Human Pose Estimation from Depth Image
Using Visibility Estimation and Key Points
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Abstract. In this paper, we propose the upper body pose estimation
algorithm using 3-dimensional model and depth image. The conventional
ICP algorithm is modified by adding visibility estimation and key points
- extreme points and elbow locations. The visibility estimation keeps
occluded points from participating in pose estimation to alleviate the
affection of self-occlusion problem. Introduction of extreme points and
elbow locations, which are extracted using geodesic distance map and
particle filter, improves the accuracy of pose estimation result. The opti-
mal parameters of the model are obtained from nonlinear mathematical
optimization solver. The experimental results show that the proposed
method accurately estimates the various human poses with self-occlusion.
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1 Introduction

In Human Computer Interaction (HCI), introduction of gesture recognition pro-
vides more intuitive and convenient user interfaces than what traditional input
devices do such as keyboards and mouses, etc. Since the recognition task is based
on human poses, accurate estimation of the pose is an important prerequisite.
Many research efforts have been made can be classified into two categories:
marker-based methods and vision-based methods using RGB image sensor. The
marker-based pose estimation methods which have been used in mainly film in-
dustry need burdensome suits or markers. Although estimation of pose using
RGB image sensor is always preferred due to its convenience of data acquisi-
tion, loss of depth information during projection onto 2D image plane is a major
hurdle for the pose estimation. Recently, pose estimation using depth image has
been popularized by the Kinect sensor. Depth sensors are robust to variations
of visual appearances such as illumination, texture, etc. The advantage of depth
sensors and easy access of depth sensors lead vivid research on human pose
estimation.

Shotton et al.[I] proposed a method of pose estimation using random forest[2]
to segment an observed depth image into distinct body parts. Hemandez-Vela
et al.[3] augmented graph-cut optimization to the method of Shotton et al.[I] to
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improve the segmentation performance. The learning based approaches require
large amount of database to cover the variety of human poses, and also have
potential dependency on the database. The method proposed by Grest et al.[4]
is based on the ICP (iterative closest point) algorithm to fit a body model to the
depth image. Plagemann et al.[5] and Schwarz et al.[6] extracted anatomic key
points from the depth images. However, depth cues, extensively used by Grest et
al.[4] and the sparse key points[5][6] are prone to getting stuck into local minima
in depth image and self-occlusion that are common in human pose.

In this paper, we define a 3-dimensional human upper body model and propose
a pose estimation scheme by finding the optimal parameters, in order to alleviate
the disadvantages of learning-based methods. To keep model parameters from
deterioration due to the self-occlusion, visibility of a body part is continuously
evaluated. Also, the local minima problem is effectively handled by inclusion
of key points — extreme points and elbow joints - into the objective function.
The optimal parameters are obtained by solving the mathematical optimization
problem, similarly to the conventional ICP[7].

2 Human Pose Estimation Method

Given a sequence of depth images, a scheme of model based human pose esti-
mation is described in this section. The articulated 3D body model is defined
and nonlinear optimization is applied to the problem using a modified ICP algo-
rithm. Unlike the conventional ICP algorithm, the modified version contains the
visibility term and additional key points. Detailed description on the optimiza-
tion method of the modified ICP algorithm and estimation of the key points are
presented in the following sections.

2.1 Human Upper Body Model

In this paper, human upper body is prototypically modeled as concatenation
of head, torso, and left/right arms as in Figure [[I To represent curvature of
human body parts, the models of head and torso take on an elliptic cylinder
and a cone, respectively. The arm model takes on a folding line to represent the
flection of the elbow. The entire upper body model has 17 DOF: the transla-
tions of head, torso, and the angles of torso, shoulders and the elbow flection
(theads btorsos Otorsos @arm., eibow ). The sample points of each model of body parts
are arranged in a regular grid and exploited to estimate the pose.

The pose of the articulated 3D model is assumed to be described by similarity
transformation S(0,t), which contains rotation and translation. Figure 2l shows
the conceptual projection process of the torso from 3D space onto 2D depth image
plane d(z,y), performed by a depth sensor. Since intrinsic and extrinsic parame-
ters of the depth sensor are fixed, the pose is solely determined by 6 and t.
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Fig.1. The proposed 3- Fig. 2. Conceptual projection process of torso
dimensional human body model model with similarity transform and projection
matrix

2.2 Modified ICP Algorithm

In our implementation, we made modification of the ICP algorithm which has
shown successful results in human pose estimation[4] [8][9][10] [11]. The modified
ICP algorithm is to find 8* and t* which minimize the squared distance between
the transformed model points S(x1;0,t) and the corresponding depth measure-
ment d; = d(P(S(x;;6,t))). The resulting objective function to be minimized
has a form of

N
Jricp = Zgi di = Zi)? (1)
i=1

where N, x;, Z; and g; represent the number of model points, i-th model point,
depth of the transformed model point of x; and the corresponding visibility
function, respectively.

Self-occlusion occurred in human body pose estimation can be detected by
comparing Z; with the corresponding depth measurement d;. The visibility func-
tion g; is determined as (2],

o 0, | dl — Zz |< C
9i =91 otherwise

| (2)
where c¢ is a criterion for division. If the model point is occluded by another
body part, the similarity transformed model point S(x;; @, t) is farther than the
threshold ¢ compared to the corresponding depth value d;, and the g; is set to be
zero. In case self-occlusion occurs, the occluded model point needs to ge ignored
in estimating 0 and t. When self-occlusion is not considered, estimation of the
parameters is seriously affected by wrong measurement, d;. Figure B shows the
role of visibility estimation. In Fig. the torso model is heavily affected by
self-occlusion and this makes the arm pose not to be estimated properly. Figure
shows that the problem of self-occlusion can be handled by the visibility
estimation. In Fig. the sample points on torso model that are occluded by
the arm are eliminated from calculating the optimal parameters. Consequently,
the pose is estimated properly without occluded points.
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(a) Torso pose estimation without (b) Torso pose estimation with visibility
visibility estimation:the torso model estimation:the torso model is estimated

is affected by self-occlusion and is not properly with visibility estimation

estimated properly

Fig. 3. Role of the visibility estimation

2.3 Key Points from Geodesic Distance Map and Using Particle
Filter

The parameter estimation by the conventional ICP tends to be trapped in a local
minimum, as shown in Fig. For more stable and reliable pose estimation,
addition of extra key points[5][6] has been taken into account. In [5][6], they
extracted key points based on the geodesic distance from the center of mass of
the body. However, if the path from the center of the mass to an extreme point
is cut off because of self-occlusion, the position of the extreme point cannot
be determined properly. Based on the fact that torso parameters are relatively
reliable than the others, locations of shoulders are easily determined. Unlike the
method of [5][6], We are able to measure the geodesic distance from shoulders
to extreme points even if the path from the center of mass to extreme points are
occluded.

Euclidean distance between adjacent pixels w and v in 3D space is given by

u v

Hd(u) )|’ ®)

de(u,v) =

and the geodesic distance between two point s, is then

dy(s,t) = Z de(u,v) (4)

(u,v)CPs,t

where P; 4 is the shortest path between s and ¢t. Considering the initial direction
of the path, the extreme points are distinguished from each other. Reducing the
distance between the estimated position of extreme point and the tip of the arm
model participates in objective function as (Bl). Figure dl shows the position of
estimated extreme points. The geodesic distance from shoulder is displayed in
left column of Fig. @ By considering the direction of geodesic distance to the
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extreme point and using non-maximal suppression, left /right extreme points are
extracted as shown in right column of Fig. 4l

Besides the extreme points, the location of elbows takes significant role in
estimating arm model parameters. Generally, the arm model is easier to lose the
actual arm pose and stuck in local minimum than the torso and the head models
because of its relatively large degree of movement of arm.

Therefore, estimating elbow location takes large advantage of improving ac-
curacy. The particle filter is well known as a means for tracking nonlinearly fast
moving objects due to its stochastic nature[I2]. Kim and Kim[10] proposed a
method of tracking limbs using the ICP and the particle filter. In this paper, the
elbow location is estimated by particle filter based on distance from shoulder in
geodesic distance map.

Particle filter estimates the unknown state e;, which is the location of a
particle on the image plane, from the observation l1.; = {l1,...,1;} of which
each element refers the distance from shoulders to the particle. Then the pos-
terior density p(e¢|l1+) are approximated with a sum of N, weighted particles
{egi), wii)}]'vp with Zf\i’l wt(i) = 1. The general procedure of the particle filter

is followed: resampling, prediction, and update steps. Since the elbow location
can move arbitrary, the particles are drawn and regenerated by uniform state
transition model in prediction step. In update step, the weight of each parti-
cle is updated based on the observation likelihood as wgi) x p(lt\egi)). Figure
shows that the elbow location estimation encourages the model to escape local
minimum.

The objective function to be minimized is defined as combination of conditions
mentioned in the previous sections.

J = JI?VP + Jeactreme + Jelbow
2 2 2
Zi:l 9i - |dz - Zi| + Zj:l {peactreme,j - S(xeactreme,j; 97 t)} (5)
2 2
+ Zj:l {pelbow,j - S(Xelbow,j; ea t)}
where Pegztreme and Peiporw are estimated position of extreme point and elbow

location in 3D space, respectively. Letting ® = [07,t7]T, the optimal solution
®* can be obtained by finding the parameters minimizes J as (@l).

®* = argmin J (6)
e

2.4 Nonlinear Optimization

Since the objective function given in (B is highly nonlinear due to the nature of
human pose and the visibility function g;, optimization of the objective function
is performed in an iterative manner. Though the simplest and straightforward
method of optimization is gradient descent[13], i.e. ® + @ —nV.J(O), excessive
number of evaluating the gradient VJ(®) results in slow convergence. Moreover,
difficulties in specifying the value of 7 is another reason to step aside from the
gradient descent method.
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Fig. 4. Estimated extreme points based on the geodesic distance from shoulders: by
considering the initial direction, the right hand is distinguished from the left hand

(a) Arm pose without elbow location es-
timation:the arm model stuck in a local
minimum

(b) Arm pose with elbow location esti-
mation:with assistance of elbow location,
the arm model escaped a local minimum

Fig. 5. Role of elbow location estimation
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Therefore, we employed Gauss-Newton method[I3] for the optimization.
Gauss-Newton method is one of variations of Newton’s method and is widely
used for data-fitting problems as (). For brevity of description, (B is rewritten
in a least square form,

JO)=rTr, r=[r,...,ry)(M=N+4) (7)

where the residual r is a column vector containing the scalar components of
Jrop, Jewtreme and Jeppow. As given the objective function, the gradient V.J(©®)
and the Hessian matrix H of J(©) can be represented as,

VJ(©) = 2(3(8))"(®) (8)
H = 2(3(©)7J(O) + S(©)) (9)

where J(©) refers the Jacobian matrix and S(@) refers the matrix whose (k, j)th

component is
M

627“,'
(© . 10
Unlike the Newton’s method, r is assumed to be linear in the Gauss-Newton
method, i.e. 9?r/90x0; = 0. Then, the second derivatives in the Hessian matrix
of J (®) vanishes and the Hessian matrix is approximated by

H=230)TJ®). (11)

The approximation of Hessian matrix in (Il effectively eliminates the well-
known instability problem of the Newton’s method. At each Gauss-Newton it-
eration, update of ® is calculated by

ekt — @ _H V.J(O). (12)

In spite of the Gauss-Newton method, occasional divergences of solution are ob-
served in our experiments. Therefore further relaxation of iterative optimization
is used by employing w-Jacobi method[I4]. Solving ([I2)) by the classic Jacobi
method, the approximated Hessian matrix H is decomposed into a diagonal
matrix D and the off-diagonal matrix O,

H=D+O. (13)

Difference between the Jacobi method and the w-Jacobi method is the introduc-
tion of an additional relaxation factor w which controls contribution of a new
solution to the previous solution. The w-Jacobi method is described as

e+l — (1 —w)D"'VJ(®) - wD 00, (14)

Since D~! is a diagonal matrix, multiplication of D! and vectors in ([4) are
simply computed by component-wise division.

In the w-Jacobi method, trade-off between the convergence speed and the
stability of iterative solution is largely dependent on the relaxation factor w.
When w > 1, convergence becomes faster than the standard Jacobi method but
suffers from instability, and vice versa. In our implementation, we took w < 1 to
prevent the divergence in the iterative optimization.
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Fig. 6. Human pose estimation results:left column shows the result of pose estimation
on depth image. Middle and right columns present the 3D pose corresponding to the
left column.
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3 Experimental Results

The proposed algorithm is evaluated in various human poses including self-
occlusion and the estimation results are described in this section. The microsoft
Kinect device was used to take depth images with a resolution of 640x480 pix-
els. As preprocess procedures, a modified mean filter and a Gaussian filter are
applied to depth image for removing noise and smoothing.

FigureBlshows the pose estimation results on depth images. In the left column,
the estimated upper body model is displayed in 2D depth image. Occluded body
and arm model points are marked blue and cyan respectively. 3D views of each
pose are displayed in center and right columns, respectively. Figure[6l(a) presents
the accuracy of pose estimation. The model is estimated accurately not only the
pose of arm but also the the angle of body. Figure Blb) and Blc) shows that
the visibility estimation prevents torso model to be affected by occlusion. As
stated in the previous section, the torso model points that is occluded by the
arm are rejected in estimation of torso model for accuracy. Figure [B(d) and [6l(e)
illustrate the pose estimation results overcoming the situation that the upper
arm is occluded by the lower arm. Not only the visibility function but also
well estimated elbow locations and extreme points, the arm pose is estimated
properly in spite of occlusion.

4 Conclusion

This paper has proposed a method for estimating human pose from sequences
of depth images. We define a 3-dimensional human upper body model and esti-
mate the parameters of the human pose using the modified ICP algorithm with
visibility estimation and key points. Our model based algorithm does not re-
quire any training data and can estimate arbitrary pose for gesture-based HCI
application. Because of visibility estimation, the model based pose estimation
overcomes the self occlusion problem by neglecting occluded sample points. Key
points obtained from geodesic distance map improve accuracy of arm pose esti-
mation. The experimental results show that our method estimates various upper
body poses in accuracy, including self-occlusion.
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