
A Biological and Real-Time Framework

for Hand Gestures and Head Poses

Mario Saleiro, Miguel Farrajota, Kasim Terzić, João M.F. Rodrigues,
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Abstract. Human-robot interaction is an interdisciplinary research area
that aims at the development of social robots. Since social robots are ex-
pected to interact with humans and understand their behavior through
gestures and body movements, cognitive psychology and robot tech-
nology must be integrated. In this paper we present a biological and
real-time framework for detecting and tracking hands and heads. This
framework is based on keypoints extracted by means of cortical V1 end-
stopped cells. Detected keypoints and the cells’ responses are used to
classify the junction type. Through the combination of annotated keypo-
ints in a hierarchical, multi-scale tree structure, moving and deformable
hands can be segregated and tracked over time. By using hand templates
with lines and edges at only a few scales, a hand’s gestures can be recog-
nized. Head tracking and pose detection are also implemented, which can
be integrated with detection of facial expressions in the future. Through
the combinations of head poses and hand gestures a large number of
commands can be given to a robot.
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1 Introduction

With the advent of newer and more complex technologies has come an increas-
ing effort to make them easy to use. Some years ago computers were only used
by specialized technicians, but nowadays even young children and elderly can use
complex technology with great ease. The way how we use computers, cell phones
and other devices has drastically changed because we began to research and imple-
ment natural ways of interacting with them. Part of that research effort consists
of the analysis of humans and their actions such that machines and software may
be designed to match our natural behaviors. One of the areas of interest for such
interpretation is the recognition of human gestures, as they are used as a natural,
intuitive and convenient way of communication in our daily life. The recognition
of hand gestures can be widely applied in human-computer interfaces and inter-
action, games, human-robot interaction, augmented reality, etc.

Gesture analysis and recognition has been a popular research field for some
years and numerous approaches have been developed. Interest in this area has
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spiked since the advent of low-cost and very reliable depth-based sensors like the
Kinect [12,15]. Although many gesture-based interfaces have been developed, to
the best of our knowledge none of them is biologically inspired. Most of them
are based on traditional methods from computer vision.

A method for hand tracking and motion detection using a sequence of stereo
color frames was proposed by Kim et al. [6]. Another approach, which consists
of the recognition of gestures by tracking the trajectories of different body parts,
was developed by Bandera et al. [1]. In this method, trajectories are described
by a set of keypoints and gestures are characterized through global properties of
those trajectories. Suk et al. [13] devised a method for recognizing hand gestures
in continuous video streams by using a dynamic Bayesian network. Suau et
al. [12] presented a method to perform hand and head tracking using the Kinect.
One- and two-handed gestures are also recognized by analysing the trajectories
of both hands. Also using the Kinect, Li [15] presented a method that is able to
recognize nine different gestures and identify fingers with high accuracy.

Although some methods do work fairly well for a specific purpose, they may
not be suitable for a more profound analysis of human behavior and gestures
because these are very complex. In this paper we complement a biological and
real-time framework for detecting and tracking hands [4] with head movements.
This framework is based on multi-scale keypoints detected by means of models
of cortical end-stopped cells [7,9]. Cell responses around keypoints are used to
classify the vertex type, for creating annotated keypoints [3]. The model has been
extended by multi-scale line and edge information, also extracted by models of
cortical cells. We also developed a model for optical flow based on annotated
keypoints [4]. By integrating optical flow and annotated keypoints in a hierarch-
ical, multi-scale tree structure, deformable and moving objects can be segregated
and tracked over time.

Hand and gesture recognition is obtained by using a simple line and edge
template matching algorithm which relates previously stored templates with the
acquired images across two scales. By using only five hand templates with lines
and edges obtained at two different scales, a hand’s gestures can be recognized.
By tracking hands over time, false positives due to complex background patterns
can be avoided. We also focus on head movements because they too can be an
important part of human-robot interaction. When combined with the recogni-
tion of facial expressions (ongoing work) it will provide invaluable information
for natural human-computer and human-robot interaction. Our framework ad-
dresses the most common movements: leaning left/right and nodding (up/down)
(shaking left/right is ongoing work). These can be used to give feedback to a
robot, expressing doubts or affirming or criticizing actions, respectively. By com-
bining a few head movements with hand gestures, a large number of instructions
can be given.

The developed system does not require any prior calibration. Since the cell
models have been optimized for running on a GPU, a speed of about 10 frames
per second can be obtained, which is fast enough for real-time applications.
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2 Multi-scale Lines, Edges and Keypoints

In cortical area V1 we find simple, complex and end-stopped cells [9], which are
thought to play an important role in coding the visual input: to extract multi-
scale lines and edges and keypoint information (keypoints are line/edge vertices
or junctions, but also blobs).

Responses of even and odd simple cells, corresponding to the real and imagin-
ary parts of a Gabor filter [9], are denoted by RE

s,i(x, y) and RO
s,i(x, y), i being

the orientation (we use Nθ = 8). The scale s is given by λ, the wavelength of the
Gabor filters, in pixels. We use 4 ≤ λ ≤ 20 with Δλ = 4. Responses of complex
cells are modeled by the modulus Cs,i(x, y) = [{RE

s,i(x, y)}2 + {RO
s,i(x, y)}2]1/2.

The basic scheme for line and edge detection is based on responses of simple
cells: a positive or negative line is detected where RE shows a local maximum or
minimum, respectively, andRO shows a zero crossing. In the case of edges the even
and odd responses are swapped. This gives four possibilities for positive and negat-
ive events. An improved scheme [9] consists of combining responses of simple and
complex cells, i.e., simple cells serve to detect positions and event types, whereas
complex cells are used to increase the confidence. Lateral and cross-orientation
inhibition are used to suppress spurious cell responses beyond line and edge ter-
minations, and assemblies of grouping cells serve to improve event continuity in
the case of curved events. We denote the line and edge map by LEs(x, y).

Keypoints are based on cortical end-stopped cells [7]. They provide important
information because they code local image complexity. Furthermore, since key-
points are caused by line and edge junctions, detected keypoints can be classified
by the underlying vertex structure, such as K, L, T, + etc. This is very useful for
most matching problems: object recognition, optical flow and stereo disparity. In
this section we briefly describe the multi-scale keypoint detection and annotation
processes. The original model has been improved such that multi-scale keypoints
can be detected in real time [14].

There are two types of end-stopped cells, single and double. These are ap-
plied to Cs,i and are combined with tangential and radial inhibition schemes in
order to obtain precise keypoint maps Ks(x, y). For a detailed explanation with
illustrations see [7] and [14].

In order to classify any detected keypoint, the responses of simple cells RE
s,i

and RO
s,i are analyzed, but now using Nφ = 2Nθ orientations, with φk = kπ/Nθ

and k = [0, Nφ − 1]. This means that for each of the 8 simple-cell orientations
on [0, π] there are two opposite analysis orientations on [0, 2π], e.g., θ1 = π/Nθ

results in φ1 = π/Nθ and φ9 = 9π/Nθ. This division into response-analysis
orientations is acceptable according to [5], because a typical cell has a maximum
response at some orientation and its response decreases on both sides, from 10
to 20 degrees, after which it declines steeply to zero; see also [2].

Classifying keypoints is not a trivial task, mainly because responses of simple
and complex cells, which code the underlying lines and edges at vertices, are un-
reliable due to response interference effects [2]. This implies that responses must
be analyzed in a neighborhood around each keypoint, and the size of the neighbor-
hood must be proportional to the scale of the cells. The validation of the line and
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Fig. 1. Left to right and top to bottom: input frame, keypoints detected at all 5 scales,
annotated keypoints at scales λ = 4, 8 and 12, and the frame’s saliency map where red
indicates higher and blue lower saliency

edge orientations which contribute to the vertex structure is based on an analysis
of the responses of complex cells Cs,i(x, y). At a distance of λ, and for each dir-
ection φk, responses in that direction and in neighboring orientations φk+l, with
l = {−2,−1, 0, 1, 2}, are summed with different weights equal to 1/2|l|. After this
smoothing and detection of local maxima, each keypoint is then annotated by a
descriptor of 16 bits which codes the detected orientations. In the case of keypoints
caused by blobs with no underlying line and edge structures, all 16 bits are zero.

This method is an improvement of the previous method [3]. It provides a more
detailed descriptor of the underlying line and edge structures, with a significant
increase in performance and with a negligible loss of precision. The first five
images in Fig. 1 illustrate keypoint detection and annotation at the given scales.
For more illustrations see [7].

3 Optical Flow

Keypoint detection may occur in cortical areas V1 and V2, whereas keypoint
annotation requires bigger receptive fields and could occur in V4. Optical flow is
then processed in areas V5/MT and MST, which are related to object and ego
motion for controlling eye and head movements.

Optical flow is determined by matching annotated keypoints in successive cam-
era frames, but only by matching keypoints which may belong to a same object.
To this purpose we use regions defined by saliencymaps. Such maps are created by
summing detected keypoints over all scales s, such that keypoints which are stable
over scale intervals yield high peaks. In order to connect the individual peaks and
yield larger regions, relaxation areas proportional to the filter scales are applied
[7]. Here we simplify the computation of saliency maps by simply summing the
responses of end-stopped cells at all scales, which is much faster and yields similar
results. Figure 1 (bottom-right) illustrates a saliency map.

We apply a multi-scale tree structure in which at a very coarse scale a root
keypoint defines a single object, and at progressively finer scales more keypoints
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are found which convey the object’s details. For optical flow we use five scales:
λ = [4, 20] with Δλ = 4. All keypoints at λ = 20 are supposed to represent
individual objects, although we know that it is possible that several of those
keypoints may belong to a same object. Each keypoint at a coarse scale is related
to one or more keypoints at one finer scale, which can be slightly displaced.
This relation is modeled by down-projection using grouping cells with a circular
axonic field, the size of which (λ) defines the region of influence, and this process
continues until the finest scale is reached; see [3].

As mentioned above, at a very coarse scale each keypoint – or central keypoint
CKP – should correspond to an individual object [7]. However, at the coarsest
scale applied here, λ = 20, this may not be the case and an object may cause
several keypoints. In order to determine which keypoints could belong to the
same object we combine saliency maps with the multi-scale tree structure.

At this point we have, for each frame, the tree structure which links the
keypoints over scales, from coarse to fine, with associated regions of influence at
the finest scale. We also have the saliency map obtained by summing responses of
end-stopped cells over all scales. The latter, after thresholding, yields segregated
regions which are intersected with the regions of influence of the tree. Therefore,
the intersected regions link keypoints at the finest scale to the segregated regions
which are supposed to represent individual objects.

Now, each annotated keypoint of frame i can be compared with all annotated
keypoints in frame i−1. This is done at all scales, but the comparison is restricted
to an area with radius 2λ instead of λ at each scale in order to allow for larger
translations and rotations. In addition, (1) at fine scales many keypoints outside
the area can be skipped since they are not likely to match over large distances,
and (2) at coarse scales there are less keypoints, λ is bigger, and therefore larger
distances (motions) are represented there. The matching process, as for building
the tree, is now done top-down. Previously it was done bottom-up [3]. Due
to the use of a more detailed descriptor for keypoint classification than in [3],
matching keypoints at the coarsest scale provides sufficient accuracy to correctly
match entire tree structures. An additional gain in performance is due to the
reduced number of comparisons at finer scales, because of existing dependencies
between keypoints in the branches of the tree structure. Keypoints are matched
by combining three similarity criteria with different weight factors:

(a) The distance D serves to emphasize keypoints which are closer to the
center of the matching area. For having D = 1 at the center and D = 0 at radius
2λ, we use D = (2λ− d)/2λ with d the Euclidean distance (this can be replaced
by dynamic feature routing [3,8]).

(b) The orientation error O measures the correlation of the attributed
orientations, but with an angular relaxation interval of ±2π/Nθ applied to all
orientations such that also a rotation of the vertex structure is allowed. Sim-
ilar to D, the summed differences are combined such that O = 1 indicates good
correspondence andO = 0 a lack of correspondence. Obviously, keypoints marked
“blob” do not have orientations and are treated separately.
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Fig. 2. The optical flow model applied to a person while performing several hand and
head gestures. Hands and head are marked by their bounding boxes. The bottom-right
image shows the combined centers of the boxes.

(c) The tree correspondence C measures the number of matched keypoints at
finer scales, i.e., at any scale coarser than the finest one. The keypoint candidates
to be matched in frame i and in the area with radius 2λ are linked in the tree
to localized sets of keypoints at all finer scales. The number of linked keypoints
which have been matched is divided by the total number of linked keypoints.
This is achieved by sets of grouping cells at all but the finest scale which sum the
number of linked keypoints in the tree, both matched and all; for more details
see [3].

The three parameters are combined by grouping cells which can establish a
link between keypoints in frame i−1 and i. Mathematically we use the similarity
measure S = αO + βC + γD, with α = 0.4 and β = γ = 0.3. These values were
determined empirically. The candidate keypoint with the highest value of S in
the area (radius 2λ) is selected and the vector between the keypoint in frame
i− 1 and the matched one in frame i is computed. Remaining candidates in the
area can be matched to other keypoints in frame i, provided they are in their
local areas. Keypoints which cannot be matched are discarded. Figure 2 shows
a sequence with tracked hands by using optical flow.

4 Hand/Head Tracking and Gesture/Pose Recognition

To initialize the tracking and recognition process, it is only required that at the
beginning the user stands still, looking straight ahead and showing the palms
of both hands to the camera. As the first step in the processes that will be
described in this section, we use skin color segmentation to detect both hands
and the head as previously applied in [10]. If I is an input frame, we can use the
following expression to get a binary skin image, Is, where skin is marked in black
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and all the rest is white: Is(x, y) = 0 if ϕ[I(x, y)] = 1, otherwise Is(x, y) = 255,
where ϕ = [(R > 95)∧(G > 40)∧(B > 20)∧((max{R,G,B}−min{R,G,B})>
15) ∧ (|R −G| > 15) ∧ (R > G) ∧ (R > B)], with (R,G,B) ∈ [0, 255].

After obtaining the skin regions we can obtain three regions: left hand, right
hand and head. Then we apply two filters: the first one is an erosion which
removes small regions, and the second one is a dilation which makes the re-
maining regions more homogeneous. After this we apply a fast blob detection
algorithm [10] to obtain the coordinates and sizes of the three biggest skin re-
gions. The region with the highest y coordinate will be considered as being the
head. The system will use the head blob’s dimensions to calculate the reference
ratio Rr = h/w, with h the height and w the width, as a reference for the
neutral pose. The detection of head poses is done like previously in [10]. We use
five head poses: face straight forward, head up, head down, head leaning to the
left and head leaning to the right. To detect the up and down poses we use a
very simple method which consists of comparing the blob’s actual ratio Ra, to
an upper (Uthr) and a lower threshold (Lthr). The latter are determined from
the reference ratio Rr computed during the initialization: Uthr = 1.1× Rr and
Lthr = 0.9×Rr.

To detect the left- and right-leaning poses, two vertical lines, at distances
w/6 and 5w/6 inside the blob’s box are considered. The average position of
black pixels on each of these lines is calculated and the two resulting positions
are used to detect the two poses: when the user leans the head to one side,
the average positions will go up and down relative to the middle of the box
(h/2). A minimum vertical distance MVD of 0.2×h between both positions was
determined experimentally, such that small lateral movements can be ignored.
The two poses are detected when (a) the vertical distance between the two
positions is larger than the MVD, and (b) one of the positions is higher than
h/2. The latter position determines the side of the movement: left or right.

While the head will normally be at a static location, hands may be con-
stantly moving and therefore they must be tracked. To do that we employ the
optical flow as explained in the previous section. The recognition of hand ges-
tures is more complex than the detection of the head’s poses. To recognize hand
gestures, we need to use a single template, at a few different scales, of each
gesture. The templates are previously prepared so that they are available for
online matching when the system is working. To prepare the templates, we ap-
ply the previously described line- and edge-extraction algorithm at two different
scales, and then dilate the resulting maps to make the templates more robust
against small differences between them and the real frames containing moving
hands. Each template is a binary image which contains white lines against a
black background. Example templates are shown in Fig. 3.

To perform the template matching in a fast way, we only compare the tem-
plates with the regions tracked by optical flow. This way no processing time
is wasted in other image regions. The matching process is done in two steps:
(a) direct template matching and (b) template density matching. In step (a)
we take a tracked region and apply the same process that was used to prepare
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Fig. 3. Top: five hand gestures. Bottom: their dilated templates at scale λ = 8.

the templates. Then we shift each template over the tracked region and at each
shift position we compare them, pixel by pixel, and count the number of white
pixels, Pw. Basically this is a 2D correlation process. We divide Pw by the total
number of white pixels in the template, Pwt, and store the resulting value in a
probability map at the center position of the (shifted) template. The result is
a 2D histogram or correlation matrix in which higher values indicate a better
correspondence between the tracked region and the template.

In step (b), template density matching, we verify whether the test region has
the same ratio of white and black pixels as the template. This must be done
because if only direct matching was used, some complex textures, for example
on a (moving) T-shirt or (static) background can result in false detections of
some templates. Again we use the shifting window with the same size of the
template and, for each shift position, we calculate the ratio between the number
of white pixels and the total number of pixels in the window, R = Wp/Tp, where
Wp is the number of white pixels and Tp the total number of pixels. Like before,
this ratio is stored in a similar probability map.

After these two steps we combine both maps for each template, giving a 70%
weight to the first map and 30% to the second one. This yields a single prob-
ability map for each template. This process is applied at the two scales used
(λ = {8, 12}), and the two probability maps are mixed prior to multi-scale re-
cognition, thereby giving equal weights to the two scales. At this point we have a
single but multi-scale probability map for each template. Every time that a value
greater than a threshold value occurs (T = 60 was experimentally determined),
the system considers that the gesture which corresponds to that map has been
recognized, and at the peak location. When more than one gesture is recognized,
only the one with the greatest probability value will prevail. Figure 4 illustrates
the matching process (top) together with the detection of head poses (bottom).

5 Discussion

In this paper we presented a biologically inspired method for hand detection,
tracking, and gesture recognition. By using optimized algorithms for the detec-
tion of keypoints plus lines and edges, and by selecting only a few scales, the
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Fig. 4. The top row illustrates hand gesture recognition: input image, thresholded
probability maps of the two detected gestures with their peaks in white, and the final
result. The bottom row shows examples of the recognition of four head poses: right,
left, up and down. Along the vertical edges of the bounding box, the two green points
show the average location of skin-colored pixels.

method can run in real time. Even when using a cheap HD webcam, very good
results can be obtained. This we expected due to our previous experience with
cortical models: multi-scale keypoints, lines and edges provide very useful in-
formation to generate saliency maps for Focus of Attention or to detect faces
by grouping facial landmarks defined by keypoints at eyes, nose and mouth [7].
In [11] we were able to use lines and edges to recognize facial expressions with
success, and in [9] we have shown that lines and edges are very useful for face and
object recognition. The method included here for the detection of head poses is
not biological, but in principle we can integrate our methods for face detection
and recognition of facial expressions.

Biologically inspired methods involve many filter kernels, here in eight orient-
ations and at several scales. In order to achieve real-time processing, we only
use five scales for optical flow and region segregation. For gesture recognition
we use lines and edges at only two scales. The system’s main limitation is the
costly filtering. The optimized GPU implementation allows us to process at least
10 frames/s with a maximum resolution of 600×400 pixels and using at least 6
scales if coarser scales are used. The main bottleneck for using large images
and fine scales is the 1 GByte of memory of the GPU, because of the Gaussian
pyramid employed in the filtering.

Future work will focus on motion prediction, a process that occurs in cortical
area MST. We also intend to increase the precision such that individual fingers
can be detected in combination with a larger number of gestures. The ultimate
goal is to apply 3D processing in the entire process, with emphasis on body
language. This can be done by using cheap off-the-shelf solutions like a Kinect
or two webcams with a biological disparity model.
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