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Abstract

We show that the shadow vertex algorithm can be used to compute a short path between
a given pair of vertices of a polytope P = {x ∈ Rn : Ax ≤ b} along the edges of P , where
A ∈ Rm×n. Both, the length of the path and the running time of the algorithm, are polynomial
in m, n, and a parameter 1/δ that is a measure for the flatness of the vertices of P . For integer
matrices A ∈ Zm×n we show a connection between δ and the largest absolute value ∆ of any
sub-determinant of A, yielding a bound of O(∆4mn4) for the length of the computed path.
This bound is expressed in the same parameter ∆ as the recent non-constructive bound of
O(∆2n4 log(n∆)) by Bonifas et al. [1].

For the special case of totally unimodular matrices, the length of the computed path
simplifies to O(mn4), which significantly improves the previously best known constructive
bound of O(m16n3 log3(mn)) by Dyer and Frieze [7].

1 Introduction

We consider the following problem: Given a matrix A = [a1, . . . , am]T ∈ Rm×n, a vector b ∈ Rm,
and two vertices x1 and x2 of the polytope P = {x ∈ Rn : Ax ≤ b}, find a short path from x1

to x2 along the edges of P efficiently. In this context efficient means that the running time of the
algorithm is polynomially bounded in m, n, and the length of the path it computes. Note, that
the polytope P does not have to be bounded.

The diameter d(P ) of the polytope P is the smallest integer d that bounds the length of the
shortest path between any two vertices of P from above. The polynomial Hirsch conjecture states
that the diameter of P is polynomially bounded in m and n for any matrix A and any vector b.
As long as this conjecture remains unresolved, it is unclear whether there always exists a path of
polynomial length between the given vertices x1 and x2. Moreover, even if such a path exists, it is
open whether there is an efficient algorithm to find it.

Related work The diameter of polytopes has been studied extensively in the last decades. In
1957 Hirsch conjectured that the diameter of P is bounded by m − n for any matrix A and any
vector b (see Dantzig’s seminal book about linear programming [6]). This conjecture has been
disproven by Klee and Walkup [9] who gave an unbounded counterexample. However, it remained
open for quite a long time whether the conjecture holds for bounded polytopes. More than fourty
years later Santos [12] gave the first counterexample to this refined conjecture showing that there
are bounded polytopes P for which d(P ) ≥ (1 + ε) ·m for some ε > 0. This is the best known
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lower bound today. On the other hand, the best known upper bound of O(m1+logn) due to Kalai
and Kleitman [8] is only quasi-polynomial. It is still an open question whether d(P ) is always
polynomially bounded in m and n. This has only been shown for special classes of polytopes like
0/1 polytopes, flow-polytopes, and the transportation polytope. For these classes of polytopes
bounds of m − n (Naddef [10]), O(mn log n) (Orlin [11]), and O(m) (Brightwell et al. [3]) have
been shown, respectively. On the other hand, there are bounds on the diameter of far more
general classes of polytopes that depend polynomially on m, n, and on additional parameters.
Recently, Bonifas et al. [1] showed that the diameter of polytopes P defined by integer matrices A
is bounded by a polynomial in n and a parameter that depends on the matrix A. They showed
that d(P ) = O(∆2n4 log(n∆)), where ∆ is the largest absolute value of any sub-determinant of A.
Although the parameter ∆ can be very large in general, this approach allows to obtain bounds
for classes of polytopes for which ∆ is known to be small. For example, if the matrix A is totally
unimodular, i.e., if all sub-determinants of A are from {−1, 0, 1}, then their bound simplifies
to O(n4 log n), improving the previously best known bound of O(m16n3 log3(mn)) by Dyer and
Frieze [7].

We are not only interested in the existence of a short path between two vertices of a polytope
but we want to compute such a path efficiently. It is clear that lower bounds for the diameter
of polytopes have direct (negative) consequences for this algorithmic problem. However, upper
bounds for the diameter do not necessarily have algorithmic consequences as they might be non-
constructive. The aforementioned bounds of Orlin, Brightwell et al., and Dyer and Frieze are
constructive, whereas the bound of Bonifas et al. is not.

Our contribution We give a constructive upper bound for the diameter of the polytope P =
{x ∈ Rn : Ax ≤ b} for arbitrary matrices A ∈ Rm×n and arbitrary vectors b ∈ Rm.1 This bound
is polynomial in m, n, and a parameter 1/δ, which depends only on the matrix A and is a measure
for the angle between edges of the polytope P and their neighboring facets. We say that a facet F
of the polytope P is neighboring an edge e if exactly one of the endpoints of e belongs to F . The
parameter δ denotes the smallest sine of any angle between an edge and a neighboring facet in P .
If, for example, every edge is orthogonal to its neighboring facets, then δ = 1. On the other hand,
if there exists an edge that is almost parallel to a neighboring facet, then δ ≈ 0. The formal
definition of δ is deferred to Section 5.

A well-known pivot rule for the simplex algorithm is the shadow vertex rule, which gained atten-
tion in recent years because it has been shown to have polynomial running time in the framework
of smoothed analysis [13]. We will present a randomized variant of this pivot rule that computes
a path between two given vertices of the polytope P . We will introduce this variant in Section 2
and we call it shadow vertex algorithm in the following.

Theorem 1. Given vertices x1 and x2 of P , the shadow vertex algorithm efficiently computes a

path from x1 to x2 on the polytope P with expected length O
(
mn2

δ2

)
.

Let us emphasize that the algorithm is very simple and its running time depends only polyno-
mially on m, n and the length of the path it computes.

Theorem 1 does not resolve the polynomial Hirsch conjecture as the value δ can be exponentially
small. Furthermore, it does not imply a good running time of the shadow vertex method for
optimizing linear programs because for the variant considered in this paper both vertices have to
be known. Contrary to this, in the optimization problem the objective is to determine the optimal
vertex. To compare our results with the result by Bonifas et al. [1], we show that, if A is an integer
matrix, then 1

δ ≤ n ·∆2, which yields the following corollary.

Corollary 2. Let A ∈ Zm×n be an integer matrix and let b ∈ Rm be a real-valued vector. Given
vertices x1 and x2 of P , the shadow vertex algorithm efficiently computes a path from x1 to x2 on
the polytope P with expected length O(∆4mn4).

1Note that we do not require the polytope to be bounded.

2



This bound is worse than the bound of Bonifas et al., but it is constructive. Furthermore, if A
is a totally unimodular matrix, then ∆ = 1. Hence, we obtain the following corollary.

Corollary 3. Let A ∈ Zm×n be a totally unimodular matrix and let b ∈ Rm be a vector. Given
vertices x1 and x2 of P , the shadow vertex algorithm efficiently computes a path from x1 to x2 on
the polytope P with expected length O(mn4).

This is a significant improvement upon the previously best known constructive bound of
O(m16n3 log3(mn)) due to Dyer and Frieze because we can assume m ≥ n. Otherwise, P does not
have vertices and the problem is ill-posed.

Organization of the paper In Section 2 we describe the shadow vertex algorithm. In Section 4
we give an outline of our analysis and present the main ideas. After that, in Section 5, we introduce
the parameter δ and discuss some of its properties. Section 6 is devoted to the proof of Theorem 1.
The probabilistic foundations of our analysis are provided in Section 7.

2 The Shadow Vertex Algorithm

Let us first introduce some notation. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
Let A ∈ Rm×n be an m × n-matrix and let i ∈ [m] and j ∈ [n] be indices. With Ai,j we refer to
the (m − 1) × (n − 1)-submatrix obtained from A by removing the ith row and the jth column.
We call the determinant of any k × k-submatrix of A a sub-determinant of A of size k. By In we
denote the n × n-identity matrix diag(1, . . . , 1) and by Om×n the m × n-zero matrix. If n ∈ N is
clear from the context, then we define vector ei to be the ith column of In. For a vector x ∈ Rn we
denote by ‖x‖ = ‖x‖2 the Euclidean norm of x and by N (x) = 1

‖x‖ · x for x 6= 0 the normalization

of vector x.

2.1 Shadow Vertex Pivot Rule

Our algorithm is inspired by the shadow vertex pivot rule for the simplex algorithm. Before
describing our algorithm, we will briefly explain the geometric intuition behind this pivot rule.
For a complete and more formal description, we refer the reader to [2] or [13]. Let us consider
the linear program min cTx subject to x ∈ P for some vector c ∈ Rn and assume that an initial
vertex x1 of the polytope P is known. For the sake of simplicity, we assume that there is a unique
optimal vertex x? of P that minimizes the objective function cTx. The shadow vertex pivot rule
first computes a vector w ∈ Rn such that the vertex x1 minimizes the objective function wTx
subject to x ∈ P . Again for the sake of simplicity, let us assume that the vectors c and w are
linearly independent.

In the second step, the polytope P is projected onto the plane spanned by the vectors c and w.
The resulting projection is a polygon P ′ and one can show that the projections of both the initial
vertex x1 and the optimal vertex x? are vertices of this polygon. Additionally every edge between
two vertices x and y of P ′ corresponds to an edge of P between two vertices that are projected
onto x and y, respectively. Due to these properties a path from the projection of x1 to the projection
of x? along the edges of P ′ corresponds to a path from x1 to x? along the edges of P .

This way, the problem of finding a path from x1 to x? on the polytope P is reduced to finding a
path between two vertices of a polygon. There are at most two such paths and the shadow vertex
pivot rule chooses the one along which the objective cTx improves.

2.2 Our Algorithm

As described in the introduction we consider the following problem: We are given a matrix
A = [a1, . . . , am]T ∈ Rm×n, a vector b ∈ Rm, and two vertices x1, x2 of the polytope P =
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{x ∈ Rn : Ax ≤ b}. Our objective is to find a short path from x1 to x2 along the edges of P .
We propose the following variant of the shadow vertex pivot rule to solve this problem: First

choose two vectors w1, w2 ∈ Rn such that x1 uniquely minimizes wT
1 x subject to x ∈ P and x2

uniquely maximizes wT
2 x subject to x ∈ P . Then project the polytope onto the plane spanned

by w1 and w2 in order to obtain a polygon P ′. Let us call the projection π. By the same arguments
as for the shadow vertex pivot rule, it follows that π(x1) and π(x2) are vertices of P ′ and that a
path from π(x1) to π(x2) along the edges of P ′ can be translated into a path from x1 to x2 along
the edges of P . Hence, it suffices to compute such a path to solve the problem. Again computing
such a path is easy because P ′ is a two-dimensional polygon.

The vectors w1 and w2 are not uniquely determined, but they can be chosen from cones that
are determined by the vertices x1 and x2 and the polytope P . We choose w1 and w2 randomly
from these cones. A more precise description of this algorithm is given as Algorithm 1.

Algorithm 1 Shadow Vertex Algorithm

1: Determine n linearly independent rows uT
k of A for which uT

k x1 = bk.
2: Determine n linearly independent rows vT

k of A for which vT
k x2 = bk.

3: Draw vectors λ, µ ∈ (0, 1]n independently and uniformly at random.
4: Set w1 = − [N (u1), . . . ,N (un)] · λ and w2 = [N (v1), . . . ,N (vn)] · µ.
5: Use the function π : x 7→

(
wT

1 x,w
T
2 x
)

to project P onto the Euclidean plane and obtain the
shadow vertex polygon P ′ = π(P ).

6: Walk from π(x1) along the edges of P ′ in increasing direction of the second coordinate un-
til π(x2) is found.

7: Output the corresponding path of P .

Let us give some remarks about the algorithm above. The vectors u1, . . . , un in Line 1 and
the vectors v1, . . . , vn in Line 2 must exist because x1 and x2 are vertices of P . The only point
where our algorithm makes use of randomness is in Line 3. By the choice of w1 and w2 in
Line 4, x1 is the unique optimum of the linear program minwT

1 x s.t. x ∈ P and x2 is the unique
optimum of the linear program maxwT

2 x s.t. x ∈ P . The former follows because for any y ∈ P
with y 6= x1 there must be an index k ∈ [n] with uT

k x1 < bk. The latter follows analogously. Note,
that ‖w1‖ ≤

∑n
k=1 λk · ‖N (uk)‖ ≤ ∑n

k=1 λk ≤ n and, similarly, ‖w2‖ ≤ n. The shadow vertex
polygon P ′ in Line 5 has several important properties: The projections of x1 and x2 are vertices
of P ′ and all edges of P ′ correspond to projected edges of P . Hence, any path on the edges of P ′

is the projection of a path on the edges of P . Though we call P ′ a polygon, it does not have to
be bounded. This is the case if P is unbounded in the directions w1 or −w2. Nevertheless, there
is always a path from x1 to x2 which will be found in Line 6. For more details about the shadow
vertex pivot rule and formal proofs of these properties, we refer to the book of Borgwardt [2].

To give a bit intuition why these statements hold true, consider the projection depicted in
Figure 1. We denote the first coordinate of the Euclidean plane by ξ and the second coordinate
by η. Since w1 and w2 are chosen such that x1 and x2 are, among the points of P , optimal for
the function x 7→ wT

1 x and x 7→ wT
2 x, respectively, the projections π(x1) and π(x2) of x1 and x2

must be the leftmost vertex and the topmost vertex of P ′ = π(P ), respectively. As P ′ is a (not
necessarily bounded) polygon, this implies that if we start in vertex π(x1) and follow the edges
of P ′ in direction of increasing values of η, then we will end up in π(x2) after a finite number of
steps. This is not only true if P ′ is bounded (as depicted by the dotted line and the dark gray
area) but also if P is unbounded (as depicted by the dashed lines and the dark gray plus the light
gray area). Moreover, note that the slopes of the edges of the path from π(x1) to π(x2) are positive
and monotonically decreasing.
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π(x2)

π(x1)

0 ξ

η

Figure 1: Shadow polygon P ′

3 Degeneracy

Any degenerate polytope P can be made non-degenerate by perturbing the vector b by a tiny
amount of random noise. This way, another polytope P̃ is obtained that is non-degenerate with
probability one. Any degenerate vertex of P at which ` > n constraints are tight generates at
most

(
`
n

)
vertices of P̃ that are all very close to each other if the perturbation of b is small. We say

that two vertices of P̃ that correspond to the same vertex of P are in the same equivalence class.
If the perturbation of the vector b is small enough, then any edge between two vertices of P̃ in

different equivalence classes corresponds to an edge in P between the vertices that generated these
equivalence classes. We apply the shadow vertex algorithm to the polytope P̃ to find a path R
between two arbitrary vertices from the equivalence classes generated by x1 and x2, respectively.
Then we translate this path into a walk from x1 to x2 on the polytope P by mapping each vertex
on the path R to the vertex that generated its equivalence class. This way, we obtain a walk
from x1 to x2 on the polytope P that may visit vertices multiple times and may also stay in the
same vertex for some steps. In the latter type of steps only the algebraic representation of the
current vertex is changed. As this walk on P has the same length as the path that the shadow
vertex algorithm computes on P̃ , the upper bound we derive for the length of R also applies to
the degenerate polytope P .

Of course the perturbation of the vector b might change the shape of the polytope P . In this
context it is important to point out that the parameter δ, which we define in the following, only
depends on the matrix A and, thus, is independent of the right-hand side b. Consequently, the
parameter δ of the original polytope P can also be used to describe the behavior of the shadow
vertex simplex algorithm on the polytope P̃ .

4 Outline of the Analysis

In the remainder of this paper we assume that the polytope P is non-degenerate, i.e., for each
vertex x of P there are exactly n indices i for which aT

i x = bi. This implies that for any edge
between two vertices x and y of P there are exactly n − 1 indices i for which aT

i x = aT
i y = bi.

According to Section 3 this assumption is justified.
From the description of the shadow vertex algorithm it is clear that the main step in proving

Theorem 1 is to bound the expected number of edges on the path from π(x1) to π(x2) on the poly-
gon P ′. In order to do this, we look at the slopes of the edges on this path. As we discussed above,
the sequence of slopes is monotonically decreasing. We will show that due to the randomness in
the objective functions w1 and w2, it is even strictly decreasing with probability one. Furthermore
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all slopes on this path are bounded from below by 0.
Instead of counting the edges on the path from π(x1) to π(x2) directly, we will count the number

of different slopes in the interval [0, 1] and we observe that the expected number of slopes from the
interval [0,∞) is twice the expected number of slopes from the interval [0, 1]. In order to count
the number of slopes in [0, 1], we partition the interval [0, 1] into several small subintervals and we
bound for each of these subintervals I the expected number of slopes in I. Then we use linearity of
expectation to obtain an upper bound on the expected number of different slopes in [0, 1], which
directly translates into an upper bound on the expected number of edges on the path from π(x1)
to π(x2).

We choose the subintervals so small that, with high probability, none of them contains more
than one slope. Then, the expected number of slopes in a subinterval I = (t, t+ε] is approximately
equal to the probability that there is a slope in the interval I. In order to bound this probability,
we use a technique reminiscent of the principle of deferred decisions that we have already used
in [5]. The main idea is to split the random draw of the vectors w1 and w2 in the shadow vertex
algorithm into two steps. The first step reveals enough information about the realizations of these
vectors to determine the last edge e = (p̂, p?) on the path from π(x1) to π(x2) whose slope is bigger
than t (see Figure 2). Even though e is determined in the first step, its slope is not. We argue that
there is still enough randomness left in the second step to bound the probability that the slope
of e lies in the interval (t, t+ ε] from above, yielding Theorem 1.

We will now give some more details on how the random draw of the vectors w1 and w2 is
partitioned. Let x̂ and x? be the vertices of the polytope P that are projected onto p̂ and p?,
respectively. Due to the non-degeneracy of the polytope P , there are exactly n − 1 constraints
that are tight for both x̂ and x? and there is a unique constraint aT

i x ≤ bi that is tight for x?

but not for x̂. In the first step the vector w1 is completely revealed while instead of w2 only an
element w̃2 from the ray {w2 + γ · ai : γ ≥ 0} is revealed. We then argue that knowing w1 and w̃2

suffices to identify the edge e. The only randomness left in the second step is the exact position
of the vector w2 on the ray {w̃2 − γ · ai : γ ≥ 0}, which suffices to bound the probability that the
slope of e lies in the interval (t, t+ ε].

Let us remark that the proof of Theorem 1 is inspired by the recent smoothed analysis of the
successive shortest path algorithm for the minimum-cost flow problem [4]. Even though the general
structure bears some similarity, the details of our analysis are much more involved.

5 The Parameter δ

In this section we define the parameter δ that describes the flatness of the vertices of the polytope
and state some relevant properties.

Definition 4.

1. Let z1, . . . , zn ∈ Rn be linearly independent vectors and let ϕ ∈ (0, π2 ] be the angle between zn

and the hyperplane span{z1, . . . , zn−1}. By δ̂({z1, . . . , zn−1} , zn) = sinϕ we denote the sine

of angle ϕ. Moreover, we set δ(z1, . . . , zn) = mink∈[n] δ̂({zi : i ∈ [n] \ {k}} , zk).

2. Given a matrix A = [a1, . . . , am]T ∈ Rm×n, we set

δ(A) = min {δ(ai1 , . . . , ain) : ai1 , . . . , ain linearly independent} .

The value δ̂({z1, . . . , zn−1} , zn) describes how orthogonal zn is to the span of z1, . . . , zn−1. If

ϕ ≈ 0, i.e., zn is close to the span of z1, . . . , zn−1, then δ̂({z1, . . . , zn−1} , zn) ≈ 0. On the other

hand, if zn is orthogonal to z1, . . . , zn−1, then ϕ = π
2 and, hence, δ̂({z1, . . . , zn−1} , zn) = 1. The

value δ̂({z1, . . . , zn−1} , zn) equals the distance between both faces of the parallelotope Q, given by
Q = {∑n

i=1 αi · N (zi) : αi ∈ [0, 1]}, that are parallel to span{z1, . . . , zn−1} and is scale invariant.
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The value δ(z1, . . . , zn) equals twice the inner radius rn of the parallelotope Q and, thus, is a
measure of the flatness of Q: A value δ(z1, . . . , zn) ≈ 0 implies that Q is nearly (n−1)-dimensional.
On the other hand, if δ(z1, . . . , zn) = 1, then the vectors z1, . . . , zn are pairwise orthogonal, that
is, Q is an n-dimensional unit cube.

The next lemma lists some useful statements concerning the parameter δ := δ(A) including a
connection to the parameters ∆1, ∆n−1, and ∆ introduced in the paper of Bonifas et al. [1].

Lemma 5. Let z1, . . . , zn ∈ Rn be linearly independent vectors, let A ∈ Rm×n be a matrix, let
b ∈ Rm be a vector, and let δ = δ(A). Then, the following claims hold true:

1. If M is the inverse of [N (z1), . . . ,N (zn)]T, then

δ(z1, . . . , zn) =
1

maxk∈[n] ‖mk‖
≤

√
n

maxk∈[n] ‖Mk‖
,

where [m1, . . . ,mn] = M and [M1, . . . ,Mn] = MT.

2. If Q ∈ Rn×n is an orthogonal matrix, then δ(Qz1, . . . , Qzn) = δ(z1, . . . , zn).

3. Let y1 and y2 be two neighboring vertices of P = {x ∈ Rn : Ax ≤ b} and let aT
i be a row

of A. If aT
i · (y2 − y1) 6= 0, then |aT

i · (y2 − y1)| ≥ δ · ‖y2 − y1‖.

4. If A is an integral matrix, then 1
δ ≤ n∆1∆n−1 ≤ n∆2, where ∆, ∆1, and ∆n−1 are the largest

absolute values of any sub-determinant of A of arbitrary size, of size 1, and of size n − 1,
respectively.

Proof. First of all we derive a simple formula for δ̂({z1, . . . , zn−1} , zn). For this, assume that the
vectors z1, . . . , zn are normalized. Now consider a normal vector x 6= 0 of span{z1, . . . , zn−1} that
lies in the same halfspace as zn. Let ϕ ∈ (0, π2 ] be the angle between zn and span{z1, . . . , zn−1}
and let ψ ∈ [0, π2 ) be the angle between zn and x. Clearly, ϕ+ ψ = π

2 . Consequently,

δ̂({z1, . . . , zn−1} , zn) = sinϕ = sin
(π

2
− ψ

)
= cosψ =

zT
nx

‖x‖ .

The last fraction is invariant under scaling of x. Since x and zn lie in the same halfspace, w.l.o.g. we
can assume that zT

nx = 1. Hence, δ̂({z1, . . . , zn−1} , zn) = 1
‖x‖ , where x is the unique solution of the

equation [z1, . . . , zn−1, zn]T · x = (0, . . . , 0, 1)T = en. If the vectors z1, . . . , zn are not normalized,
then we obtain

δ̂({z1, . . . , zn−1} , zn) = δ̂({N (z1), . . . ,N (zn−1)} ,N (zn)) =
1

‖x‖ ,

where x = [N (z1), . . . ,N (zn−1),N (zn)]−T · en. Since for the previous line of reasoning we can
relabel the vectors z1, . . . , zn arbitrarily, this implies

δ(z1, . . . , zn) = min
k∈[n]

1

‖[N (z1), . . . ,N (zn)]−T · ek‖

=
1

max
{
‖x‖ : x is column of [N (z1), . . . ,N (zn)]−T

} .
This yields the equation in Claim 1. Due to(

max
k∈[n]

‖Mk‖
)2

≤
∑
k∈[n]

‖Mk‖2 =
∑
k∈[n]

‖mk‖2 ≤ n ·
(

max
k∈[n]

‖mk‖
)2

we obtain the inequality 1
maxk∈[n] ‖mk‖ ≤

√
n

maxk∈[n] ‖Mk‖ stated in Claim 1.
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For Claim 2 observe that

[N (Qz1), . . . ,N (Qzn)]−T = [QN (z1), . . . , QN (zn)]−T

= (Q · [N (z1), . . . ,N (zn)])−T

= ([N (z1), . . . ,N (zn)]−1 ·QT)T

= Q · [N (z1), . . . ,N (zn)]−T

for any orthogonal matrix Q. Therefore, we get

1

δ(Qz1, . . . , Qzn)
= max

{
‖x‖ : x is column of [N (Qz1), . . . ,N (Qzn)]−T

}
= max

{
‖Qy‖ : y is column of [N (z1), . . . ,N (zn)]−T

}
= max

{
‖y‖ : y is column of [N (z1), . . . ,N (zn)]−T

}
=

1

δ(z1, . . . , zn)
.

For Claim 3 let y1 and y2 be two neighboring vertices of P . Then, there are exactly n− 1 indices j
for which aT

j ·(y2−y1) = 0. We denote them by j1, . . . , jn−1. If there is an index i for which aT
i ·(y2−

y1) 6= 0, then aj1 , . . . , ajn−1 , ai are linearly independent. Consequently, δ(aj1 , . . . , ajn−1 , ai) ≥ δ.
Let us assume that aT

i · (y2 − y1) ≥ 0. (Otherwise, consider aT
i · (y1 − y2) instead.) Since y2 − y1

is a normal vector of span{aj1 , . . . , ajn−1
} that lies in the same halfspace as ai, we obtain

aT
i · (y2 − y1)

‖y2 − y1‖
= δ̂(

{
aj1 , . . . , ajn−1

}
, ai) ≥ δ(aj1 , . . . , ajn−1

, ai) ≥ δ

and, thus, aT
i · (y2 − y1) ≥ δ · ‖y2 − y1‖.

For proving Claim 4 we can focus on showing the first inequality. The second one follows from
∆ ≥ max {∆1,∆n−1}. For this, it suffices to show that for n arbitrary linearly independent rows
aT
i1
, . . . , aT

in
of A the inequality

1

δ̂(
{
ai1 , . . . , ain−1

}
, ain)

≤ n∆1∆n−1

holds. By previous observations we know that

1

δ̂(
{
ai1 , . . . , ain−1

}
, ain)

= ‖x‖

where x is the unique solution of Âx = en for Â = [N (ai1), . . . ,N (ain)]T. Let Ã = [ai1 , . . . , ain ]T.
Then,

‖x‖2 =

n∑
k=1

x2
k =

n∑
k=1

(
det(Ân,k)

det(Â)

)2

=

n∑
k=1

det(Ãn,k) ·∏n−1
j=1

1
‖aij ‖

det(Ã) ·∏n
j=1

1
‖aij ‖

2

=

n∑
k=1

(
det(Ãn,k) · ‖ain‖

det(Ã)

)2

≤
n∑
k=1

(
∆n−1 ·

√
n∆1

1

)2

= n2∆2
1∆2

n−1 .

Some of the equations need further explanation: Due to Cramer’s rule, we have xk = det(Ā)

det(Â)
,

where Ā is obtained from Â by replacing the kth column by the right-hand side en of the equation
Âx = en. Laplace’s formula yields |det(Ā)| = |det(Ân,k)|. Hence, the second equation is true. For
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the third equation note that the kth row of matrix Â is the same as the kth row of matrix Ã up to
a factor of 1

‖aik‖
. The inequality follows from |det(Ãn,k)| ≤ ∆n−1 since this is a sub-determinant

of A of size n− 1, from ‖ain‖ ≤
√
n · ‖ain‖∞ ≤

√
n∆1, since ‖ain‖∞ is a sub-determinant of A of

size 1, and from |det(Ã)| ≥ 1 since Ã is invertible and integral by assumption. Hence,

1

δ̂(
{
ai1 , . . . , ain−1

}
, ain)

= ‖x‖ ≤ n∆1∆n−1 .

6 Analysis

For the proof of Theorem 1 we assume that ‖ai‖ = 1 for all i ∈ [m]. This entails no loss of
generality since normalizing the rows of matrix A (and scaling the right-hand side b appropriately)
does neither change the behavior of our algorithm nor does it change the parameter δ = δ(A).

For given linear functions L1 and L2, we denote by π = πL1,L2
the function π : Rn → R2, given

by π(x) = (L1(x), L2(x)). Note, that n-dimensional vectors can be treated as linear functions.
By P ′ = P ′L1,L2

we denote the projection π(P ) of polytope P onto the Euclidean plane, and by
R = RL1,L2

we denote the path from π(x1) to π(x2) along the edges of polygon P ′.
Our goal is to bound the expected number of edges of the path R = Rw1,w2 which is random

since w1 and w2 depend on the realizations of the random vectors λ and µ. Each edge of R
corresponds to a slope in (0,∞). These slopes are pairwise distinct with probability one (see
Lemma 8). Hence, the number of edges of R equals the number of distinct slopes of R. In order
to bound the expected number of distinct slopes we first restrict our attention to slopes in the
interval (0, 1].

Definition 6. For a real ε > 0 let Fε denote the event that there are three pairwise distinct vertices
z1, z2, z3 of P such that z1 and z3 are neighbors of z2 and such that∣∣∣∣wT

2 · (z2 − z1)

wT
1 · (z2 − z1)

− wT
2 · (z3 − z2)

wT
1 · (z3 − z2)

∣∣∣∣ ≤ ε .
Note that if event Fε does not occur, then all slopes of R differ by more than ε. Particularly,

all slopes are pairwise distinct. First of all we show that event Fε is very unlikely to occur if ε is
chosen sufficiently small.

Lemma 7. The probability that there are two neighboring vertices z1, z2 of P such that |wT
1 · (z2−

z1)| ≤ ε · ‖z2 − z1‖ is bounded from above by 2mnε
δ .

Proof. Let z1 and z2 be two neighbors of P . Let ∆z = z2− z1. Because the claim we want to show
is invariant under scaling, we can assume without loss of generality that ‖∆z‖ = 1. There are
n − 1 indices i1, . . . , in−1 ∈ [m] such that aT

ik
z1 = bik = aT

ik
z2. Recall that w1 = −[u1, . . . , un] · λ,

where λ = (λ1, . . . , λn) is drawn uniformly at random from (0, 1]n. There must be an index i such
that ai1 , . . . , ain−1

, ui are linearly independent. Hence, κ :=uT
i ∆z 6= 0 and, thus, |κ| ≥ δ due to

Lemma 5, Claim 3.
We apply the principle of deferred decisions and assume that all λj for j 6= i are already drawn.

Then

wT
1 ∆z = −

n∑
j=1

λj · uT
j ∆z = −

∑
j 6=i

λj · uT
j ∆z︸ ︷︷ ︸

=: γ

−λi · κ .

Thus,

|wT
1 ∆z| ≤ ε ⇐⇒ wT

1 ∆z ∈ [−ε, ε] ⇐⇒ λi · κ ∈ [γ − ε, γ + ε]

⇐⇒ λi ∈
[
γ

κ
− ε

|κ| ,
γ

κ
+

ε

|κ|

]
.
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The probability for the latter event is bounded by the length of the interval, i.e., by 2ε
|κ| ≤ 2ε

δ . Since

we have to consider at most
(
m
n−1

)
≤ mn pairs of neighbors (z1, z2), applying a union bound yields

the additional factor of mn.

Lemma 8. The probability of event Fε tends to 0 for ε→ 0.

Proof. Let z1, z2, z3 be pairwise distinct vertices of P such that z1 and z3 are neighbors of z2 and
let ∆z := z2 − z1 and ∆′z := z3 − z2. We assume that ‖∆z‖ = ‖∆′z‖ = 1. This entails no loss of
generality as the fractions in Definition 6 are invariant under scaling. Let i1, . . . , in−1 ∈ [m] be
the n − 1 indices for which aT

ik
z1 = bik = aT

ik
z2. The rows ai1 , . . . , ain−1

are linearly independent
because P is non-degenerate. Since z1, z2, z3 are distinct vertices of P and since z1 and z3 are
neighbors of z2, there is exactly one index i` for which aT

i`
z3 < bi` , i.e., aT

i`
∆′z 6= 0. Otherwise,

z1, z2, z3 would be collinear which would contradict the fact that they are distinct vertices of P .
Without loss of generality assume that ` = n− 1. Since aT

ik
∆z = 0 for each k ∈ [n− 1], the vectors

ai1 , . . . , ain−1
,∆z are linearly independent.

We apply the principle of deferred decisions and assume that w1 is already fixed. Thus, wT
1 ∆z

and wT
1 ∆′z are fixed as well. Moreover, we assume that wT

1 ∆z 6= 0 and wT
1 ∆′z 6= 0 since this

happens almost surely due to Lemma 7. Now consider the matrix M = [ai1 , . . . , ain−2
,∆z, ain−1

]
and the random vector (Y1, . . . , Yn−1, Z)T = M−1 · w2 = M−1 · [v1, . . . , vn] · µ. For fixed values
y1, . . . , yn−1 let us consider all realizations of µ for which (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then

wT
2 ∆z =

(
M · (y1, . . . , yn−1, Z)T

)T
∆z

=

n−2∑
k=1

yk · aT
ik

∆z + yn−1 ·∆T
z ∆z + Z · aT

in−1
∆z

= yn−1 ,

i.e., the value of wT
2 ∆z does not depend on the outcome of Z since ∆z is orthogonal to all aik .

For ∆′z we obtain

wT
2 ∆′z =

(
M · (y1, . . . , yn−1, Z)T

)T
∆′z

=

n−2∑
k=1

yk · aT
ik

∆′z + yn−1 ·∆T
z ∆′z + Z · aT

in−1
∆′z

= yn−1 ·∆T
z ∆′z︸ ︷︷ ︸

=:κ

+Z · aT
in−1

∆′z

as ∆′z is orthogonal to all aik except for k = ` = n− 1. The chain of equivalences∣∣∣∣wT
2 ∆z

wT
1 ∆z

− wT
2 ∆′z

wT
1 ∆′z

∣∣∣∣ ≤ ε ⇐⇒ wT
2 ∆′z

wT
1 ∆′z

∈
[
wT

2 ∆z

wT
1 ∆z

− ε, w
T
2 ∆z

wT
1 ∆z

+ ε

]
⇐⇒ wT

2 ∆′z ∈
[
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z − ε · |wT

1 ∆′z|,
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z + ε · |wT

1 ∆′z|
]

⇐⇒ Z · aT
in−1

∆′z ∈
[
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z − κ− ε · |wT

1 ∆′z|,
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z − κ+ ε · |wT

1 ∆′z|
]

implies, that for event Fε to occur Z must fall into an interval I = I(y1, . . . , yn−1) of length

2ε · |w
T
1 ∆′z|

|aTin−1
∆′z|

. The probability of this is bounded from above by

2n · 2ε · |w
T
1 ∆′z|

|aTin−1
∆′z|

δ(r1, . . . , rn) ·mink∈[n] ‖rk‖
=

4n · |wT
1 ∆′z|

δ(r1, . . . , rn) ·mink∈[n] ‖rk‖ · |aT
in−1

∆′z|︸ ︷︷ ︸
=: γ

·ε ,
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π(x2)

π(x1)

R
p̂

>t

P ′>t

≤ t
≤ t

p?

Figure 2: Slopes of the vertices of R

where [r1, . . . , rn] = M−1 · [v1, . . . , vn]. This is due to (Y1, . . . , Yn−1, Z)T = [r1, . . . , rn] · µ and
Theorem 15. Since the vectors r1, . . . , rn are linearly independent, we have δ(r1, . . . , rn) > 0 and
mink∈[n] ‖rk‖ > 0. Furthermore, |aT

in−1
∆′z| > 0 since in−1 is the constraint which is not tight for z3,

but for z2. Hence, γ <∞, and thus Pr
[∣∣∣wT

2 ∆z

wT
1 ∆z
− wT

2 ∆′z
wT

1 ∆′z

∣∣∣ ≤ ε]→ 0 for ε→ 0.

As there are at most m3n triples (z1, z2, z3) we have to consider, the claim follows by applying
a union bound.

Let p 6= π(x2) be a vertex of R. We call the slope s of the edge incident to p to the right of p
the slope of p. As a convention, we set the slope of π(x2) to 0 which is smaller than the slope of
any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p̂ be the right-most vertex of R whose slope is larger than t,
and let p? be the right neighbor of p̂ (see Figure 2). Let x̂ and x? be the neighboring vertices
of P with π(x̂) = p̂ and π(x?) = p?. Now let i = i(x?, x̂) ∈ [m] be the index for which aT

i x
? = bi

and for which x̂ is the (unique) neighbor x of x? for which aT
i x < bi. This index is unique due

to the non-degeneracy of the polytope P . For an arbitrary real γ ≥ 0 we consider the vector
w̃2 = w2 + γ · ai.

Lemma 9. Let π̃ = πw1,w̃2
and let R̃ = Rw1,w̃2

be the path from π̃(x1) to π̃(x2) in the projection

P̃ ′ = P ′w1,w̃2
of polytope P . Furthermore, let p̃? be the left-most vertex of R̃ whose slope does not

exceed t. Then, p̃? = π̃(x?).

Let us reformulate the statement of Lemma 9 as follows: The vertex p̃? is defined for the
path R̃ of polygon P̃ ′ with the same rules as used to define the vertex p? of the original path R
of polygon P ′. Even though R and R̃ can be very different in shape, both vertices, p? and p̃?,
correspond to the same solution x? in the polytope P , that is, p? = π(x?) and p̃? = π̃(x?). Let us
remark that Lemma 9 is a significant generalization of Lemma 4.3 of [4].

Proof. We consider a linear auxiliary function w̄2 : Rn → R, given by w̄2(x) = w̃T
2 x − γ · bi. The

paths R̄ = Rw1,w̄2
and R̃ are identical except for a shift by −γ · bi in the second coordinate because

for π̄ = πw1,w̄2
we obtain

π̄(x) = (wT
1 x, w̃

T
2 x− γ · bi) = (wT

1 x, w̃
T
2 x)− (0, γ · bi) = π̃(x)− (0, γ · bi)

for all x ∈ Rn. Consequently, the slopes of R̄ and R̃ are exactly the same (see Figure 3a).
Let x ∈ P be an arbitrary point from the polytope P . Then, w̃T

2 x = wT
2 x+γ ·aT

i x ≤ wT
2 x+γ ·bi.

The inequality is due to γ ≥ 0 and aT
i x ≤ bi for all x ∈ P . Equality holds, among others, for x = x?

due to the choice of ai. Hence, for all points x ∈ P the two-dimensional points π(x) and π̄(x)
agree in the first coordinate while the second coordinate of π(x) is at least the second coordinate
of π̄(x) as w̄2(x) = w̃T

2 x − γ · bi ≤ wT
2 x. Additionally, we have π(x?) = π̄(x?). Thus, path R̄ is

11



0 ξ

η

R̄

−γ · biR̃

(a) Relation between R̄ and R̃

0 ξ

η

R

R̄
p?

(b) Relation between R̄ an R

Figure 3: Relations between R, R̃, and R̄

below path R but they meet at point p? = π(x?). Hence, the slope of R̄ to the left (right) of p?

is at least (at most) the slope of R to the left (right) of p? which is greater than (at most) t (see
Figure 3b). Consequently, p? is the left-most vertex of R̄ whose slope does not exceed t. Since R̄
and R̃ are identical up to a shift of −(0, γ · bi), π̃(x?) is the left-most vertex of R̃ whose slope does
not exceed t, i.e., π̃(x?) = p̃?.

Lemma 9 holds for any vector w̃2 on the ray ~r = {w2 + γ · ai : γ ≥ 0}. As ‖w2‖ ≤ n (see
Section 2.2), we have w2 ∈ [−n, n]n. Hence, ray ~r intersects the boundary of [−n, n]n in a unique
point z. We choose w̃2 = w̃2(w2, i) := z and obtain the following result.

Corollary 10. Let π̃ = πw1,w̃2(w2,i) and let p̃? be the left-most vertex of path R̃ = Rw1,w̃2(w2,i)

whose slope does not exceed t. Then, p̃? = π̃(x?).

Note, that Corollary 10 only holds for the right choice of index i = i(x?, x̂). The vector w̃2(w2, i)
is defined for any vector w2 ∈ [−n, n]n and any index i ∈ [m]. In the remainder, index i is an
arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real ε > 0 and that
depends on w1 and w2.

Definition 11. For an index i ∈ [m] and a real t ≥ 0 let p̃? be the left-most vertex of R̃ =
Rw1,w̃2(w2,i) whose slope does not exceed t and let y? be the corresponding vertex of P . For a real
ε > 0 we denote by Ei,t,ε the event that the conditions

• aT
i y

? = bi and

• wT
2 (ŷ−y?)

wT
1 (ŷ−y?)

∈ (t, t+ ε], where ŷ is the neighbor y of y? for which aT
i y < bi,

are met. Note, that the vertex ŷ always exists and that it is unique since the polytope P is non-
degenerate.

Let us remark that the vertices y? and ŷ, which depend on the index i, equal x? and x̂ if we
choose i = i(x?, x̂). For other choices of i, this is, in general, not the case.

Observe that all possible realizations of w2 from the line L := {w2 + x · ai : x ∈ R} are mapped
to the same vector w̃2(w2, i). Consequently, if w1 is fixed and if we only consider realizations of µ
for which w2 ∈ L, then vertex p̃? and, hence, vertex y? from Definition 11 are already determined.
However, since w2 is not completely specified, we have some randomness left for event Ei,t,ε to
occur. This allows us to bound the probability of event Ei,t,ε from above (see proof of Lemma 13).
The next lemma shows why this probability matters.
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Lemma 12. For reals t ≥ 0 and ε > 0 let At,ε denote the event that the path R = Rw1,w2 has a
slope in (t, t+ ε]. Then, At,ε ⊆

⋃m
i=1 Ei,t,ε.

Proof. Assume that event At,ε occurs. Let p̂ be the right-most vertex of R whose slope exceeds t,
let p? be the right neighbor of p̂, and let x̂ and x? be the neighboring vertices of P for which
π(x̂) = p̂ and π(x?) = p?, where π = πw1,w2 . Moreover, let i = i(x?, x̂) be the index for which
aT
i x

? = bi but aT
i x̂ < bi. We show that event Ei,t,ε occurs.

Consider the left-most vertex p̃? of R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t and let y?

be the corresponding vertex of P . In accordance with Corollary 10 we obtain y? = x?. Hence,
aT
i y

? = bi, i.e., the first condition of event Ei,t,ε holds. Now let ŷ be the unique neighbor y of y?

for which aT
i y < bi. Since y? = x?, we obtain ŷ = x̂. Consequently,

wT
2 (ŷ − y?)

wT
1 (ŷ − y?) =

wT
2 (x̂− x?)

wT
1 (x̂− x?) ∈ (t, t+ ε] ,

since this is the smallest slope of R that exceeds t and since there is a slope in (t, t + ε] by
assumption. Hence, event Ei,t,ε occurs since the second condition for event Ei,t,ε to happen holds
as well.

With Lemma 12 we can now bound the probability of event At,ε.

Lemma 13. For reals t ≥ 0 and ε > 0 the probability of event At,ε is bounded by Pr [At,ε] ≤ 4mn2ε
δ2 .

Proof. Due to Lemma 12 it suffices to show that Pr [Ei,t,ε] ≤ 1
m · 4mn2ε

δ2 = 4n2ε
δ2 for any index

i ∈ [m].
We apply the principle of deferred decisions and assume that vector λ ∈ (0, 1]n is not random

anymore, but arbitrarily fixed. Thus, vector w1 is already fixed. Now we extend the normal-
ized vector ai to an orthonormal basis {q1, . . . , qn−1, ai} of Rn and consider the random vector
(Y1, . . . , Yn−1, Z)T = QTw2 given by the matrix vector product of the transpose of the orthogonal
matrix Q = [q1, . . . , qn−1, ai] and the vector w2 = [v1, . . . , vn] · µ. For fixed values y1, . . . , yn−1 let
us consider all realizations of µ such that (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then, w2 is fixed up to
the ray

w2(Z) = Q · (y1, . . . , yn−1, Z)T =

n−1∑
j=1

yj · qj + Z · ai = w + Z · ai

for w =
∑n−1
j=1 yj · qj . All realizations of w2(Z) that are under consideration are mapped to the

same value w̃2 by the function w2 7→ w̃2(w2, i), i.e., w̃2(w2(Z), i) = w̃2 for any possible realization
of Z. In other words, if w2 = w2(Z) is specified up to this ray, then the path Rw1,w̃2(w2,i) and,
hence, the vectors y? and ŷ used for the definition of event Ei,t,ε, are already determined.

Let us only consider the case that the first condition of event Ei,t,ε is fulfilled. Otherwise,
event Ei,t,ε cannot occur. Thus, event Ei,t,ε occurs iff

(t, t+ ε] 3 wT
2 · (ŷ − y?)

wT
1 · (ŷ − y?)

=
wT · (ŷ − y?)
wT

1 · (ŷ − y?)︸ ︷︷ ︸
=:α

+Z · a
T
i · (ŷ − y?)
wT

1 · (ŷ − y?)︸ ︷︷ ︸
=: β

.

The next step in this proof will be to show that the inequality |β| ≥ δ
n is necessary for event Ei,t,ε

to happen. For the sake of simplicity let us assume that ‖ŷ − y?‖ = 1 since β is invariant under
scaling. If event Ei,t,ε occurs, then aT

i y
? = bi, ŷ is a neighbor of y?, and aT

i ŷ 6= bi. That is, by
Lemma 5, Claim 3 we obtain |aT

i · (ŷ − y?)| ≥ δ · ‖ŷ − y?‖ = δ and, hence,

|β| =
∣∣∣∣ aT

i · (ŷ − y?)
wT

1 · (ŷ − y?)

∣∣∣∣ ≥ δ

|wT
1 · (ŷ − y?)|

≥ δ

‖w1‖ · ‖ŷ − y?)‖
≥ δ

n · 1 .

13



Summarizing the previous observations we can state that if event Ei,t,ε occurs, then |β| ≥ δ
n and

α+ Z · β ∈ (t, t+ ε] ⊆ [t− ε, t+ ε]. Hence,

Z ∈
[
t− α
β
− ε

|β| ,
t− α
β

+
ε

|β|

]
⊆
[
t− α
β
− ε

δ
n

,
t− α
β

+
ε
δ
n

]
=: I(y1, . . . , yn−1) .

Let Bi,t,ε denote the event that Z falls into the interval I(Y1, . . . , Yn−1) of length 2nε
δ . We showed

that Ei,t,ε ⊆ Bi,t,ε. Consequently,

Pr [Ei,t,ε] ≤ Pr [Bi,t,ε] ≤
2n · 2nε

δ

δ(QTv1, . . . , QTvn)
≤ 4n2ε

δ2
,

where the second inequality is due to first claim of Theorem 15: By definition, we have

(Y1, . . . , Yn−1, Z)T = QTw2 = QT · [v1, . . . , vn] · µ = [QTv1, . . . , Q
Tvn] · µ .

The third inequality stems from the fact that δ(QTv1, . . . , Q
Tvn) = δ(v1, . . . , vn) ≥ δ, where the

equality is due to the orthogonality of Q (Claim 2 of Lemma 5).

Lemma 14. Let Y be the number of slopes of R = Rw1,w2
that lie in the interval (0, 1]. Then,

E [Y ] ≤ 4mn2

δ2 .

Proof. For a real ε > 0 let Fε denote the event from Definition 6. Recall that all slopes of R differ
by more than ε if Fε does not occur. Let Zt,ε be the random variable that indicates whether R has
a slope in the interval (t, t+ ε] or not, i.e., Zt,ε = 1 if there is such a slope and Zt,ε = 0 otherwise.
Then, for any integer k ≥ 1

Y ≤
{∑k−1

i=0 Z i
k ,

1
k

if F 1
k

does not occur ,

mn otherwise .

This is true since
(
m
n−1

)
≤ mn is a worst-case bound on the number of edges of P and, hence, of

the number of slopes of R. Consequently,

E [Y ] ≤
k−1∑
i=0

E
[
Z i

k ,
1
k

]
+ Pr

[
F 1

k

]
·mn =

k−1∑
i=0

Pr
[
A i

k ,
1
k

]
+ Pr

[
F 1

k

]
·mn

≤
k−1∑
i=0

4mn2 · 1
k

δ2
+ Pr

[
F 1

k

]
·mn =

4mn2

δ2
+ Pr

[
F 1

k

]
·mn ,

where the second inequality stems from Lemma 13. The claim follows since the bound on E [Y ]
holds for any integer k ≥ 1 and since Pr [Fε]→ 0 for ε→ 0 in accordance with Lemma 8.

Proof of Theorem 1. Lemma 14 bounds only the expected number of edges on the path R that
have a slope in the interval (0, 1]. However, the lemma can also be used to bound the expected
number of edges whose slope is larger than 1. For this, one only needs to exchange the order of
the objective functions wT

1 x and wT
2 x in the projection π. Then any edge with a slope of s > 0

becomes an edge with slope 1
s . Due to the symmetry in the choice of w1 and w2, Lemma 14 can

also be applied to bound the expected number of edges whose slope lies in (0, 1] for this modified
projection, which are exactly the edges whose original slope lies in [1,∞).

Formally we can argue as follows. Consider the vertices x′1 = x2 and x′2 = x1, the directions
w′1 = −w2 and w′2 = −w1, and the projection π′ = πw′1,w′2 , yielding a path R′ from π′(x′1) to π′(x′2).
Let X be the number of slopes of R and let Y and Y ′ be the number of slopes of R and of R′,
respectively, that lie in the interval (0, 1]. The paths R and R′ are identical except for the linear
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transformation

[
x
y

]
7→
[

0 −1
−1 0

]
·
[
x
y

]
. Consequently, s is a slope of R if and only if 1

s is a slope

of R′ and, hence, X ≤ Y + Y ′. One might expect equality here but in the unlikely case that R
contains an edge with slope equal to 1 we have X = Y + Y ′ − 1. The expectation of Y is given by
Lemma 14. Since this result holds for any two vertices x1 and x2 it also holds for x′1 and x′2. Note,
that w′1 and w′2 have exactly the same distribution as the directions the shadow vertex algorithm
computes for x′1 and x′2. Therefore, Lemma 14 can also be applied to bound E [Y ′] and we obtain

E [X] ≤ E [Y ] + E [Y ′] = 8mn2

δ2 .

The proof of Corollary 2 follows immediately from Theorem 1 and Claim 4 of Lemma 5.

7 Some Probability Theory

The following theorem is a variant of Theorem 35 from [5]. The two differences are as follows:
In [5] arbitrary densities are considered. We only consider uniform distributions. On the other
hand, instead of considering matrices with entries from {−1, 0, 1} we consider real-valued square
matrices. This is why the results from [5] cannot be applied directly.

Theorem 15. Let X1, . . . , Xn be independent random variables uniformly distributed on (0, 1],
let A = [a1, . . . , an] ∈ Rn×n be an invertible matrix, let (Y1, . . . , Yn−1, Z)T = A · (X1, . . . , Xn)T

be the linear combinations of X1, . . . , Xn given by A, and let I : Rn−1 → {[x, x+ ε] : x ∈ R} be
a function mapping a tuple (y1, . . . , yn−1) to an interval I(y1, . . . , yn−1) of length ε. Then the
probability that Z lies in the interval I(Y1, . . . , Yn−1) can be bounded by

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2nε

δ(a1, . . . , an) ·mink∈[n] ‖ak‖
.

Proof. Let us consider the proof of Theorem 35 of [5] for m = n and k = 1. We obtain

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ ε · | det(A−1)| ·
∫
y∈Rn−1

max
z∈R

fX(A−1 · (y, z)T)dy ,

where fX denotes the common density of the variables X1, . . . , Xn. In our case, fX is 1 on (0, 1]n

and 0 otherwise. Note, that in the proof of Theorem 35 matrix A was an integer matrix and so
|det(A−1)| ≤ 1. In this proof considering this factor is crucial.

It remains to bound
∫
y∈Rn−1 maxz∈R fX(A−1 · (y, z)T)dy. For this we only have to consider the

proof of Lemma 36 of [5] since all densities are rectangular functions. Here, we have χ = 1 and
`i = 1 and φi = 1 for any i ∈ [n]. The only point where the structure of matrix A is exploited
is where |det(PAT )| for P = [In−1,On−1×1] and T = [e1, . . . , ei−1, ei+1, . . . , en] for an arbitrary
index i ∈ [n] is bounded. Since PAT = An,i, we obtain∫

y∈Rn−1

max
z∈R

fX(A−1 · (y, z)T)dy ≤ χ ·
∑
i∈[n]

1∑
j=0

|det(An,i)| ·
∏
i′ 6=i

`i′

= 2 ·
∑
i∈[n]

|det(An,i)| .

Summarizing both bounds, we obtain

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2ε · | det(A−1)| ·
∑
i∈[n]

|det(An,i)| = 2ε ·
∑
i∈[n]

|det(An,i)|
|det(A)| .
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We are now going to bound the fraction
| det(An,i)|
| det(A)| . To do this, consider the equation Ax = en.

We obtain

|xi| =
|det([a1, . . . , ai−1, en, ai+1, . . . , an])|

|det(A)| =
|det(An,i)|
|det(A)| ,

where the first equality is due to Cramer’s rule and the second equality is due to Laplace’s formula.
Hence,

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2ε ·
∑
i∈[n]

|det(An,i)|
|det(A)| = 2ε · ‖x‖1 ≤ 2

√
nε · ‖x‖2

Now consider the equation Âx̂ = en for Â = [N (a1), . . . ,N (an)]. Vector x̂ = Â−1en is the nth

column of the matrix Â−1. Thus, we obtain

‖x̂‖ ≤ max
r column
of Â−1

‖r‖ ≤
√
n

δ(a1, . . . , an)
,

where second inequality is due to Claim 1 of Lemma 5. Due to A = Â · diag(‖a1‖, . . . , ‖an‖), we
have

x = A−1en = diag

(
1

‖a1‖
, . . . ,

1

‖an‖

)
· Â−1en = diag

(
1

‖a1‖
, . . . ,

1

‖an‖

)
· x̂ .

Consequently, ‖x‖ ≤ ‖x̂‖
mink∈[n] ‖ak‖

and, thus,

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2
√
nε · ‖x̂‖

mink∈[n] ‖ak‖

≤ 2nε

δ(a1, . . . , an) ·mink∈[n] ‖ak‖
.
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