Skip to main content

Noncommutativity Makes Determinants Hard

  • Conference paper
Book cover Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We consider the complexity of computing the determinant over arbitrary finite-dimensional algebras. We first consider the case that A is fixed. We obtain the following dichotomy: If A/rad A is noncommutative, then computing the determinant over A is hard. “Hard” here means #P-hard over fields of characteristic 0 and Mod p P-hard over fields of characteristic p > 0. If A/ rad A is commutative and the underlying field is perfect, then we can compute the determinant over A in polynomial time.

We also consider the case when A is part of the input. Here the hardness is closely related to the nilpotency index of the commutator ideal of A. The commutator ideal com(A) of A is the ideal generated by all elements of the form xy − yx with x,y ∈ A. We prove that if the nilpotency index of com(A) is linear in n, where n ×n is the format of the given matrix, then computing the determinant is hard. On the other hand, we show the following upper bound: Assume that there is an algebra B ⊆ A with B = A/ rad(A). (If the underlying field is perfect, then this is always true.) The center Z(A) of A is the set of all elements that commute with all other elements. It is a commutative subalgebra. We call an ideal J a complete ideal of noncommuting elements if B + Z(A) + J = A. If there is such a J with nilpotency index o(n/logn), then we can compute the determinant in subexponential time. Therefore, the determinant cannot be hard in this case, assuming the counting version of the exponential time hypothesis.

Our results answer several open questions posed by Chien et al. [4].

Work supported by DFG grant BL 511/10-1 and by the Indo-German Max-Planck Center for Computer Science (IMPECS). A full version is available as a preprint: Markus Bläser, Noncommutativity makes determinants hard. Electronic Colloquium on Computational Complexity (ECCC) 19: 142 (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant. In: Proc. 42nd ACM Symp. on Theory of Comput (STOC), pp. 677–686 (2010)

    Google Scholar 

  2. Barvinok, A.: Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor. Random Struct. Algorithms 14(1), 29–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chien, S., Harsha, P., Sinclair, A., Srinivasan, S.: Almost settling the hardness of noncommutative determinant. In: Proc. 43rd ACM Symp. on Theory of Comput (STOC), pp. 499–508 (2011)

    Google Scholar 

  5. Chien, S., Sinclair, A.: Algebras with polynomial identities and computing the determinant. J. Comput. Sys. Sci. 67(2), 263–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chien, S., Rasmussen, L., Sinclair, A.: Clifford algebras and approximating the permanent. J. Comput. Sys. Sci. 67(2), 263–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dell, H., Husfeldt, T., Wahlén, M.: Exponential Time Complexity of the Permanent and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 426–437. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Drozd, Y.A., Kirichenko, V.V.: Finite dimensional algebras. Springer (1994)

    Google Scholar 

  9. Godsil, C.D., Gutman, I.: On the matching polynomial of a graph. In: Lovász, L., Sós, V.T. (eds.) Algebraic Methods in Graph Theory, vol. 1, pp. 241–249. North-Holland (1981)

    Google Scholar 

  10. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamarkar, N., Karp, R.M., Lipton, R.J., Lovász, L., Luby, M.: A Monte-Carlo algorithm for estimating the permanent. SIAM J. Comput. 22(2), 284–293 (1993)

    Article  MathSciNet  Google Scholar 

  12. Mahajan, M., Vinay, V.: Determinant: Old algorithms and new insights. SIAM J. Discrete Math. 12(4), 474–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moore, C., Russell, A.: Approximating the permanent via nonabelian determinants, arXiv:0906.1702 (2009)

    Google Scholar 

  14. Nisan, N.: Lower bounds for noncommutative computation. In: Proc. 23rd ACM Symp. on Theory of Comput. (STOC), pp. 410–418 (1991)

    Google Scholar 

  15. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bläser, M. (2013). Noncommutativity Makes Determinants Hard. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics