
Krishnamurthy, A., O’Connor, R. V., An Analysis of the Software Development Processes of Open Source E-
Learning Systems, 20th European Conference on Systems, Software and Services Process Improvement (Eu-
roSPI 2013), CCIS Vol. 364, Springer-Verlag, June 2013 pp. 60-71.

An Analysis of the Software Development Processes of
Open Source E-Learning Systems

Aarthy Krishnamurthy1, Rory V. O’Connor2

1School of Electronic Engineering, Dublin City University (DCU), Dublin Ireland.
aarthy.krishnamurthy2@mail.dcu.ie

2School of Computing, Dublin City University, Dublin Ireland
roconnor@computing.dcu.ie

Abstract. In recent years there has been a rapid increase in demand for e-learning
systems. The software development process plays a crucial role in the design and
development of a high-quality e-learning system. However, to date, there is no
comprehensive comparative study of open source software (OSS) development
process for different OS e-learning systems. This hinders the development of a
generalized OSS development process, a key requisite for rapidly developing high-
quality OS e-learning systems. This paper provides a full analysis of different ex-
isting and successful OS e-learning software systems and the best practices fol-
lowed in the e-learning development. In particular, this paper investigates the
software development activities of Moodle, Dokeos and ILIAS. An activity flow
representation that describes their current development practices is constructed in-
dividually for all three OS e-learning systems. Further, a comprehensive compara-
tive analysis is carried out that leads to an explicit identification of various devel-
opment stages of the three OS e-learning systems.

Keywords: Activity flow diagram, e-Learning, open source software, software develop-
ment processes.

1 Introduction

E-learning can be broadly defined as transfer of knowledge and skills electronically,
through different communication medium and devices [1]. Further, in e-learning sys-
tems, the learner is not always at a fixed, predetermined location. The learner can take
advantage of the opportunities offered by mobile technologies [2]. The principal benefit
is the ability to provide users the flexibility of learning and efficiently communicating
anytime and from anywhere.

There are many e-learning systems that are developed successfully (Moodle, ILIAS,
Blackboard, etc). They are developed either as open source software (OSS) or as closed
source software (CSS) systems. Most of the commercial CSS have been developed based
on either a traditional software process or some form of tailored traditional process, in
order to accommodate local needs. These development processes have associated stand-
ards/guidelines that are followed for high quality software development. On the other

hand, OSS systems are developed by a community of like-minded developers, who are
geographically distributed, yet work together closely on a specific software product [5].

OSS development (OSSD) has gained significant attention in recent years and is
widely accepted as reliable products (e.g. Moodle, Apache, Linux, etc.). In today’s
times, the educational pattern evolves continuously with time. Hence, in order to keep
pace with this evolution, the next generation e-learning systems need to evolve with the
educational patterns. Before developing a generalized OSS process for e-learning sys-
tems, it is imperative to analyze and understand the existing and successfully running OS
e-learning systems. To the best knowledge of authors, there has been no comprehensive
study of the development activities of different OS e-learning systems. Hence, this paper
carries out this study. In particular, this paper focuses on the development activi-
ties/process of three successful and highly popular OS e-learning systems - Moodle,
ILIAS and Dokeos.

The development activities of these three OS e-learning systems were identified us-
ing two different approaches.

i. The first approach was to collect information from their websites, blogs, wiki pages

and/or from any social network/media used by the community to broadcast the infor-
mation. In addition, information was also collected from bug tracking system (or any
other tracking systems), as some of the OSS communities track each of its develop-
ment activities in such systems.

ii. The second approach was adopted only when the information collected from the first

approach was either incomplete and/or ambiguous. It is a direct method wherein,
questions were posted in public OSS community forums. The idea was to seek re-
sponse directly from the community members, either through the same forums or
through e-mails/private messages. However, the main disadvantage of this approach
was that, there was no clear consensus from the contribution of the community mem-
bers, on many occasions. In such scenarios, separate e-mails had to be sent to the core
members and other experienced developers within the OSS development communi-
ties. This helped in identifying many nuances of the current development activities.
Importantly, no analysis was done until all the information was gathered. This was
strictly followed to avoid any ambiguity due to incorrect assumption of the current
development practices.

Once the information on the development practices of each of the three e-learning sys-
tems was gathered, an in-depth analysis was carried out. The results of the analysis were
then modeled using activity flow diagrams. The activity flow diagram representation was
used because it provided a dynamic aspect of an overall flow of the development prac-
tices followed by the OS communities. The activity flow diagram was preferred over
other approaches like state diagrams and event driven process diagrams as it would indi-
cate an overall flow of activities carried out within the community for its software devel-
opment.

The paper is organized as follows: Section 2 describes in detail the development ac-
tivities of the each of the three OS e-learning system. Subsequently, section 3 compares
the development practices of the three e-learning systems. Finally, Section 4 provides a
brief conclusion along with the next research steps in this direction.

2 DEVELOPMENT ACTIVITIES

Over the years, the development activities of OSS have become openly visible to all and
the development artifacts are publicly available over the web. Further, there is little need
for formal project management, virtually no budget and often a very flexible schedule.
OSSD is oriented towards the joint development by a community of developers [6]. All
the three systems considered for analysis in this paper are OSS and follow their own
development practices. In this paper, they are investigated through a case-study since
there is very little literature available that discusses the OS e-learning systems and their
development activities. The case study approach was selected as it will result in a de-
tailed analysis of the developmental activities; thereby leading to comparisons which
would help in understanding the similarities and differences on the practices followed by
OS e-learning system development community. All three selected OS e-learning systems
are quite popular worldwide and importantly, receive significant and frequent contribu-
tions from volunteers for performing various development activities regularly. The de-
velopment activities of Moodle, ILIAS and Dokeos are described as follows.

2.1 Development Activities of Moodle

Moodle stands for ‘Modular Object-Oriented Dynamic Learning Environment’ and is
one of the early and most successful OS e-learning platforms which follow strong peda-
gogical principles. It has the largest user-base and has the benefit of having the largest
market share and highest satisfaction in small companies, educational institutions and
government organization’s LMS [3]. The different activities of Moodle development are
shown in Fig. 1. It should be noted that Moodle does not have a clear bifurcation be-
tween various development stages. Contrastingly however, the development always
starts with selecting the right candidate feature [7].

The first step of development involves selecting the right candidate feature. For se-
lecting a candidate feature, the community pools the entire feature requests raised in the
Moodle moot discussions, user’s feature request from forums and feature request from
moodle vendors. These candidate features are then voted for entering into the release
roadmap list.

Any developer interested in developing the new feature listed in the release road map
could initiate a discussion with other fellow community developers, in order to ensure
that no one else is working on that requirement/feature. The developer(s) would then
discuss their ideas with others, confirm the merits and the need for the particular feature,
and importantly, evaluate theirs and other’s ideas. Once the feature is selected for devel-
opment by a Moodle developer, he/she is expected to come with design documents along
with other specification documentations. These documents are then posted in the Moodle
wiki. In addition, a tracker item is created for the feature and assigned to the developer.
Subsequent changes are then carried out, based on the feedback received by the develop-
er in the respective documents which are then updated in the wiki. Once the changes
made are agreed by the Moodle community, the developer begins coding. When the
development is completed or a major milestone is reached, it is the responsibility of the
developer to advertise the feature for testing. Testing could be done by interested candi-
date(s) within the Moodle community. Subsequently, any bugs found are then reported

and fixed. It is then integrated with the main version of Moodle and then released as a
new version, which would be open and freely available.

Candidate
requests are

pooled

Selection of
feature for

development

Discuss, develop
and refine

specification
document

Is specification
clear?

Implement the
feature

Test for bugs to
be fixed

Merge code.

Validation by
the community

Add feature to
the major
release.

Fig. 1 Activity flow representation of Moodle

Additionally, a tracker item is created for the feature and assigned to the developer.
Subsequent changes are made, based on the feedback received by the developer in the
respective documents which are then updated.

2.2 Development Activities of ILIAS

ILIAS stands for Integrated Learning Information and co-operAtion System). It is a pop-
ular web based learning management system (LMS) / OS e-learning systems and com-
prises of six stages of development [8]. They are; Vision/Concept, Specification, Imple-
mentation, Documentation, Testing and Release & Maintenance. In each of these stages,

the OSS community performs various developmental activities which can be observed
clearly in Fig. 2. The details of each stage are described as follows:

• Vision/Concept Stage: This is the first stage of development wherein, ideas are
proposed and published in wiki. The core development team will then decide on
how to start the development. If the idea is already been put on to the feature
wiki, people with similar interest are requested to work with them and develop
the feature collaboratively.

• Specification Stage: In this stage, all major development is expected to have
corresponding use cases or mock up screen-shots. For other minor develop-
ments/enhancements, developers would start with the feature wiki where it will
describe the feature in detail, the purpose, etc.

• Implementation Stage: The third stage which is the implementation stage,
where the coding/programming is done by the developers. Each module that is
developed in this stage is tested by the developer who also fixes the initial bugs
that comes across. Further, the developer would either perform a unit-testing us-
ing PHP Unit, or get it done by a tester. Subsequently, the code is then merged
with CVS.

• Documentation Stage: There are two types documentation prepared for a feature
developed for ILIAS - technical documentation and user documentation. The
technical documentation consists of the class and functional documentation gen-
erated by PHP Doc. The user documentation will be mainly instructions for the
average user on how to use it. The user documentation is only released at the
time of release of the product.

• Testing Stage: The testing stage mainly follows the implementation stage. In
this stage, once the unit-testing and code merger is done, an alpha release is car-
ried out for further testing and bug fixing. It is the responsibility of the developer
to appoint a tester to test the module developed by him. If the developer is un-
successful in finding a tester to test his/her module, then the core team would
carry out the required testing. However, in any case, the developer himself can-
not be a tester for his own developed module

• Release Stage: The final stage during the development is the release stage
wherein, the new modules that have undergone alpha testing are released under
the beta version. Errors/bugs encountered after the beta release are then entered
into the bug tracker (Mantis bug tracker). These bugs are then fixed and released
as the main stable version.

Idea are
Proposed.

Implementation.

Is unit testing
successful ?

Core team
selects

proposals.

Develop
specification.

Is Alpha testing
successful?

Module is
released

Technical and
user

documentation

Alpha release

1

2

3

4

5

6

Fig. 2 Activity flow representation of ILIAS

2.3 Development Activities of Dokeos

Dokeos is developed both as commercial and OSS version. The development of OSS
version is the responsibility of the Dokeos community – from initiation of idea through
release. Although there are two different existing systems, the OS version does provide
all the basic features for free without any licensing cost to its users.

Dokeos community does not follow any defined stages as in ILIAS, but often, they do
perform some activities in a particular order as shown in Fig. 3. Development of a feature
starts with feature selection where the selected feature is added to the roadmap for devel-
opment. The feature is then developed by the community of developers. The features are
first tested before it is given it to the users for further testing. Any anomaly, if and when
found are fixed and passed on to the users for user testing.

Different features
are requested for

development

Feature
Implementation

Is unit testing
successful ?

Are users
satisfied?

Feature is
released

User testing

Feature is
selected for

implementation

Fix

An
om

ali
es

Bu
gs

 ar
e r

ep
or

ted
 an

d f
ixe

d

Fig. 3 Activity flow representation of Dokeos

The users would test the developed feature and if there is any bug(s), it would be re-
ported. These bugs are then fixed and sent to the user again for testing. Once the user is
satisfied with the features, they are subsequently released to the community as a stable
version. All the users could then download it for free and use the same.

3 Comparison of OS E-Learning System Development Practices

The individual analysis of the three OS e-learning systems carried out in section 2 pro-
vided details and insight into the different activities carried out at different stages of
development. Notably, the manner in which each stage is carried out would depend en-
tirely on the expertise, experience and availability of resources and skills. There are dis-
tinct similarities and differences between Moodle, ILIAS and Dokeos on different as-

pects. These are summarized in Table 1. The comparative analysis begins with differ-
ences in number of developmental stages. The common developmental activities in each
of the stages are then compared, based on different factors like, how it has been per-
formed, who performs it, etc. Each of these differences and similarities are discussed
briefly and is described as an observation and critique.

Table 1 Comparison between three OS e-learning system development

 Moodle ILIAS Dokeos

Number of
development
stages

Do not categorize
development stag-
es

Does categorize six
development stages

Does not categorize
stages

Who validates
the proposed
idea

Anyone can vali-
date the idea and
comment on it

Only the core team
validates the pro-
posed idea

Does not validate the
proposed idea at this
stage

Detailed devel-
opment plan

No plan is pro-
duced

No plan is pro-
duced No plan is produced

Person(s) re-
sponsible for
development

A person who
volunteered ini-
tially & the team
that was formed
latter on the fly.

A person who vol-
unteered initially &
the team that was
formed latter on the
fly.

Any interested volun-
teer engages in devel-
oping the software.

Testing Anyone can test at
any time.

Anyone can test at
anytime.

Anyone can test till the
product is released.

Release
Two stage release
process is fol-
lowed.

Two stage release
process is fol-
lowed.

Once the testing is done
& bugs are fixed, the
product is released.
There is no beta re-
lease.

• Number of Software Development Stages

Observation: In ILIAS, it is easy to identify different development stages /phases
during development. However, Moodle and Dokeos do not categorize different soft-
ware development stages, even though it has many tasks similar to ILIAS.

Critique: Having defined stages or phases of development are important as it aids in
easy tracking of the development activities as well as assists in planning and testing
different phases independently.

• Scrutiny of the Proposed Idea

Observation: New ideas proposed to Moodle and ILIAS is scrutinized immediately
after its proposal. At the same time, there is one major difference between Moodle

LMS
Parameters

and ILIAS. In case of Moodle, anyone who is interested in the new idea, including
the core team, co-developers, testers, users, etc. can read the proposal document and
comment on it. Based on the received feedback, the core team or the core members
will signal the development. However, in case of ILIAS, only the core members will
review the idea/feature and would decide its future. On the other hand in Dokeos,
specifications are not detailed or developed for idea scrutinization.

Critique: Assessing the features credibility and need even before the specifications
are developed might lead to inappropriate judgment with regard to the features need
and importance.

• Person(s) Responsible for Specification/Scrutiny

Observation: In case of Moodle, the entire community could scrutinize the specifica-
tion by reading the proposal document and commenting on it. Based on the feedback
the core team/ members would either agree/ disagree with the idea. On the other
hand, as compared to Moodle, ILIAS has a different approach. In case of ILIAS, only
the core members would scrutinize the idea/feature decide its future. On the other
hand, Dokeos does not have any such activity and therefore the community is not re-
sponsible for the same.

Critique: Being open source and built by users for users, the specification validation
should be kept open. This will make sure that the specification is acceptable from the
OSS user’s point of view. This is very important because, in all cases, development
happens based on the specification. If the specification happens to be wrong, then the
developed feature would go wrong. This is true for all the software products includ-
ing OS e-learning systems, irrespective of the development method followed.

• Developmental Plan

Observation: In all three systems i.e., Moodle, ILIAS and Dokeos, there are no ex-
plicit plans portrayed for its development. It is the responsibility of the person in-
charge to develop the feature as agreed upon. At the same time, it is the individual or
team’s responsibility to answer all queries regarding the module/feature develop-
ment.

Critique: Even though having a defined plan is beneficial in tracking the develop-
ment; it is very complicated to come up with plans and follow it strictly in the OSS
environment where the volunteers develop the product during their free time.

• Person Responsible for Development

Observation: In Moodle and ILIAS the person who agreed to develop the feature
takes responsibility of its implementation. Further, the team formation happen on-
the-fly based on the personal interest of the community member(s). If anyone is in-
terested in its implementation, testing, documentation, etc. they volunteer to the
working group/person.

Critique: Even though having a defined plan for developing a feature may seem to be
a ‘failsafe’ approach, it is not practical to follow such a structure in an OSS environ-
ment. This is especially so, when a feature is developed by geographically distributed
community members who volunteer to do the same in their spare time not just for
themselves but also for others.

• Testing

Observation: In all the three OS e-learning systems, any individual from the commu-
nity who is interested in a particular feature can test the developed code for any po-
tential bug(s). However, there is one notable difference. In case of Moodle and
ILIAS, the common ground testing could be carried out even after new versions are
released. On the other hand, in case of Dokeos, this type of common ground testing
could be done only till the product is released.

Critique: Testing is one of the important activities in producing a quality software
product. OS software products are usually well-tested due to the large number of us-
er-base/testers, who are geographically distributed, have varied skill sets and could
test the module/feature independently.

• Product Release

Observation: A two-stage testing process is employed in case of Moodle and ILIAS.
Once the initial testing is over, both Moodle and ILIAS release their features as a
‘beta’ version. Subsequently, this is tested again. Once the testing is completed, the
features are then finally released along with other items as final version of the major
product release. On the other hand, Dokeos does not have any beta release. The fea-
ture(s) are tested by users/community once it is developed and the bugs are reported.
Once the encountered bugs are fixed, the feature is subsequently released.

Critique: Having a beta test stage will enable identification of problems before the
integration to the stable version. This would potentially save any additional costs (in
most cases it’s the time spent by the OSS community) that might have to be incurred
if the stable version is corrupted.

4 CONCLUSION

This research work carried out a detailed individual analysis and a comprehensive com-
parative analysis of the development activities in the three major open source e-learning
systems - Moodle, ILIAS and Dokeos [11]. The results of the analysis were presented
using an activity flow diagram representation. The comparison demonstrated the clarity
and explicitness of each development stages carried out in the three OS e-learning sys-
tems. Further, for any differences identified in the development practices, a correspond-
ing critique has been presented. This resulted in a better understanding of the best prac-
tices followed in the three OS e-learning environment.

Significantly, there were two major limitations encountered in the activity flow repre-
sentation. Firstly, it did not identify the actors involved in carrying out various tasks and
secondly, it did not explicitly specify the outcome of a development activity. Hence, hav-
ing identified the different development stages, the next step in the design of generalized
OSSD process for e-learning systems would be to construct a high level abstract model
which would focus on the actors performing the activity and their outcome.

Acknowledgment
The author would like to thank Irish Research Council (IRC) - Embark Initiative Pro-
gram for their support.

References

 1. Tavangarian D., Leypold M., Nölting K., Röser M.,(2004). Is e-learning the Solution for Individual
Learning, Journal of e-learning, 2(2).

2. MOBIlearn, 2003. Guidelines for learning/ teaching/ tutoring in a mobile. Technical report [online].
Available from: http://www.mobilearn.org/download/results/guidelines.pdf..

3. Steve Wexler, Lance Dublin, Nancy Grey, Sheila Jagannathan, Tony Karrer, Margaret Martinez, Bob
Mosher, Kevin Oakes, and Angela van Barneveld, 2007. “ LEARNING MANAGEMENT SYSTEMS (LMS)” in
GUILD Research 360 degree report. Available from:
http://www.elearningguild.com/research/archives/index.cfm?id=120

4. Clarke, P. and O'Connor, R. 2010. Towards the identification of the influence of SPI on the successful
evolution of software SMEs IN Dawson, et el (eds.). Proceedings of the 18th Int. Conf. on Software Quality
Management.

5. W.Scacchi et. Al., “Understanding Free/Open Source software Development Process”, Softw. Process
Improve. Pract, 11, 2006.

6. W.Scacchi, “Software Development Practices in Open Source Software Development communities: A
Comparative Case Study”, 1st workshop on Open Source Software Engineering, May 2001.

7. Moodle. 2011. Moodle Development: Overview [online]. Available from:
http://docs.moodle.org/en/Development:Overview.

8. ILLIAS. 2011. ILIAS Development Guide [online]. Available from:
https://www.ilias.de/docu/goto_docu_lm_42.html.

9. Sakai, 2011. Sakai development work. [online]. Available from:
https://confluence.sakaiproject.org/display/MGT/How+Sakai+Development+Works.

10. Nichols, D.M. and Twidale, M.B. 2003. The usability of open source software. First Monday, 8(1).

11. Krishnamurthy, A. and O’Connor, R. V. Using ISO/IEC 12207 to Analyze Open Source Software
Development Processes: An E-Learning Case Study, In: Woronowicz, T., Rout, T., O'Connor, R.V., and
Dorling A.. (eds.) SPICE 2013. CCIS, vol. 349, pp. 107–119. Springer, Heidelberg (2013)

