. One is〈s1
e1→ s2

e2→ s3〉 and the other is〈s1
e1→ s2

e3→ s4〉.

The traversal continues until the BFS depth reaches (2QF + 1).

After completing the (2QF + 1) steps of BFS starting at statespec, as above, we have to gen-

erate possible valid permutations first and then we will be able to evaluate the two subroutines:

enabled relaxed(spec, QF ) andnext relaxed(impl, spec, QF ).

We transform the original specification model in Fig. 4.1 to the relaxed specification model in

Fig. 4.2 forQF = 1. The dotted states and edges are newly added to reflect the relaxation.

More specifically, forQF = 1, we will reach(2QF + 1) = 3 steps during the BFS. Atstep 3,

there are two existing sequences{e1, e2, e5} and {e1, e3, e4}. For each existing sequence, we
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compute all possible valid permutation sequences. In this case, the valid permutation sequences

are {e2, e1, e5},{e1, e5, e2} and{e3, e1, e6}, {e1, e3, e6}. For each newly generated permutation

sequence, we add new edges and states to the specification model. From an initial states1, if

we follow the new permutation{e2, e1, e5}, as shown in Fig. 4.2, the transitione2 will lead to

newly formed pseudo states6, the transitione1 will lead to s7 from states6 and from this state

it is reconnected back to the original states5 via transitione5. Similarly, if we follow the new

permutation{e3, e1, e4}, the transitione3 will lead to newly formed pseudo states9, the transition

e1 will lead tos10 from states9 and from this state it is reconnected back to states2 via transitione4.

We continue this process of state expansion for all the validpermutation sequences. This relaxation

process needs to be conducted by using every existing state of Mspec as the starting point (for BFS

up to2QF +1 steps) and then adding the new states and edges. Note that this process is conducted

on the fly.

Algorithm 5 explains the high level pseudo-code for expanding the state space for the current

specification state under the check. LetSEQ = {seq1, seq2, ..., seqk} be the sequences which are

reachable from the states0 in Mspec such that each sequence has less than or equal to2QF + 1

events. Each sequenceseq ∈ SEQ calls agenValidPermut(seq,QF)(line 4) to generate all the

possible valid permutation paths for that trace. A new stateis formed with a new transition for

each event in the permuted sequences, hence allowing the relaxed refinement checking of the

implementation trace.

The valid permutations for a given sequence is generated using an Algorithm 6 which is based on

the cost associated with the event. Initially, for each eventsei where1 ≤ i < n associated with the
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Algorithm 5 Pseudo-code for Expanding Specification Under Check
1: Let s0 be a specification state andQF be the quasi factor
2: Let SEQ = {seq1, seq2, seq3, · · · , seqk} be the set of all possible event sequences reachable

from s0 in Mspec such that for1 ≤ i ≤ k, eachseqi has less than or equal to2QF+ 1 relaxed
events

3: for all seqin SEQdo
4: PERMUTVALID = genV alidPermut(seq, QF )
5: for all permin PERMUTVALID do
6: Let perm= 〈e1, e2, · · · , en〉
7: Let sn be the specification state reached froms0 via seq
8: if permis not equal toseqthen
9: for all ei where1 ≤ i < n do

10: Create a new statesi and a new transition fromsi−1 to si via eventei
11: end for
12: Create a new transition fromsn−1 to sn via en
13: end if
14: end for
15: end for

seq, the cost is initialized toQF (line 2). We generate all possible permutations and update cost

with respect to the relative ordering of the events for each reshuffled sequences. This cost attribute

of an event stores the information on how many more steps an event may be postponed. Each time

an event is postponed, the cost associated with this event isdecremented by 1. On the contrary, the

event can also be chosen uptoQF steps ahead and for each step, the cost is increased by 1. So, the

cost attribute of the event that is allowed for relaxation is2QF ≤ cost≤ 0. We check the validity

of each of these sequences using this cost attribute (line 8). Finally, only the valid permutations are

appended inPERMUTVALID after each check and once the check is completed for all permuted

sequences, the function returns the valid traces.

Consider the event sequence{e1, e2, e5} from states1 beseqas shown in Fig. 4.1. IfQF = 1, the

cost for each of these events is initialized to1. We generate all possible permutations by reshuffling
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Algorithm 6 genV alidPermut(seq, QF )

1: PERMUTVALID := ∅
2: Initialize cost associated with each event inseqto QF
3: Generate possible permutationsPERMUTSEQand update cost
4: for all p in PERMUTSEQdo
5: isValid = true
6: Let p = 〈e1, e2, · · · , en〉
7: for all ei where1 ≤ i < n do
8: if ei.cost ≥ 2QF ∨ ei.cost ≤ 0 then
9: isValid = false

10: break
11: end if
12: end for
13: if isValid then
14: PERMUTVALID = PERMUTVALID

⋃
p

15: end if
16: end for
17: returnPERMUTVALID

the events and updating the cost based on the relative positioning of the event with respect to the

initial sequence. There are as many as 6 possible permutations including the original sequence in

this case. If we consider reordering be the sequence{e2, e1, e5}, then the cost associated with event

e2 is 2 as it is chosen one step earlier. For the evente1, it is postponed for one step meaning its cost

is decreased by 1 which makes the cost associated with it be0. Evente3 is not reordered and hence

its cost is unchanged and is1. This sequence is valid because cost associated with each ofthe

events in this sequence lies within the allowable range. Similarly, if we consider another permuted

sequence{e3, e1, e2}, then the cost associated with each of these events is{3, 0, 0} which exceeds

the allowable range. So, this permutation sequence is not valid. We do this for all the permuted

sequences to generate the valid traces.
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4.4 Experimental Results

We have implemented and evaluated the quasi linearizability checking method in the PAT verifi-

cation framework [20]. Our new algorithm can directly checka relaxed version of the refinement

relation. This new algorithm subsumes the standard refinement checking procedure that has al-

ready been implemented in PAT. In particular, whenQF = 0, our new procedure degenerates

to the standard refinement checking procedure. WhenQF > 0, our new procedure has the added

capability of checking for the quantitatively relaxed refinement relation. Our algorithm can directly

handle the implementation modelMimpl, the standard (not quasi) specification modelMspec, and

the quasi factorQF , thereby completely avoiding the user’s intervention.

Table 4.2: Statistics of the benchmark examples
Class Description Linearizable Quasi Lin.
Quasi Queue (3) Segmented linked list implementation (size=3) No Yes
Quasi Queue (6) Segmented linked list implementation (size=6) No Yes
Quasi Queue (9) Segmented linked list implementation (size=9) No Yes
Quasi Queue (4) Segmented linked list implementation (size=4) No Yes
Quasi Queue (8) Segmented linked list implementation (size=8) No Yes
Queue buggy1 Segmented queue with a bug (Dequeue on the empty No No

queue may erroneously change current segment)
Queue buggy2 Segmented queue with a bug (Dequeue may get No No

value from a wrong segment)
Lin. Queue A linearizable (hence quasi) implementation Yes Yes
Q. Priority Queue (6) Segmented linked list implementation (size=6) No Yes
Q. Priority Queue (9) Segmented linked list implementation (size=9) No Yes
Q. Priority Queue (4) Segmented linked list implementation (size=4) No Yes
Priority Queue buggy Segmented priority queue (Dequeue on the empty No No

priority queue may change current segment)
Lin. Stack A linearizable (hence quasi) implementation Yes Yes

We have evaluated our new algorithm on a set of models of standard and quasi linearizable con-

current data structures [1, 12, 17], including queues, stacks, quasi queues, quasi stacks, and quasi

priority queues. For each data structure, there can be several variants, each of which has a slightly

different implementation. In addition to the implementations that are known to be linearizable
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Table 4.3: Results for checking quasi linearizability with2 threads
Class QF Verification Time (s) Number of Visited States Number of Visited Transitions
Quasi Queue (3) 2 7.2 126,810 248,122
Quasi Queue (6) 2 21.2 237,760 468,461
Quasi Queue (9) 2 114.5 1,741,921 3,424,280
Quasi Queue (4) 3 131.6 442,558 869,129
Quasi Queue (8) 3 1517.1 1,986,924 3,754,489
Queue buggy1 2 0.4 1,204 809
Queue buggy2 2 0.1 345 345
Lin. Queue 2 5.5 240,583 121,548
Q. Priority Queue (6) 2 34.3 472,981 918,530
Q. Priority Queue (9) 2 198.4 1,478,045 2,905,016
Q. Priority Queue (4) 3 343.1 1,408,763 2,566,427
Priority Queue buggy 2 5.4 894 894
Lin. Stack 2 0.2 2,690 6,896

and quasi linearizable, we also have versions which initially were thought to be correct, but were

subsequently proved to be buggy by our verification tool. Thecharacteristics of all benchmark

examples are shown in Table 4.2. The first two columns list thename of the concurrent data

structures and a short description of the implementation. The next two columns show whether the

implementation is linearizable and quasi linearizable.

Table 4.3 shows the results of the experiments. The experiments are conducted on a computer

with an Intel Core-i7, 2.5 GHz processor and 8 GB RAM running Windows 7. The first column

shows the statistics of the test program, including the nameand the size of benchmark. The second

column is the quasi factor showing the relaxation bound allowed for the model. The next three

columns show the runtime performance, consisting of the verification time in seconds, the total

number of visited states, and the total number of transitions made. The number of states and the

running time for each of the models increase with the data size.

For 3 segmented quasi queue with quasi factor 2, the verification completes in 7.2 seconds. It

is much faster than the first approach presented in Section 4,where the same setting requires

130.7 seconds for the verification. Subsequently, as the size increases, the time to verify the quasi



Kiran Adhikari Chapter 4. New Algorithm for Checking the Quasi Refinement Relation 45

queue increases. For queue with size 6 and 9, verification is completed in 21.2 seconds and 114.5

seconds, respectively. As the quasi factor is increased to 3, the verification time for quasi queue

with size 4 and 8 is increased to 131.6 seconds 1517.1 secondsrespectively, which is much higher

in comparison to the time for quasi factor 2. This is basically because of the significant increment

in state expansion for the higher quasi factor. For the priority queues where enqueue and dequeue

operations are performed based on the priority, the verification time is higher than the regular quasi

queue. Also, it is important to note that the counterexampleis produced with exploration of only

part of the state space for the buggy models. The verificationtime is much faster for the buggy

queue, which shows that our approach is effective if the quasi linearizability is not satisfied. In all

test cases, our method was able to correctly verify quasi linearizability or detect the violations.

4.5 Conclusion

In this chapter, we presented a novel approach to automate the quasi linearizability refinement

checking algorithm presented in Chapter 3. The specification model is relaxed on the fly by using

our new refinement checking algorithm. This makes the methodmore robust and less error prone

as the specification is relaxed automatically as opposed to manually by the user.



Chapter 5

Conclusions and the Future Work

In this thesis, we have presented a new method for formally verifying quasi linearizability of the

implementation models of concurrent data structures. We have explored two approaches, one of

which is based on manual construction of the relaxed specification model, whereas the other is

fully automated, and is based on checking a relaxed version of the refinement relation between

the implementation model and the specification model. The key idea of this work is to construct

the quasi linearizable specification manually initially toanalyze the bulkiness of the work and the

cases of committing errors in modeling those specification models. This provides us a framework

to extend the original refinement algorithm in order to verify the relaxed implementation model by

automating the checker.

Experimental results have showed that our approach is not only able to verify the linearizable

models, but also the relaxed linearizable models. The concurrent models with bugs have also

46
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been identified correctly in all cases. The counterexample traces generated for the buggy models

clearly can provide us valuable information on why the models being buggy. Based on such

information, we have been able to fix the bugs in our original models to get the correct versions of

the implementation models.

The main objective of this thesis work is to develop an automated software tool that can formally

verify a relaxed version of the linearizability property inthe models of concurrent data structures.

The main bottleneck of our approach is state space expansion, meaning the state space increases

exponentially for higher number of processes as well as sizeof model. Also, it is limited by the fact

that we can only verify the model with a bounded size to ensurethat it has a finite state space. We

believe that the automated refinement checking algorithm can be further optimized to improve the

performance. For future work, we plan to incorporate advanced state space reduction techniques

such as symmetry reduction and partial order reduction [14].



Bibliography

[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed consistency for

improved concurrency. InInternational Conference on Principles of Distributed Systems,

pages 395–410, 2010.

[2] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks.J. ACM, 41(5):1020–1048, 1994.

[3] H. Attiya and J. Welch.Distributed Computing: Fundamentals, Simulations, and Advanced

Topics. John Wiley & Sons, Inc., Publication, 2nd edition, 2004.

[4] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a complete and automatic

linearizability checker. InACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 330–340, 2010.
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