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Abstract

Many Control Systems are indeed Software Based Control Systems, i.e.
control systems whose controller consists of control software running on
a microcontroller device. This motivates investigation onFormal Model
Based Design approaches for automatic synthesis of controlsoftware.

Available algorithms and tools (e.g.,QKS) may require weeks or even
months of computation to synthesize control software for large-size systems.
This motivates search for parallel algorithms for control software synthesis.

In this paper, we present a Map-Reduce style parallel algorithm for con-
trol software synthesis when the controlled system (plant) is modeled as a
discrete time linear hybrid system. Furthermore we presentan MPI-based
implementationPQKSof our algorithm. To the best of our knowledge, this
is the first parallel approach for control software synthesis.
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We experimentally show effectiveness ofPQKSon two classical control
synthesis problems: the inverted pendulum and the multi-input buck DC/DC
converter. Experiments show thatPQKSefficiency is above 65%. As an
example,PQKSrequires about 16 hours to complete the synthesis of control
software for the pendulum on a cluster with 60 processors, instead of the 25
days needed by the sequential algorithm implemented inQKS.

1 Introduction

Many Embedded Systems are indeed Software Based Control Systems (SBCSs).
An SBCS consists of two main subsystems: the controller and the plant. Typically,
the plant is a physical system consisting, for example, of mechanical or electrical
devices whereas the controller consists of control software running on a micro-
controller. In an endless loop, at discrete time instants (sampling), the controller
reads plant sensor outputs from the plant and computes commands to be sent back
to plant actuators. Being the control software discrete andthe physical system
typically continuous, sensor outputs go through an Analog-to-Digital (AD) con-
version (quantization) before being read from the control software. Analogously,
controller commands need a Digital-to-Analog (DA) conversion before being sent
to plant actuators. The controller selects commands in order to guarantee that the
closed-loop system (that is, the system consisting of both plant and controller)
meets given safety and liveness specifications (System Level Formal Specifica-
tions).

Software generation from models and formal specifications forms the core of
Model Based Design of embedded software [1]. This approach is particularly
interesting for SBCSs since in such a case system level (formal) specifications are
much easier to define than the control software behavior itself.

1.1 Motivations

In this paper we focus on the algorithm presented in [2, 3, 4],which returns
correct-by-construction control software starting from system level formal spec-
ifications. This algorithm is implemented inQKS (Quantized Kontroller Synthe-
sizer), which takes as input: i) a formal model of the controlled system, modeled
as a Discrete Time Linear Hybrid System (DTLHS), ii) safety and liveness re-
quirements (goal region) and iii)b, bu as the number of bits for AD (resp., DA)
conversion. Given this,QKS outputs a correct-by-construction control software
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together with the controlled region on which the software isguaranteed to work.
To this aim,QKS first computes a suitable finite state abstraction (control ab-

straction[4]) Ĥ of the DTLHS plant modelH, whereĤ depends on the quantiza-
tion schema (i.e. number of bitsb needed for AD conversion) and it is the plant as
it can be seen from the control software after AD conversion.Then, given an ab-
stractionĜ of the goal statesG, it is computed a controller̂K that, starting from
any initial abstract state, driveŝH to Ĝ regardless of possible nondeterminism.
Control abstraction properties ensure thatK̂ is indeed a (quantized representation
of a) controller for the original plantH. Finally, the finite state automaton̂K is
translated into control software (C code).The whole process is depicted in Fig. 1.

While effective on moderate-size systems,QKS requires a huge amount of
computational resources when applied to larger systems. Infact, the most critical
step ofQKS is the control abstraction̂H generation (which is responsible for
more than 95% of the overall computation, see [3]). This stems from the fact
that Ĥ is computed explicitly, by solving a Mixed Integer Linear Programming
(MILP) problem for each triple(x̂, û, x̂′), wherex̂, x̂′ are abstract states of̂H and
û is an abstract action of̂H. Since the number of abstract states is2b, beingb
the number of bits needed for AD conversion of all variables describing the plant,
we have thatQKS computation time is exponential in2b + bu. In QKS, suitable
optimizations reduce the complexity to be exponential inb+bu, and thus inb since
bu << b. However, in large-size systemsb may be large for two typical reasons.
First, since each plant state variable needs to be quantized(if a state variablev is
discrete, then the number of bits forv is not an input, since⌊log2 |dom(v)|⌋+1 bits
are needed), the number of bits is necessarily high when the plant model consists
of many variables. As an example, the plane collision avoidance control system
in [5] is described by 4 continuous variables and 7 discrete variables. Second,
controllers synthesized by considering a finer quantization schema (i.e., with an
higher value ofb) usually have a better behavior with respect to non-functional
requirements, such asripple andset-up time. Therefore, when a high precision is
required, a large number of quantization bits must be considered.

As an example, experimental results show thatQKS takes nearly one month
(25 days) of CPU time to synthesize the controller for a 26 bits quantized in-
verted pendulum (which is described by only two continuous state variables, see
Sect. 5.1). Moreover, 99% of those 25 days of computation is due to control ab-
straction generation. This may result in a loss in terms of time-to-market in control
software design whenQKS is used.

This motivates search of parallel versions ofQKSsynthesis algorithm.
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Figure 1: Control Software Synthesis Flow.

1.2 Main Contributions

To overcome the computation time bottleneck inQKS, we present aMap-Reduce
style parallel algorithm for control abstraction generation in control software syn-
thesis.

Map-Reduce [6] is a (LISP inspired) programming paradigm advocating a
form of embarrassing parallelism for effective massive parallel processing. An im-
plementation of such an approach is in Hadoop (e.g., see [7]). The effectiveness
of the Map-Reduce approach stems from the minimal communication overhead
of embarrassing parallelism. This motivates our goal of looking for a map-reduce
style parallel algorithm for control software synthesis from system level formal
specifications.

To this aim, we design a parallel version ofQKS, that is inspired to the Map-
Reduce programming style and that we callParallel QKS (PQKS in the follow-
ing). PQKS is actually implemented using MPI (Message Passing Interface [8])
in order to exploit the computational power available in modern computer clusters
(distributed memory model). Such an algorithm will be presented in Sect. 4, after
a discussion of the basic notions needed to understand our approach (Sect. 2) and
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the description of the standalone (i.e. serial) algorithm of QKS (Sect. 3).
We show the effectiveness ofPQKS by using it to synthesize control soft-

ware for two widely used embedded systems, namely the multi-input buck DC-
DC converter [9] and the inverted pendulum [10] benchmarks.These are chal-
lenging examples for the automatic synthesis of correct-by-construction control
software. Experimental results on the above described benchmarks will be dis-
cussed in Sect. 5. Such results show that we achieve a nearly linear speedup w.r.t.
QKS, with efficiency above 65%. As an example,PQKSrequires about 16 hours
to complete the above mentioned synthesis of the 26-bits pendulum on a cluster
with 60 processors, instead of the 25 days ofQKS.

2 Background on DTLHS Control Software Synthe-
sis

To make this paper self-contained, in this section we brieflysummarize previous
work on automatic generation of control software forDiscrete Time Linear Hybrid
System(DTLHS) from System Level Formal Specifications.

As shown in Figure 1, we model the controlled system (i.e. theplant) as a
DTLHS (Sect. 2.4), that is a discrete time hybrid system whose dynamics is mod-
eled as aguarded (linear) predicate(Sect. 2.1) over a set of continuous as well
as discrete variables. The semantics of a DTLHS is given in terms of aLabeled
Transition Systems(LTS, Sect. 2.2). Given a DTLHS plant modelH, a set ofgoal
statesG (liveness specifications) and aninitial region I, both represented as linear
predicates, we are interested in finding arestrictionK of the behaviourofH such
that in theclosed loop systemall paths starting in a state inI lead toG after a
finite number of steps. FindingK is the DTLHScontrol problem(Sect. 2.5) that
is in turn defined as a suitable LTS control problem. (Sect. 2.3). Since we want
to output a control software, we are interested in controllers that take their deci-
sions by looking atquantized states, i.e. the values that the control software reads
after an AD conversion. To this aim, the solution of aquantized control prob-
lem (Sect. 2.6) is computed by first generating a discrete abstraction ofH, called
control abstraction(Sect. 3, step 1 in Figure 1), then by applying to such control
abstraction known techniques in order to generate a controller (step 2 in Figure 1),
and finally synthesizing a control software (step 3 in Figure1). Our main contri-
bution in this paper is in the control abstraction generation, thus we will focus this
section on the basic notions to understand definition and computation of control
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abstractions (Sect. 3).

2.1 Predicates

We denote with[n] an initial segment{1, . . . , n} of the natural numbers. We de-
note withX = [x1, . . . , xn] a finite sequence of variables that we may regard, when
convenient, as a set. Each variablex ranges on a known (bounded or unbounded)
intervalDx either of the reals (continuous variables) or of the integers (discrete
variables). We denote withDX the set

∏

x∈X Dx. Boolean variables are discrete
variables ranging on the setB = {0, 1}. To clarify that a variablex is continuous
(resp. discrete, resp.boolean) we may writexr (resp.xd, xb). AnalogouslyXr

(Xd, Xb) denotes the sequence of real (discrete, boolean) variables inX. Unless
otherwise stated, we supposeDXr = R

|Xr| andDXd = Z
|Xd|. If x is a boolean

variable, we writēx for (1− x).
A linear expressionover a list of variablesX is a linear combination of vari-

ables inX with rational coefficients. Alinear constraintoverX (or simply acon-
straint) is an expression of the formL(X) ≤ b, whereL(X) is a linear expression
overX andb is a rational constant. In the following, we also writeL(X) ≥ b for
−L(X) ≤ −b.

Predicatesare inductively defined as follows. A constraintC(X) over a list of
variablesX is a predicate overX. If A(X) andB(X) are predicates overX, then
(A(X) ∧ B(X)) and(A(X) ∨ B(X)) are predicates over X. Parentheses may be
omitted, assuming usual associativity and precedence rules of logical operators. A
conjunctive predicateis a conjunction of constraints. For conjunctive predicates
we will also write:L(X) = b for ((L(X) ≤ b) ∧ (L(X) ≥ b)) anda ≤ x ≤ b for
x ≥ a ∧ x ≤ b, wherex ∈ X.

Given a constraintC(X) and a fresh boolean variable (guard) y 6∈ X, the
guarded constrainty → C(X) (if y thenC(X)) denotes the predicate((y =
0) ∨ C(X)). Similarly, we usēy → C(X) (if not y thenC(X)) to denote the
predicate((y = 1) ∨ C(X)). A guarded predicateis a conjunction of either
constraints or guarded constraints.

2.2 Labeled Transition Systems

A Labeled Transition System(LTS) is a tupleS = (S,A, T )whereS is a (possibly
infinite) set of states,A is a (possibly infinite) set ofactions, andT : S × A ×
S → B is thetransition relationof S. We say thatT (andS) is deterministicif
T (s, a, s′)∧T (s, a, s′′) impliess′ = s′′, andnondeterministicotherwise. Lets ∈ S
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anda ∈ A. We denote with Adm(S, s) the set of actions admissible ins, that is
Adm(S, s) = {a ∈ A | ∃s′ : T (s, a, s′)} and with Img(S, s, a) the set of next
states froms via a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}. We callself-loop
a transition of the formT (s, a, s). A run or path for an LTSS is a sequenceπ =
s0, a0, s1, a1, s2, a2, . . . of statesst and actionsat such that∀t ≥ 0 T (st, at, st+1).
The length|π| of a finite runπ is the number of actions inπ. Sometimesst (resp.
at) will be denoted byπ(S)(t) (resp.π(A)(t)).

2.3 LTS Control Problem and Solutions

A controller for an LTSS is used to restrict the dynamics ofS so that all states in
the initial region will reach the goal region. In the following, we formalize such
a concept by defining solutions to an LTS control problem. In what follows, let
S = (S,A, T ) be an LTS,I, G ⊆ S be, respectively, theinitial andgoal regions
of S.

Definition 1 A controllerfor S is a functionK : S × A→ B such that∀s ∈ S,
∀a ∈ A, if K(s, a) then∃s′ T (s, a, s′). If K(s, a) holds, we say that the actiona
is enabledbyK in s.

The set of states{s ∈ S | ∃a K(s, a)} for which at least an action is enabled
is denoted bydom(K).
S(K) denotes theclosed loop system, that is the LTS(S,A, T (K)), where

T (K)(s, a, s′) = T (s, a, s′) ∧K(s, a).

We call a pathπ fullpath if either it is infinite or its last stateπ(S)(|π|) has no
successors (i.e. Adm(S, π(S)(|π|)) = ∅). Path(s, a) denotes the set of fullpaths
starting in states with actiona, i.e. the set of fullpathsπ s.t. π(S)(0) = s and
π(A)(0) = a. Given a pathπ in S, we definej(S, π, G) as follows. If there
existsn > 0 s.t. π(S)(n) ∈ G, thenj(S, π, G) = min{n | n > 0 ∧ π(S)(n) ∈
G}. Otherwise,j(S, π, G) = +∞. We requiren > 0 since our systems are
nonterminating and each controllable state (including a goal state) must have a
path of positive length to a goal state. Takingsup∅ = +∞, the worst case
distanceof a states from the goal regionG is J(S, G, s) = sup{j(S, G, π) | π ∈
Path(s, a), a ∈ Adm(S, s)}.

Definition 2 An LTScontrol problemis a tripleP = (S, I, G). A strong solution
(or simply a solution) toP is a controllerK for S, such thatI ⊆ dom(K) and for
all s ∈ dom(K), J(S(K), G, s) is finite.
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Figure 2: The LTSS1 in Example 1.
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Figure 3: The LTSS2 in Example 1.

A solutionK∗ to P is optimal if for all solutionsK to P, for all s ∈ S, we
haveJ(S(K∗), G, s) ≤ J(S(K), G, s).

Example 1 LetS1 = (S1,A1, T1) be the LTS in Fig. 2 and letS2 = (S2,A2, T2)
be the LTS in Fig. 3.S1 is the integer interval[−1, 2] andS2 = [−2, 5]. A1 =
A2 = {0, 1} and the transition relationsT1 andT2 are defined by all solid arrows
in the pictures. LetI1 = S1, I2 = S2 and letG = {0}. There is no solution to the
control problem(S1, I1, G). Because of the self-loops of the state 1, we have that
bothj(S1, G, 1, 0) = +∞ andj(S1, G, 1, 1) = +∞. The controllerK2 defined by
K2(s, a) ≡ ((s = 1 ∨ s = 2) ∧ a = 1) ∨ (s 6= 1 ∧ s 6= 2 ∧ a = 0) is an optimal
strong solution for the control problem(S2, I2, G).

2.4 Discrete Time Linear Hybrid Systems

In this section we introduce the class of discrete time Hybrid Systems that we
use as plant models, namelyDiscrete Time Linear Hybrid Systems(DTLHSs for
short).

Definition 3 A Discrete Time Linear Hybrid Systemis a tupleH = (X, U, Y, N)
where:
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• X = Xr∪Xd is a finite sequence of real (Xr) and discrete (Xd) present state
variables. We denote withX ′ the sequence ofnext statevariables obtained
by decorating with′ all variables inX.

• U = U r ∪ Ud is a finite sequence ofinputvariables.

• Y = Y r ∪ Y d is a finite sequence ofauxiliary variables that are typically
used to modelmodes(e.g., from switching elements such as diodes) or “lo-
cal” variables.

• N(X,U, Y,X ′) is a guarded predicate overX ∪ U ∪ Y ∪ X ′ defining the
transition relation(next state).

The semantics of DTLHSs is given in terms of LTSs.

Definition 4 LetH = (X, U , Y , N) be a DTLHS. The dynamics ofH is defined
by the Labeled Transition SystemLTS(H) = (DX , DU , Ñ) where: Ñ : DX ×
DU × DX → B is a function s.t.Ñ(x, u, x′) ≡ ∃ y ∈ DY N(x, u, y, x′). A state
x for H is a statex for LTS(H) and arun (or path) for H is a run forLTS(H)
(Sect. 2.2).

2.5 DTLHS Control Problem
A DTLHS control problem(H, I, G) is defined as the LTS control problem (LTS(H),
I,G). To accommodate quantization errors, always present in software based con-
trollers, it is useful to relax the notion of solution by tolerating an arbitrarily small
errorε on the continuous variables.

Let ε > 0 be a real number,W ⊆ R
n ×Z

m. Theε-relaxationof W is theball
of radiusε Bε(W ) = {(z1, . . . zn, q1, . . . qm) | ∃(x1, . . . , xn, q1, . . . qm) ∈ W and
∀i ∈ [n] |zi − xi| ≤ ε}.

Definition 5 Let (H, I, G) be a DTLHS control problem andε be a nonnegative
real number. Anε solution to(H, I, G) is a solution to the LTS control problem
(LTS(H), I, Bε(G)).

Example 2 Let T be the positive constant1/10 (sampling time). We define the
DTLHSH = ({x}, {u}, ∅, N) wherex is a continuous variable,u is boolean,
andN(x, u, x′) ≡ [u → x′ = x + (5/4 − x)T ] ∧ [u → x′ = x + (x − 7/4)T ]. Let
I(x) ≡ −1 ≤ x ≤ 5/2 andG(x) ≡ x = 0. Finally, letP be the control problem
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(H, I, G). A controller may drive the system near to the goalG, by enabling a
suitable action in such a way thatx′ < x whenx > 0 andx′ > x whenx < 0.
However the controllerK(x, u) defined byK(x, u) ≡ (−1 ≤ x < 0 ∧ u) ∨ (0 ≤
x < 2 ∧ u) ∨ (1 ≤ x ≤ 5/2 ∧ u) is not a solution, because it allows
infinite paths to be executed. SinceK(5/4, 0) andN(5/4, 0, 5/4) hold, the closed
loop systemH(K) may loop forever along the path5/4, 0, 5/4, 0 . . .. K ′ defined by
K ′(x, u) ≡ (−1 ≤ x < 0 ∧ u) ∨ (0 ≤ x ≤ 3/2 ∧ u) ∨ (3/2 ≤ x ≤ 5/2 ∧ u)
is a solution toP.

2.6 Quantized Control Problem
As usual in classical control theory,quantization(e.g., see [11]) is the process of
approximating a continuous interval by a set of integer values. In the following
we formally define the quantized feedback control problem for DTLHSs.

A quantization functionγ for a real intervalI = [a, b] is a non-decreasing
function γ : I 7→ Z s.t. γ(I) is a bounded integer interval. We will denote
γ(I) as Î = [γ(a), γ(b)]. The quantization stepof γ, notation‖γ‖, is defined
assup{ |w − z| | w, z ∈ I ∧ γ(w) = γ(z)}. For ease of notation, we extend
quantizations to integer intervals, by stipulating that insuch a case the quantization
function is the identity function.

Definition 6 Let H = (X,U, Y,N) be a DTLHS, andW = X ∪ U ∪ Y . A
quantizationQ forH is a pair (A,Γ), where:

• A is a predicate overW that explicitely bounds each variable inW (i.e.,
A =

∧

w∈W αw ≤ w ≤ βw, with αw, βw ∈ DW ). For eachw ∈ W , we
denote withAw = [αw, βw] itsadmissible regionand withAW =

∏

w∈W Aw.

• Γ is a set of mapsΓ = {γw | w ∈ W andγw is a quantization function for
Aw}.

Let W = [w1, . . . wk] and v = [v1, . . . vk] ∈ AW . We writeΓ(v) for the tuple
[γw1

(v1), . . . γwk
(vk)]. Finally, thequantization step‖Γ‖ is defined assup{ ‖γ‖ | γ ∈

Γ}.

A control problem admits aquantized solutionif control decisions can be
made by just looking at quantized values. This enables a software implementation
for a controller.
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Definition 7 LetH = (X,U, Y,N) be a DTLHS,Q = (A,Γ) be a quantization
forH andP = (H, I, G) be a DTLHS control problem. AQQuantized Feedback
Control(QFC) solution toP is a ‖Γ‖ solutionK(x, u) toP such thatK(x, u) =
K̂(Γ(x),Γ(u)) whereK̂ : Γ(AX)× Γ(AU)→ B.

Example 3 Let P, K andK ′ be as in Ex. 2. Let us consider the quantizations
Q1 = (A1,Γ1), whereA1 = I, Γ1 = {γx} and γx(x) = ⌊x⌋. The setΓ(Ax)
of quantized states is the integer interval[−1, 2]. NoQ QFC solution can exist,
because in state1 either enabling action1 or action0 allows infinite loops to be
potentially executed in the closed loop system. The controller K ′ in Ex. 2 can be
obtained as a quantized controller decreasing the quantization step, for example,
by considering the quantizationQ2 = (A2,Γ2), whereA2 = A1, Γ2 = {γ̃x} and
γ̃x(x) = ⌊2x⌋.

3 Control Abstraction Computation

As explained in Sect. 1.1, the heaviest computation step forQKS is the computa-
tion of the control abstraction. In this section, we recall the definition of control
abstraction, as well as how it is computed byQKS.

Control abstraction (Def. 9) models how a DTLHSH is seenfrom the control
software after AD conversions. Since QFC control rests on ADconversion we
must be careful not to drive the plant outside the bounds in which AD conversion
works correctly. This leads to the definition ofadmissible action(Def. 8). Intu-
itively, an action is admissible in a state if it never drivesthe system outside of its
admissible region.

Definition 8 (Admissible actions) LetH = (X,U, Y,N) be a DTLHS andQ =
(A,Γ) be a quantization forH. An actionu ∈ AU is A-admissiblein s ∈ AX if
for all s′, (∃y ∈ AY : N(s, u, y, s′)) impliess′ ∈ AX . An actionû ∈ Γ(AU) is
Q-admissiblein ŝ ∈ Γ(AX) if for all s ∈ Γ−1(ŝ), u ∈ Γ−1(û), u is A-admissible
for s inH.

Definition 9 (Control abstraction) LetH = (X,U, Y,N) be a DTLHS andQ =
(A,Γ) be a quantization forH. We say that the LTŜH = (Γ(AX), Γ(AU), N̂)
is aQ control abstractionofH if its transition relationN̂ satisfies the following
conditions:

11



1. Each abstract transition stems from a concrete transition. Formally: for
all ŝ, ŝ′ ∈ Γ(AX), û ∈ Γ(AU), if N̂(ŝ, û, ŝ′) then there exists ∈ Γ−1(ŝ),
u ∈ Γ−1(û), s′ ∈ Γ−1(ŝ′), y ∈ AY such thatN(s, u, y, s′).

2. Each concrete transition is faithfully represented by anabstract transi-
tion, whenever it is not a self loop and its corresponding abstract ac-
tion is Q-admissible. Formally: for alls, s′ ∈ AX , u ∈ AU such that
∃y : N(s, u, y, s′), if Γ(u) isQ-admissible inΓ(s) andΓ(s) 6= Γ(s′) then
N̂(Γ(s),Γ(u),Γ(s′)).

3. If there is no upper bound to the length of concrete paths inside the counter-
image of an abstract state then there is an abstract self loop. Formally: for
all ŝ ∈ Γ(AX), û ∈ Γ(AU), if it exists an infinite runπ in H such that
∀t ∈ N π(S)(t) ∈ Γ−1(ŝ) andπ(A)(t) ∈ Γ−1(û) thenN̂(ŝ, û, ŝ). A self loop
(ŝ, û, ŝ) of N̂ satisfying the above property is said to be anon-eliminable
self loop, andeliminable self loopotherwise.

Algorithm 1 Building control abstractions
Input: DTLHSH = (X,U, Y,N), quantizationQ = (A,Γ).
function minCtrAbs(H,Q)

1. N̂ ← ∅

2. for all x̂ ∈ Γ(AX) do
3. N̂ ← minCtrAbsAux(H,Q, x̂, N̂)
4. return (Γ(AX),Γ(AU), N̂)

FunctionminCtrAbs in Alg. 1, given a quantizationQ = (A,Γ) for a DTLHS
H = (X,U, Y,N), computes aQ-control abstraction(Γ(AX), Γ(AU), N̂) of H
following Def. 9. Namely, for each abstract statex̂ (line 2) an auxiliary func-
tion minCtrAbsAux is called. On its side, functionminCtrAbsAux (which is
detailed in Alg. 2) decides which transitions, among the ones starting from̂x, ful-
fills Def. 9. Such transitions are added to the current partial control abstraction
N̂ . The new partial control abstraction̂N , extending the input control abstraction
with all transitions starting from̂x and fulfilling Def. 9, is returned at step 8 of
functionminCtrAbsAux. Finally, note that the checks in lines 2, 3 and 6, and the
computation in line 4 are performed by properly defining MILPproblems, which
are solved using known algorithms (available in the GLPK package).
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Algorithm 2 Building control abstractions: transitions from a given abstract state

Input: DTLHSH, quantizationQ, abstract statêx, partial control abstraction̂N .
function minCtrAbsAux(H,Q, x̂, N̂)

1. for all û ∈ Γ(AU) do
2. if ¬ Q-admissible(H,Q, x̂, û) then
3. if selfLoop(H,Q, x̂,û) then N̂ ← N̂ ∪ {(x̂, û, x̂)}
4. O ← overImg(H,Q, x̂, û)
5. for all x̂′ ∈ Γ(O) do
6. if x̂ 6= x̂′∧existsTrans(H,Q, x̂, û, x̂′) then
7. N̂←N̂ ∪ {(x̂, û, x̂′)}
8. return N̂

4 Parallel Synthesis of Control Software

In this section we present our novel parallel algorithm for the control abstrac-
tion generation of a given DTLHS. Such algorithm is a parallel version of the
standalone Alg. 1. In this way we significantly improve the performance on the
control abstraction generation (which is the bottleneck ofQKS), thus obtaining
a huge speedup for the whole approach to the synthesis of control software for
DTLHSs.

In the following, letH = (X, U, Y, N), Q = (A,Γ) be, respectively, the
DTLHS and the quantization in input to our algorithm for control abstraction gen-
eration. Moreover, letb be the overall number of bits needed inQ to quantize plant
states (i.e.,b =

∑

x∈X bx, wherebx is the number of bits forγx ∈ Γ). Finally, let
p be the number of processors available for parallel computation.

Our parallel algorithm rests on the observation that all calls to functionminC-
trAbsAux (see Alg. 2) are independent of each other, thus they may be performed
by independent processes without communication overhead.This observation al-
lows us to use parallel methods targetingembarrassingly parallelproblems in
order to obtain a significant speedup on the control abstraction generation phase.
To this aim, we use a Map-Reduce based parallelization technique to design a par-
allel version of Alg. 1. Namely, our parallel computation isdesigned as follows
(see Fig. 4 for an example).

1. A masterprocess assigns (maps) the computations needed for an abstract
statex̂ (i.e., the execution of a call to functionminCtrAbsAux of Alg. 2)
to one ofp computing processes (workers, enumerated from 1 top). This
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is done in a way so that each worker approximately handles|Γ(AX)|
p

abstract
states, thus balancing the parallel workload. Namely, abstract states are
enumerated from1 to2b, and abstract statei is assigned to worker1+((i−1)
mod p). We denote withΓ(i,p)(AX) ⊆ Γ(AX) the set of abstract states
mapped to workeri out of p available workers. Note that workeri may
locally decide which abstract states are inΓ(i,p)(AX) by only knowingi and
p (together with the overall inputH andQ). This allows us to avoid sending
to each worker the explicit list of abstract states it has to work on, since it is
sufficient that the master sendsi andp (plusH andQ) to workeri.

2. Each workerworks on its abstract states partitionΓ(i,p)(AX), by calling
minCtrAbsAux for each abstract state in such partition. Once workeri has
completed its task (i.e., all abstract states inΓ(i,p)(AX) have been consid-
ered), a local (partial) control abstraction̂Ni is obtained, which is sent back
to the master.

3. The master collects the local control abstractions coming from the work-
ers and composes (reduces) them in order to obtain the desired complete
control abstraction forH. Note that, as in embarrassingly parallel tasks,
communication only takes place at the beginning and at the end of local
computations.

Algorithm 3 Building control abstractions in parallel: master process
Input: DTLHSH, quantizationQ, workers numberp
function minCtrAbsMaster(H,Q, p)

1. for all i ∈ {1, . . . , p} do
2. create a worker and sendH,Q, i andp to it
3. wait to getN̂1, . . . , N̂p from workers
4. return (Γ(AX),Γ(AU),∪

p
j=1N̂j)

Our parallel algorithm is described in Algs. 3 (for the master) and 4 (for work-
ers).

4.1 Implementation with MPI

We actually implemented Algs. 3 and 4 inPQKSby using MPI (Message Passing
Interface, see [8]). Since MPI is widely used, this allows usto run PQKS on
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Figure 4: Example of execution of the parallel algorithm using 3 workers on a
DTLHSH = (X,U, Y,N) and a quantizationQ for H s.t. X = [x1, x2] andQ
discretizes bothx1, x2 with two bits. In (a) the starting point is shown, where each
cell corresponds to an abstract state. In (b), functionminCtrAbsMastermaps the
workload among the 3 workers (abstract states labeled withi ∈ [3] are handled by
workeri). In (c) each workeri computes its local control abstraction̂Ni, which is
assumed to have the shown transitions only. Finally, in (d) the master rejoins the
local control abstractions in order to get the final one, i.e.N̂ .

Algorithm 4 Building control abstractions in parallel: worker processes
Input: DTLHS H = (X,U, Y,N), quantizationQ = (A,Γ), index i, workers

numberp
function parMinCtrAbs(H,Q, i, p)

1. N̂i ← ∅

2. for all x̂ ∈ Γ(i,p)(AX) do
3. N̂i ← minCtrAbsAux(H,Q, x̂, N̂i)
4. sendN̂i to the master
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nearly all computer clusters. Note that in MPI all computingprocesses execute the
same program, each one knowing its ranki and the overall number of computing
processesp (SPMD paradigm). Thus lines 1–2 of Alg. 3 are directly implemented
by the MPI framework. Moreover, in our implementation the master is not a
separate node, but it actually performs like a worker while waiting for local control
abstractions from (other) workers. Local control abstraction from other workers
are collected once the master local control abstraction hasbeen completed. This
allows us to usep nodes instead ofp+ 1.

Note that lines 3 and 4 of, respectively, Algs. 3 and 4 requireworkers to send
their local control abstraction to the master. Being control abstractions represented
as OBDDs (Ordered Binary Decision Diagrams[12]), which are sparse data struc-
tures, this step may be difficult to be implemented with a callto MPI Send (as it
is usually done in MPI programs), which is designed for contiguous data. In our
experiments, workers use known algorithms (implemented inthe CUDD package)
to efficiently dump the OBDD representing their local control abstraction on the
shared filesystem (current MPI implementations are typically based on a shared
filesystem). Then each computing process calls MPIBarrier, in order to synchro-
nize all workers with the master. After this, the master nodecollects local control
abstraction from workers, by reloading them from the sharedfilesystem, in order
to build the final global one. Consequently, when presentingexperimental results
in Sect. 5, we include I/O time in communication time. Note that communication
based on shared filesystem is very common also in Map-Reduce native implemen-
tations like Hadoop [7].

Finally, we note that Algs. 3 and 4 may conceptually be implemented on mul-
tithreaded systems with shared memory. However, in our implementation we use
GLPK as external library to solve MILP problems required in computations inside
functionminCtrAbsAux(see Alg. 2). Since GLPK is not thread-safe, we may not
implement Algs. 3 and 4 on multithreaded shared memory systems.

5 Experimental Results

We implement functionsminCtrAbsMasterandparMinCtrAbsof Algs. 3 and 4
in C programming language using the CUDD package for OBDD based computa-
tions and the GLPK package for MILP problems solving, and MPIfor the parallel
setting and communication. The resulting tool,PQKS(Parallel QKS), extends the
tool QKS [3] by replacing functionminCtrAbsof Alg. 1 with functionminCtrA-
bsMasterof Alg. 3.
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Figure 5: Inverted pendulum with stationary pivot point.

In this section we present experimental results obtained byusingPQKSon
two meaningful and challenging examples for the automatic synthesis of correct-
by-construction control software, namely the inverted pendulum and multi-input
buck DC-DC converter. In such experiments, we show the gain of the parallel
approach with respect to the serial algorithm, also providing standard measures
such as communication and I/O time.

This section is organized as follows. In Sects. 5.1 and 5.2 wewill present
the inverted pendulum and the multi-input buck DC-DC converter, on which our
experiments focus. In Sect. 5.3 we give the details of the experimental setting,
and finally, in Sect. 5.4, we discuss experimental results.

5.1 The Inverted Pendulum Case Study

The inverted pendulum [10] (see Fig. 5) is modeled by taking the angleθ and
the angular velocitẏθ as state variables. The input of the system is the torquing
force u · F , that can influence the velocity in both directions. Here, the vari-
ableu models the direction and the constantF models the intensity of the force.
Differently from [10], we consider the problem of finding a discrete controller,
whose decisions may be only “apply the force clockwise” (u = 1), “apply the
force counterclockwise” (u = −1)”, or “do nothing” (u = 0). The behavior
of the system depends on the pendulum massm, the length of the penduluml,
and the gravitational accelerationg. Given such parameters, the motion of the

system is described by the differential equationθ̈ =
g

l
sin θ +

1

ml2
uF , which

may be normalized and discretized in the following transition relation (beingT
the sampling time constant,x1 = θ andx2 = θ̇): N(x1, x2, u, x

′
1, x

′
2) ≡ (x′

1 =
x1 + Tx2) ∧ (x′

2 = x2 + T g

l
sin x1 + T 1

ml2
uF ). Such transition relation is not

linear, as it contains the functionsin x1. A linear model can be found by under-
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and over-approximating the non-linear functionsin x on different intervals forx.
Namely, we may proceed as follows [13]. First of all, in orderto exploit sinus
periodicity, we consider the equationx1 = 2πyk + yα, whereyk represents the
period in whichx1 lies andyα ∈ [−π, π]1 represents the actualx1 inside a given

period. Then, we partition the interval[−π, π] in four intervals:I1 =
[

−π,−
π

2

]

,

I2 =
[

−
π

2
, 0
]

, I3 =
[

0,
π

2

]

, I4 =
[π

2
, π

]

. In each intervalIi (i ∈ [4]), we consider

two linear functionsf+
i (x) and andf−

i (x), such that for allx ∈ Ii, we have that
f−
i (x) ≤ sin x ≤ f+

i (x). As an example,f+
1 (yα) = −0.637yα − 2 andf−

1 (yα) =
−0.707yα − 2.373.

Let us consider the set of fresh continuous variablesY r = {yα, ysin} and the set
of fresh discrete variablesY d = {yk, yq, y1, y2, y3, y4}, beingy1, . . . , y4 boolean
variables. The DTLHS modelIF for the inverted pendulum is the tuple(X,U,
Y,N), whereX = {x1, x2} is the set of continuous state variables,U = {u} is
the set of input variables,Y = Y r ∪ Y d is the set of auxiliary variables, and the
transition relationN(X,U, Y,X ′) is the following guarded predicate:

(x′
1 = x1 + 2πyq + Tx2) ∧ (x′

2 = x2 + T
g

l
ysin + T

1

ml2
uF )

∧
∧

i∈[4] yi → f−
i (yα) ≤ ysin ≤ f+

i (yα)

∧
∧

i∈[4] yi → yα ∈ Ii ∧
∑

i∈[4] yi ≥ 1

∧ x1 = 2πyk + yα ∧ −π ≤ x′
1 ≤ π

Overapproximations of the system behaviour increase system nondeterminism.
SinceIF dynamics overapproximates the dynamics of the non-linear model, the
controllers that we synthesize are inherentlyrobust, that is they meet the given
closed loop requirementsnotwithstandingnondeterministic smalldisturbances
such as variations in the plant parameters. Tighter overapproximations of non-
linear functions makes finding a controller easier, whereascoarser overapproxi-
mations makes controllers more robust.

The typical goal for the inverted pendulum is to turn the pendulum steady
to the upright position, starting from any possible initialposition, within a given
speed interval.
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Figure 6: Multi-input Buck DC-DC converter.

5.2 The Multi-input Buck DC-DC Converter Case Study

Themulti-inputbuck DC-DC converter [9] in Fig. 6 is a mixed-mode analog cir-
cuit converting the DC input voltage (Vi in Fig. 6) to a desired DC output voltage
(vO in Fig. 6). As an example, buck DC-DC converters are used off-chip to scale
down the typical laptop battery voltage (12-24) to the just few volts needed by
the laptop processor (e.g. [14]) as well as on-chip to support Dynamic Voltage
and Frequency Scaling(DVFS) in multicore processors (e.g. [15]). Because of
its widespread use, control schemas for buck DC-DC converters have been widely
studied (e.g. see [15, 14]). The typical software based approach (e.g. see [14]) is
to control the switchesu1, . . . , un in Fig. 6 (typically implemented with a MOS-
FET) with a microcontroller.

In such a converter (Fig. 6), there aren power supplies with voltage values
V1, . . . , Vn,n switches with voltage valuesvu1 , . . . , v

u
n and current valuesIu1 , . . . , I

u
n ,

andn input diodesD0, . . . , Dn−1 with voltage valuesvD0 , . . . , v
D
n−1 and current

iD0 , . . . , i
D
n−1 (in the following, we will writevD for vD0 andiD for iD0 ).

The circuit state variables areiL andvC . However we can also use the pair
iL, vO as state variables in the DTLHS model since there is a linear relationship
betweeniL, vC andvO, namely:vO = rCR

rC+R
iL +

R
rC+R

vC . We model then-input
buck DC-DC converter with the DTLHSBn = (X, U , Y , N), with X = [iL, vO],
U = [u1, . . ., un], Y = [vD, vD1 , . . . , vDn−1, iD, Iu1 , . . ., Iun , vu1 , . . ., vun].

Finally, the transition relationN , depending on variables inX, U andY (as
well as on circuit parametersVi, R, rL, rC , L andC), may be derived from simple

1In this section we writeπ for a rational approximation of it.
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circuit analysis [16]. Namely, we have the following equations:

i̇L = a1,1iL + a1,2vO + a1,3vD

v̇O = a2,1iL + a2,2vO + a2,3vD

where the coefficientsai,j depend on the circuit parametersR, rL, rC , L andC in
the following way:a1,1 = −

rL
L

, a1,2 = − 1
L

, a1,3 = − 1
L

, a2,1 = R
rc+R

[− rcrL
L

+ 1
C
],

a2,2 =
−1

rc+R
[ rcR

L
+ 1

C
], a2,3 = − 1

L
rcR
rc+R

. Using a discrete time model with sampling
timeT (writing x′ for x(t + 1)) we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD.

The algebraic constraints stemming from the constitutive equations of the switch-
ing elements are the following:

q0 → vD = RoniD

q0 → iD ≥ 0

n−1
∧

i=1

qi → vDi = RonI
u
i

n−1
∧

i=1

qi → Iui ≥ 0

n
∧

j=1

uj → vuj = RonI
u
j

iL = iD +

n
∑

i=1

Iui

q̄0 → vD = Roff iD

q̄0 → vD ≤ 0

n−1
∧

i=1

q̄i → vDi = RoffI
u
i

n−1
∧

i=1

q̄i → vDi ≤ 0

n
∧

j=1

ūj → vuj = RoffI
u
j

vD = vui + vDi − Vi

vD = vun − Vn

The typical goal for a multi-input buck is to driveiL andvO within given goal
intervals.

5.3 Experimental Setting

All experiments have been carried out on a cluster with 4 nodes and Open MPI
implementation of MPI. Each node contains 4 quad-core 2.83 GHz Intel Xeon
E5440 processors. This allows us to run fully parallel experiments by configuring
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Figure 8: Multi-input buck:
speedup.

the MPI computation to use up to 16 processes per node. In order not to overload
each node, we run maximum 15 processes per node, thus our upper bound for the
number of processes is 60. Finally, as in most clusters, nodes share a common file
system.

In the inverted pendulumIF with force intensityF , as in [10], we set pen-
dulum parametersl andm in such a way thatg

l
= 1 (i.e. l = g) 1

ml2
= 1 (i.e.

m = 1
l2

). As for the admissible region, we setAx1
= [−1.1π, 1.1π] (we writeπ

for a rational approximation of it) andAx2
= [−4, 4].

In the multi-input buck DC-DC converter withn inputsBn, we set constant
parameters as follows:L = 2 · 10−4 H, rL = 0.1 Ω, rC = 0.1 Ω, R = 5 Ω,
C = 5 · 10−5 F, andVi = 10i V for i ∈ [n]. As for the admissible region, we set
AiL = [−4, 4] andAvO = [−1, 7].

As for quantization, we will use an even number of bitsb, so that each state
variable of each case study is quantized withb

2
bits. We recall that the number of

abstract states is exactly2b.
We runQKS andPQKSon the inverted pendulum modelIF with F = 0.5N

(force intensity), and on the multi-input buck DC-DC modelBn, with n = 5
(number of inputs). For the inverted pendulum, we use sampling timeT = 0.01
seconds. For the multi-input buck, we setT = 10−6 seconds. For both systems,
we run experiments varying the number of bitsb = 18, 20 (also22 for the inverted
pendulum) and the number of processors (workers)p = 1, 10, 20, 30, 40, 50, 60.

In order to evaluate effectiveness of our approach, we use the following mea-
sures: speedup, efficiency, communication time (in seconds) and I/O time (in
seconds). Thespeedupof our approach is represented by the serial CPU time
divided by the parallel CPU time, i.e.Speedup = serial CPU

parallel CPU
. To evaluate scala-
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ing efficiency.
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munication time (divided by 1000).
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Figure 12: Multi-input buck: com-
munication time (divided by 10000).

bility of our approach we define thescaling efficiency(or simplyefficiency) as the
percentage ratio between speedup and number of processorsp, i.e. Efficiency =
speedup

p
%. In Algs. 3 and 4, thecommunication timeconsists in the time needed by

all workers to send their local control abstraction to the master. In agreement with
Sect. 4.1, the communication time is increased by the I/O time, that is the overall
time spent by processors in input/output activities.

Figs. 7, 9, 11 and 13 show, respectively, the speedup, the scaling efficiency,
the communication time (divided by 1000) and the I/O time of Algs. 3 and 4 as
a function ofp, for the inverted pendulum withb = 18, 20, 22. Analogously,
Figs. 8, 10, 12 and 14 show the same measures (except for the fact that communi-
cation time is divided by 10000) for the multi-input buck with b = 18, 20.

We also show the absolute values for the experiments with 50 and 60 proces-
sors in Tabs. 1 and 2. Tabs. 1 and 2 have common columns. The meaning of such
common columns is as follows. Columnb is the number of bits used for quantiza-
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tion. ColumnQKS (CPU Ctrabs) reports the execution time in seconds needed
by QKS to compute the control abstraction (i.e. Alg. 1). ColumnsPQKS report
experimental values forPQKS. Namely, columnp shows the number of proces-
sors, columnCPU Ctrabs reports the execution time in seconds for Alg. 3 (i.e.,
the master execution time, since it wraps the overall parallel computation), col-
umnCT shows the communication time (including I/O time), columnIO shows
the I/O time only, columnSpeedupreports the speedup and columnEfficiency
reports the scaling efficiency. Finally, columnCPU K shows the execution time
in seconds for the control software generation (i.e., the remaining computation of
QKS, after the control abstraction generation).

5.4 Experiments Discussion

From Figs. 7 and 8 we note that the speedup is almost linear, with a 2
3

slope. From
Figs. 9 and 10 we note that scaling efficiency remains high when increasing the
number of processorsp. For example, forb = 22 bits, our approach efficiency is in
a range from 75% (10 processors) to 65% (60 processors). In any case, efficiency
is always above 65%.

Figs. 11 and 12 show that communication time almost always decreases when
p increases. This is motivated by the fact that, in our MPI implementation, com-
munication among nodes takes place mostly when workers sendtheir local control
abstractions to the master via the shared filesystem. Since in our implementation
this happens only after an MPIBarrier (i.e., the parallel computation may proceed
only when all nodes have reached an MPIBarrier statement), the communication
time also includes waiting time for workers which finishes their local computation
before the other ones. Thus, if all workers need about the same time to complete
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Table 1: Experimental Results for inverted pendulum.
QKS PQKS

b CPU Ctrabs p CPU Ctrabs CT IO Speedup Efficiency CPU K
18 8.958e+03 50 2.064e+02 7.696e+02 1.540e+01 43.399 86.7982.970e+01
18 8.958e+03 60 1.763e+02 6.825e+02 1.790e+01 50.809 84.6812.970e+01
20 3.108e+04 50 8.527e+02 3.112e+03 7.330e+01 36.450 72.9001.131e+02
20 3.108e+04 60 7.173e+02 2.170e+03 6.740e+01 43.331 72.2181.131e+02
22 1.147e+05 50 3.504e+03 1.242e+04 2.840e+02 32.742 65.4851.131e+03
22 1.147e+05 60 2.938e+03 6.762e+03 2.842e+02 39.050 65.0841.131e+03

2
4



Figure 15: Details about pendulum
computation time (30 nodes, 9 bits).

Figure 16: Details about pendulum
computation time (40 nodes, 9 bits).

the local computation, then the communication time is low. Note that this explains
also the discontinuity when passing from 30 to 40 nodes whichmay be observed in
the figures above. In fact, each worker has (almost) the same workload in terms of
abstract states number, but some abstract states may need more computation time
than others (i.e., computation time of functionminCtrAbsAux in Alg. 2 may have
significant variations on different abstract states). If such “hard” abstract states
are well distributed among workers, communication time is low (with higher ef-
ficiency), otherwise it is high. Figs. 15 and 16 show such phenomenon on the
inverted pendulum quantized with 18 bits, when the parallelalgorithm is executed
by 30 and 40 workers, respectively. In such figures, thex-axis represents com-
putation time, they-axis the workers, and hard abstract states are representedin
red. Indeed, in Fig. 15 hard abstract states are well distributed among workers,
which corresponds to a low communication time in Fig. 11 (andhigh speedup and
efficiency in Figs. 7 and 9). On the other hand, in Fig. 16 hard abstract states
are mainly distributed on only a dozen of the 40 workers (thus, about 30% of the
workers performs the most part of the real workload), which corresponds to a high
communication time in Fig. 11 (and low speedup and efficiencyin Figs. 7 and 9).
A similar reasoning may be drawn for the I/O time.

Finally, in order to show feasibility of our approach also onDTLHSs requiring
a huge computation time to generate the control abstraction, we runPQKSon the
inverted pendulum withb = 26. We estimate the computation time for control
abstraction generation forp = 1 to be 25 days. On the other hand, withp = 60,
we are able to compute the control abstraction generation inonly 16 hours.

25



Table 2: Experimental Results for multi-input buck DC-DC converter.
QKS PQKS

b CPU Ctrabs p CPU Ctrabs CT IO Speedup Efficiency CPU K
18 1.300e+05 50 4.020e+03 1.582e+04 4.100e+01 32.347 64.6947.400e+01
18 1.300e+05 60 3.363e+03 6.550e+03 4.800e+01 38.666 64.4437.400e+01
20 5.231e+05 50 1.619e+04 6.306e+04 1.780e+02 32.307 64.6133.780e+02
20 5.231e+05 60 1.353e+04 2.765e+04 1.910e+02 38.657 64.4283.780e+02

2
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6 Related Work

Algorithms (and tools) for the automatic synthesis of control software under dif-
ferent assumptions (e.g., discrete or continuous time, linear or non-linear systems,
hybrid or discrete systems, etc.) have been widely investigated in the last decades.
As an example, see [17, 18, 19, 10, 20, 21, 22, 23] and citations thereof. How-
ever, no one of such approaches has a parallel version of any type, our focus here.
On the other hand, parallel algorithms have been widely investigated for formal
verification (e.g., see [24, 25, 26]).

A parallel algorithm for control software synthesis has been presented in [27],
where however non-hybrid systems are addressed, control isobtained by Monte
Carlo simulation and quantization is not taken into account. Moreover, note that in
literature “parallel controller synthesis” often refers to synthesizing parallel con-
trollers (e.g., see [28] and [29] and citations thereof), while here we parallelize the
(offline) computation required to synthesize a standalone controller. Summing up,
to the best of our knowledge, no previous parallel algorithmfor control software
synthesis from formal specifications has been published.

As discussed in Sect. 1.1, the present paper builds mainly upon the toolQKS
presented in [2, 3]. Other works aboutQKS comprise the following ones. In [30]
it is shown that expressing the input system as a linear predicate over a set of con-
tinuous as well as discrete variables (as it is done inQKS) is not a limitation on the
modeling power. In [13] it is shown how non-linear systems may be modeled by
using suitable linearization techniques. The paper in [16]addresses model based
synthesis of control software by trading system level non-functional requirements
(such us optimal set-up time, ripple) with software non-functional requirements
(its footprint, i.e. size). The procedure which generates the actual control soft-
ware (C code) starting from a finite states automaton of a control law is described
in [31]. In [32] it is shown how to automatically generate a picture illustrating
control software coverage. Finally, in [33] it is shown thatthe quantized control
synthesis problem underlyingQKS approach is undecidable. As a consequence,
QKS is based on a correct but non-complete algorithm. Namely,QKS output
is one of the following: i) SOL, in which case a correct-by-construction control
software is returned; ii) NOSOL, in which case no controller exists for the given
specifications; iii) UNK, in which caseQKSwas not able to compute a controller
(but a controller may exist).
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7 Conclusions and Future Work

In this paper we presented a Map-Reduce style parallel algorithm (and its MPI
implementation for computer clusters,PQKS) for automatic synthesis of correct-
by-construction control software for discrete time linearhybrid systems, starting
from a formal model of the controlled system, safety and liveness requirements
and number of bits for analog-to-digital conversion. Such an algorithm signifi-
cantly improves performance of an existing standalone approach (implemented in
the toolQKS), which may require weeks or even months of computation when
applied to large-sized hybrid systems.

Experimental results on two classical control synthesis problems (the inverted
pendulum and the multi-input buck DC/DC converter) show that our parallel ap-
proach efficiency is above 65%. As an example, with 60 processors PQKSout-
puts the control software for the 26-bits quantized inverted pendulum in about 16
hours, whileQKSneeds about 25 days of computation.

Future work consists in further improving the communication among proces-
sors by making the mapping phase aware of “hard” abstract states (see Sect. 5.4),
as well as designing a parallel version for other architectures than computer clus-
ters, such as GPGPU architectures.
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