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Abstract

We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected
graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The
integrality gap is known to be Ω(

√
n) even for planar graphs [14] due to a simple topological obstruction

and a major focus, following earlier work [17], has been understanding the gap if some constant congestion
is allowed. In planar graphs the integrality gap is O(1) with congestion 2 [23, 7]. In general graphs, recent
work has shown the gap to be polylog(n) [10, 11] with congestion 2. Moreover, the gap is logΩ(c) n in
general graphs with congestion c for any constant c ≥ 1 [1].

It is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold.
It is easy to deduce that for given constant bounds on the approximation and congestion, the class of “nice”
graphs is minor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a
constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is
yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even
treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph
of bounded treewidth and is able to integrally route a constant fraction of the LP solution’s value. Note that
we do not incur any edge congestion. Previously this was not known even for series parallel graphs which
have treewidth 2. The algorithm is based on a more general argument that applies to k-sums of graphs in
some graph family, as long as the graph family has a constant factor, constant congestion bound. We then
use this to show that such bounds hold for the class of k-sums of bounded genus graphs.

1 Introduction

The disjoint paths problem is the following: given an undirected graph G = (V,E) and node pairs H =
{s1t1, . . . , sptp}, are there disjoint paths connecting the given pairs? We use NDP and EDP to refer to the
version in which the paths are required to be node-disjoint or edge-disjoint. Disjoint path problems are corner-
stone problems in combinatorial optimization. The seminal work on graph minors of Robertson and Seymour
[21] gives a polynomial time algorithm for NDP (and hence also for EDP) when p is fixed; the algorithmic and
structural tools developed for this have led to many other fundamental results. In contrast to the undirected case,
the problem in directed graphs is NP-Complete for p = 2 [13]. Further, NDP and EDP are NP-Complete in
undirected graphs when p is part of the input. The maximization versions of EDP and NDP have also attracted
intense interest, especially in connection to its approximability. In the maximum edge-disjoint path (MAX EDP)
∗Dept. of Computer Science, University of Illinois, Urbana, IL 61801. chekuri@illinois.edu. Work on this paper is partly

supported by NSF grant CCF-1016684.
†Laboratoire d’Informatique Fondamentale, Faculté des sciences de Luminy, Marseille, France.

guyslain.naves@lif.univ-mrs.fr.
‡Dept. Mathematics and Statistics, McGill University, Montreal. bruce.shepherd@mcgill.ca. Work is partly supported by

NSERC Discovery/Accelerator Grants.

1

ar
X

iv
:1

30
3.

48
97

v1
  [

cs
.D

M
] 

 2
0 

M
ar

 2
01

3



problem we are given an undirected (in this paper) graph G = (V,E), and node pairs H = {s1t1, . . . , sptp} ,
called commodities or demands. MAX EDP asks for a maximum size subset I ⊆ {1, 2, . . . , p} of commodities
which is routable. A set I is routable if there is a family of edge-disjoint paths (Pi)i∈I where Pi has extremities
si and ti for each i ∈ I . In a more general setting, the edges have integer capacities c : E(G)→ N, and instead
of edge-disjoint paths, we ask that for each edge e ∈ E(G), at most c(e) paths of (Pi)i∈I contain e. For any
demand h = st ∈ H , denote by Ph the set of st-paths in G, and P =

⋃
h∈H Ph. A natural linear programming

relaxation of MAX EDP is then:

max
∑

h∈H zh subject to∑
P∈Ph

xP = zh ≤ 1 (for all h ∈ H)∑
P∈P,e∈P xP ≤ ce (for all e ∈ E)

x ≥ 0

(1)

NP-Completeness of EDP implies that MAX EDP is NP-Hard. In fact, MAX EDP is NP-Hard in capaci-
tated trees for which EDP is trivially solvable. This indicates that MAX EDP inherits hardness also from the
selection of the subset of demands to route. As pointed out in [14], a grid example shows that the integrality gap
of the multicommodity flow relaxation may be as large as Ω(

√
n) even in planar graphs. However, the grid ex-

ample is not robust in the sense that if we allow edge-congestion 2 (or equivalently, if we assume all capacities
are initially at least 2), then the example only has a constant factor gap. This observation led Kleinberg-Tardos
[17] to seek better approximations (polylog or constant factor) for planar graphs in the regime where some
low congestion is allowed. With some work, this agenda proved fruitful: a constant-approximation with edge
congestion 4 was proved possible in planar graphs [7]; this was improved to (an optimal) edge congestion 2 in
[23].

In general graphs, Chuzhoy [10] recently obtained the first poly-logarithmic approximation with constant
congestion (14). This was subsequently improved to the optimal congestion of 2 by Chuzhoy and Li [11]. It is
also known that, in general graphs, the integrality gap of the flow LP is Ω(logΩ(1/c) n) even if congestion c is
allowed; the known hardness of approximation results for MAX EDP with congestion have similar bounds as
the integrality gap bounds, see [1].

For any constants α, β ≥ 1, one may ask for which graphs does the LP for MAX EDP admit an integrality
gap of α if edge congestion β is allowed. It is natural to require this for any possible collection of demands
and any possible assignment of edge capacities. For fixed constants, it is easy to see that the class of such
graphs is closed under minors. Is the converse true? That is, do all minor-closed graphs exhibit a constant
factor constant-congestion (CFCC) integrality gap for MAX EDP? In fact we consider the following stronger
conjecture with congestion 2.

Conjecture 1. Let G be any proper minor-closed family of graphs. Then the integrality gap of the flow LP for
MAX EDP is at most a constant cG when congestion 2 is allowed.

The preceding conjecture is inherently a geometric question, but one would also anticipate a polytime al-
gorithm for producing the routable sets which establish the gap. In attempting to prove Conjecture 1, one
must delve into the structure of minor-closed families of graphs, and in particular the characterization given
by Robertson and Seymour [21]. Two minor-closed families that form the building blocks for this character-
ization are (i) graphs embedded on surfaces of bounded genus (in particular planar graphs), and (ii) graphs
with bounded treewidth. For MAX EDP, we have a constant factor integrality gap with congestion 2 for planar
graphs. In [8] it is shown that the integrality gap of the LP for MAX EDP in graphs of treewidth at most k is
O(k log k log n); note that this is with congestion 1. Existing integrality gap results, when interpreted in terms
of treewidth k, show that the integrality gap is Ω(k) for congestion 1 and Ω(logO(1/c) k) for congestion c > 1.
It was asked in [8] whether the gap is O(k) with congestion 1. In particular, the question of whether the gap
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is O(1) for k = 2 (this is precisely the class of series parallel graphs) was open. In this paper we show the
following result.

Theorem 1.1. The integrality gap of the flow LP for MAX EDP is 2O(k) in graphs of treewidth at most k.
Moreover, there is a polynomial-time algorithm that given a graph G, a tree decomposition for G of width k,
and fractional solution to the LP of value OPT, outputs an integral solution of value Ω(OPT/2O(k)).

The preceding theorem is a special case of a more general theorem that we prove below. Let G be a family
of graphs. For any integer k ≥ 1, let Gk denote the class of graphs obtained from G by the k-sum operation.
The k-sum operation is formally defined in Section 2.1; the structure theorem of Robertson and Seymour is
based on the k-sum operation over certain classes of graphs.

Theorem 1.2. Let G be a minor-closed class of graphs such that the integrality gap of the flow LP is α with
congestion β. Then the integrality gap of the flow LP for the class Gk is 2O(k)α with congestion β + 3.

The preceding theorem is effective in the following sense: there is a polynomial-time algorithm that gives a
constant factor, constant congestion result for Gk assuming that (i) such an algorithm exists for G and (ii) there
is a polynomial-time algorithm to find a tree decomposition over G for a given graph G ∈ Gk.

We give the following as a second piece of evidence towards Conjecture 1.

Theorem 1.3. The integrality gap of the flow LP on graphs of genus g > 0 is O(g log2(g+ 1)) with congestion
3. 1

Theorems 1.2 and 1.3 imply that the class of graphs obtained as k-sums of graphs with genus g is CFCC
when k and g are fixed constants. The bottleneck in extending our results to prove Conjecture 1 are planar
graphs (or more generally bounded genus graphs) that have “vortices” which play a non-trivial role in the
Robertson-Seymour structure theorem.

A brief discussion of technical ideas and related work: The approximability of MAX EDP in undirected
and directed graphs has received much attention in the recent years. We refer the reader to some recent papers
[11, 10, 23, 1]. A framework based on well-linked decompositions [5] has played an important role in under-
standing the integrality gap of the flow relaxation in undirected graphs. It is based on recursively cutting the
input graph along sparse cuts until the given instance is well-linked. However, this framework loses at least a
logarithmic factor in the approximation. The work in [7] obtained a constant factor approximation for planar
graphs by using a more refined decomposition that took advantage of the structure of planar graphs. For graphs
of treewidth k, [8] used the well-linked decomposition framework to obtain an O(k log k log n)-approximation
and integrality gap. Our work here shows that one can bypass the well-linked decomposition framework for
bounded treewidth graphs, and more generally for k-sums over families of graphs. The key high-level idea is
to effectively reduce the (tree)width of one side of a sparse cut if the terminals cannot route to a small set of
nodes. Making this work requires a somewhat nuanced induction hypothesis. For bounded-genus graphs, we
adapt the well-linked decomposition to effectively reduce the problem to the planar graph case.

There are two streams of questions comparing minimum cuts to maximum flows in graphs. First, the flow-
cut gap measures the gap between a sparsest cut and a maximum concurrent flow of an instance. The second
measures the throughput-gap by comparing the maximum throughput flow and the minimum multicut. These
gap results have been of fundamental importance in algorithms starting with the seminal work of Leighton
and Rao [19]. It is known that the gaps in general undirected graphs are Θ(log n); see [24] for a survey. It

1 We believe that the congestion bound in the preceding theorem can be improved to 2 with some additional technical work. We do
not give a polynomial-time algorithm although we believe that it too is achievable with some (potentially messy) technical work.
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is also conjectured [15] (the GNRS Conjecture) that the flow-cut gap is O(1) for minor-closed families. This
conjecture is very much open and is not known even for planar graphs or treewidth 3 graphs; see [18] for
relevant discussion and known results. In contrast, the work of Klein, Plotkin and Rao [16] showed that the
throughput-gap is O(1) in any proper minor-closed family of graphs (formally shown in [25]). The focus of
these works is on fractional flows, in contrast to our focus on integral routings. Conjecture 1 is essentially
asking about the integrality gap of throughput flows. Given theO(1) throughput-gap [16], it can also be viewed
as asking whether the gap between the maximum integer throughput flow with congestion 2 is within an O(1)
factor of the minimum multicut. Analogously for flow-cut gaps, [9] conjectured that the gap between the
maximum integer concurrent flow and the sparsest cut is O(1) in minor-free graphs.

2 Preliminaries

Recall that an instance of MAX EDP consists of a graphG and demand pairsH . In generalH can be a multiset,
however it is convenient to assume that H is a matching on the nodes of G. Indeed we just have to attach the
terminals to leaves created from new nodes. With this assumption we use X to denote the set of terminals (the
endpoints of the demand pairs) and M the matching on X that corresponds to the demands. We call the triple
(G,X,M) a matching instance of MAX EDP. Let x̄ be a feasible solution to the LP relaxation (1). For each
node v ∈ X , we also use x(v) to denote the value

∑
P∈Ph

xP where v is an endpoint of the demand h; this
is called the marginal value of v. We assume that all capacities ce are 1; this does not affect the integrality
gap analysis. Moreover, as argued previously (cf. [3]), at a loss of a factor of 2 in the approximation ratio,
the assumption can be made for polynomial-time algorithms that are based on rounding a solution to the flow
relaxation.

2.1 k-Sums and the structure theorem of Robertson and Seymour

Let G1 and G2 be two graphs, and Ci a clique of size k in Gi. The graph G obtained by identifying the nodes
of C1 one-to-one with those of C2, and then removing some of the edges between nodes of C1 = C2, is called
a k-sum of G1 and G2. For a class of graphs G, we define the class Gk of the graphs obtained from G by k-sums,
to be the smallest class of graphs such that: (i) G is included in Gk, and (ii) if G is a k-sum of G1 ∈ G and
G2 ∈ Gk, then G ∈ Gk.

Fix a class of graphs G. A tree T is a tree decomposition over G for a graph G = (V,E), if each node A in
T is associated to a subset of nodes XA ⊆ V , called a bag, and the following properties hold:

(i) for each v ∈ V (G), the set of nodes of T whose bags contain v, form a non-empty sub-tree of T ,

(ii) for each edge uv ∈ E(G), there is a bag with both u and v in it,

(iii) for any bag X , the graph obtained from G[X] by adding cliques over X ∩ Y , for every adjacent bag Y ,
is in G. We denote this graph by G[[X]].

When G is closed under taking minors, condition (iii) implies that G[X] itself is in G, as well as any graph
obtained from G[X] by adding edges in X ∩ Y , for any adjacent bag Y . Throughout we assume that G is
minor-closed. We sometimes identify the nodes of T with their respective bags. We also denote by V (T ), the
union of all bags, and so V (T ) ⊆ V (G).

A set of nodes X ∩ Y , for X and Y adjacent bags, is called a separator. When the tree decomposition T is
minimal (with respect to the number of bags), the separators are disconnecting node sets ofG. Thus each edge e
of T identifies a separator, denoted by Ve. For convenience, we usually work with rooted tree decompositions,
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where an arbitrary node is chosen to be the root. Then, for bag X and its parent Y , we denote by SX the
separator X ∩ Y .

The width of a tree decomposition T is the maximum cardinality of a separator of T . The width of a graph
(relative to a graph class G) is the smallest width of a tree decomposition for that graph. A graph of width k
can thus be obtained by k-sums of graphs from G. As a special case, the treewidth of a graph G is the smallest
k such that G admits a decomposition of width k relative to the class of all graphs with at most k + 1 nodes.

Let T be a tree decomposition of a graph G, rooted at a node R. For any edge e of the tree decomposition,
let Te and Te be the subtrees obtained from T by removing e, withR ∈ Te. We denote byGe the graph obtained
from the induced subgraph of G on node set V (Te), and then removing all edges in V (Te)× V (Te). Note that
Te is a tree decomposition of Ge.

We recall informally the graph structure theorem proved by Robertson and Seymour. For k ∈ N, let Lk be
the graphs obtained in the following way.

• we start from a graph G embeddable on a surface of genus k,

• then we add vortices of width k to at most k faces of G,

• then we add at most k apex nodes. That is, each of these nodes can be adjacent to an arbitrary subset of
nodes.

Then, we denote Lk = Lkk. For a graph H , we denote by KH the graphs that do not contain an H-minor.

Theorem 2.1 (Robertson and Seymour [22]). For any graph H , there is an integer k > 0 such that KH ⊆ Lk.

In order to prove Conjecture 1, one should be able to use the preceding decomposition theorem, proving that
the CFCC property holds for bounded genus graph and is preserved by adding a constant number of vortices
and apex nodes, and by taking k-sums. Apex nodes are easy to deal with. This paper provides a proof for
bounded genus graphs and for k-sums. This leaves only the cases of vortices as the bottleneck in proving the
conjecture.

3 Technical Ingredients

We rely on several technical tools and ingredients that are either explicitly or implicitly used in recent work on
MAX EDP.

3.1 Moving Terminals

We first describe a general tool (ideas of which are leveraged also in previous work, cf. [7, 8]) that allows us
to reduce a MAX EDP instance to a simpler one by moving the terminals to a specific set of new locations
(nodes). The two instances are equivalent for MAX EDP, up to an additional constant congestion and constant
factor approximation.

Lemma 3.1. Suppose we have a (matching) instance (G,H) of MAX EDP with some solution x̄ to its LP
relaxation. Let |x̄| =

∑
P xP . Suppose that for some S,R ⊆ V (G), there is a flow which routes x(s) from

each s ∈ S, and all flow terminates inR. Then there is another (matching) instance (G′, H ′) with the following
properties.

1. The new instance has a (fractional) solution of value at least |x̄| /5,
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2. If there is an integral solution for (G′, H ′) of congestion c, then there is an integral solution for (G,H)
of the same value and congestion c+ 2,

3. G′, H ′ is obtained from G,H by hanging off pendant stars from some of the nodes.

Proof. Let T be a forest of G spanning all the nodes of S such that each component of T contains at least one
node of R. We consider each component of T separately, so we assume here that T is a tree. Let r ∈ R∩V (T )
and take this as a root of T .

We partition S into subsets S1, . . . , S` with the following properties.

(i) for each i ∈ [1, `], 1 ≤ x(Si) ≤ 2 (except possibly S1 may have x(S1) < 1),

(ii) to each Si is associated a subtree Ti of T spanning Si,

(iii) T1, . . . , Tl are edge-disjoint.

We achieve this by the following iterative scheme.

• If x(T ) ≤ 2, choose S1 = S, T1 = T , ` = 1. Else:

• Find a deepest node v in T , such that the subtree T ′ rooted at v has x(T ′) ≥ 1.

• let v1, . . . , vi be the children of v, and T ′1, . . . , T
′
i be the subtrees rooted at v1, . . . , vi respectively. If∑i

j=1 x(T ′j) < 1, then define A := E(T ′) and U := V (T ′)∩S. Otherwise, find the smallest i′ such that

x(B) ≥ 1, where B :=
⋃i′

j=1 V (T ′j) ∩ S. Then set A :=
⋃i′

j=1(E(T ′j) ∪ {vvj}). In both cases, we get
1 ≤ x(A) ≤ 2, and A induces a tree. (Note that in the latter case v was not placed in B but does lie in
V (A).)

• proceed inductively on T − A and S − B, to find S1, . . . S`′ and T1, . . . T`′ . Then ` := `′ + 1, S` := B
and T` := A.

Note that with this scheme, x(S1) might be less than 1, but in that case T1 contains the root node from R. As
the hypotheses x(Si) ≥ 1 is only used to prove the existence of edge-disjoint paths from the Si’s toR, this does
not pose a problem (we can simply take the trivial path at r for S1).

Each Si is called a cluster. As each cluster sends at least one unit of flow to R (with the exception of S1

already mentioned), there is a family of edge-disjoint paths P1, . . . , Pl, where each Pi goes from a node si ∈ Si
to some node ri ∈ R. This can be seen by adding dummy source nodes (one for each Si) adjacent to nodes in
each Si, and a single dummy sink node adjacent from each r ∈ R (a detailed proof is found in [7]).

We now define a new instance of MAX EDP G′, H ′. G′ is obtained from G by adding ` new nodes
u1, . . . , u` with degree one, where ui is adjacent to ri. The capacity of a new edge riui is 1, and we re-define
Pi as extending to ui. We identify each terminal in S with the ui associated with its cluster as follows. Let
φ(s) := s if s /∈ S and φ(s) = ui if s ∈ Si. Then let φ(H) := {φ(s)φ(t) : st ∈ H}. These demands do not
yet form a matching, so H ′ is obtained from φ(H) by simply deporting each of the terminals in S to new nodes
forming leaves.

We show how to transform x̄ into a fractional flow x̄′ in G′, H ′ with congestion 5, such that x̄′ has the same
value as x̄. For that, we only extend the flow paths for the demands in H ′ \H . Let st ∈ H be such a demand
and s′t′ = φ(s)φ(t) its image. For any st-path P with value xP , let P ′ be the path obtained from P by:

• if s ∈ Si for some i, concatenate Pi and the unique ssi-path of Ti,

• similarly if t ∈ Sj for some j, concatenate Pj and the unique ssj-path of Tj .
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Then, set x′P ′ := xP . Then x̄′ has the same value as x̄ by construction, but has higher congestion. Any of
the edges riui (or additional leaves from an xi) have congestion at most 2 by construction; thus it is enough
to focus on edges within G. The original flow paths incur congestion of at most 1 on any edge, so we address
the added congestion from extending the flow paths. The edges of any Pi are charged by at most 2 units (by
terminals within Si) and each Ti is also charge by at most 2 units. As an edge may be contained in at most one
Pi and at most one Ti the extra congestion is bounded by 4. Hence the total congestion of x′ is at most 5, and
in particular, this implies that the fractional optimal solution in G′ is at least 1

5OPT.

Suppose now that we have an integral solution to MAX EDP for G′, H ′ with congestion c. We show how
to transform it into a solution for G,H of the same value with congestion c+ 2. Since we can assume the flow
paths used are simple, we only need to address the flow paths for demands in H ′ \ H . Let P be any path in
the solution satisfying a commodity associated with a node s′ = φ(s), where s is in Si. Then we extend P by
concatenating Pi and the unique sis-path of Ti to it. We may also shortcut this to obtain a simple path. Again,
this clearly defines a solution of same value to the original problem. Since the capacity of riui is one, we use
each Pi at most once, and a path in Ti is used for only one such s ∈ Si. As the paths Pi are disjoint, and the
subtrees are disjoint, each edge is used at most c+ 2 times: c for the original routing, 1 for the Pi paths, and 1
for the paths inside the Ti’s.

3.2 Sparsifiers

Let G = (V,E) be a (multi) graph and let S ⊂ V . We are interested in creating a graph H only on the node
set S that acts as a proxy for routing between nodes in S in the original graph G. The notion of sparsifiers,
introduced in [20], has many possible formulations depending on the various applications. For instance, a
Gomory-Hu Tree can be viewed as a sparsifier which encodes pairwise maximum flows in a graph. We are
interested in the following model. We say that H = (S,EH) is a (σ, ρ)-sparsifier for S in G if the following
properties are true:

• any feasible (fractional) multicommodity flow in G with the endpoints in S is (fractionally) routable in
H with congestion at most σ

• any integer multicommodity flow in H is integrally routable in G with congestion ρ.

Existing sparsifier results mostly focus on fractional routing (or cut preservation) while we need integer
sparsifiers in the sense of the second point above. Chuzhoy [10] developed an integer sparsifier result but it
uses Steiner nodes and has limitations that preclude its direct use in our setting. Instead, a simple argument
based on splitting-off gives the following weak sparsifier result that suffices for our purposes.

Theorem 3.2. Let G = (V,E) be a graph and S ⊂ V . There is a (|S|2, 2)-sparsifier for S in G.

Proof. First, by standard T -join theory, G contains a subset E′ of edges, such that if we add an extra copy
of each such edge, we obtain an Eulerian graph G′. We may now apply splitting off repeatedly at the (even
degree) nodes of V − S. Each operation preserves the minimum cut between any pair of nodes u, v ∈ S. This
ultimately results in a (multi) graph H = (S, F ) on S. We claim that H is the desired sparsifier.

Note that any integral routing in H can easily mapped to an integral routing in G′ since the edges in F map
to edge-disjoint paths in G′. Since G′ had potentially an extra copy of an edge from G we see that ρ = 2.

Now consider any fractional multicommodity flow in G between nodes in S. Say d(uv) flow is routed
between u, v ∈ S. Then d(u, v) ≤ λG(u, v) where λG(u, v) is the capacity of a min u-v cut in G. Since the
splitting-off operation preserved connectivity, λH(u, v) ≥ λG(u, v), hence we can route d(u, v) flow between u
and v inH . However, we have |S|(|S|−1)/2 distinct pairs of nodes in S and routing their flows simultaneously
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in H can result in a congestion of at most |S|(|S| − 1) ≤ |S|2 since each individual flow can be feasibly routed
in H . This shows that σ ≤ |S|2.

Remark 1. The proof of the preceding theorem shows that the congestion parameter ρ can be chosen to be an
additive 1 if G is a capacitated graph.

3.3 Routings through a small set of nodes

We use as a black box the following result from Section 3.1 in [6].

Proposition 3.3. Let G,H be a MAX EDP instance and let x̄ be a fractional solution such that there is a node
v that is contained in every flow path with positive flow. Then there is a polynomial time algorithm that routes
at least 1

12

∑
i xi pairs from H on edge-disjoint paths.

Remark 2. The bound of 1/12 in the preceding proposition is not explicitly stated in [6] but can be inferred
from the arguments.

Now suppose that instead of a single node v, there is a subset S that intersects every flow path in a fractional
solution x̄. It is then easy to see that there is a node v that intersects flow paths of total value at least

∑
i xi/|S|.

We can then apply the preceding proposition to claim that we can route 1
12|S|

∑
i xi pairs. We combine this with

a simple re-routing argument that is relevant to our algorithm to obtain the following.

Proposition 3.4. Let G,H be a matching instance of MAX EDP and let x̄ be a feasible fractional solution for
it. Suppose that there is also a second flow that routes at least xi/α flow from each terminal to some S ⊆ V
where α ≥ 1. Then there is an integral routing of at least 1

36α|S|
∑

i xi pairs.

Proof. Let v ∈ S be the terminal which receives the most flow. Clearly this is of value at least
∑

i xi
α|S| . Consider

a pair siti such that one of the end points, say si sends yi ≤ xi/α flow to v. The other end point ti may send less
than yi (or no flow) to v. We may then create a yi flow from ti to v by using the xi-flow between si, ti and the
flow from si to v. It is easy to see that overlaying all of the flows will cause capacities to be violated by a factor
of at most 3; we scale down the flows by a factor of 3 to satisfy the capacity constraints. Via this process we
can find a new fractional solution x̄′ such that (1) all the flow paths contain v and (2)

∑
i x
′
i ≥

∑
i yi
3 ≥

∑
i xi

3α|S| .
The result now follows by applying Proposition 3.3.

4 MAX EDP in k-sums over a family G

The goal of this section is to prove Theorem 1.2. Throughout, we assume G is a minor closed family, and we
wish to prove bounds for the family Gk obtained by k-sums. In particular, we assume that every subgraph on k
nodes is included in G.

Let A be an algorithm/oracle that has the following property: given a MAX EDP instance on a graph
G ∈ G it integrally routes h pairs with congestion β where h is at least a 1/α fraction of the value of an
optimum fractional solution to that instance. We call A an (α, β)-oracle. We describe an algorithm using A to
approximate MAX EDP on Gk. The proof is via induction on the width of a decomposition and the number of
nodes. One basic step is to take a sparse cut S, lose all the flow crossing that cut, and recurse on both sides.
We need to make our recursion on treewidth on the side S to which we charge the flow lost by cutting the
graph. On the other side, V \ S, we simply recurse on the number of nodes. The main difficulty is to show
how the treewidth is decreased on the S side. The trick is a trade-off between the main treewidth parameter and
some connectivity properties in parts of the graph with higher treewidth. To drive this we need a more refined
induction hypothesis rather than basing it only on the width of a tree decomposition.

8



G1

G2 G3

G4

G5

Figure 1: Illustration of the base case with k = 0 and p = 3: the graph corresponding to each degenerate leaf
is replaced by a sparsifier on the associated separator.

Given k ≤ p, a p-degenerate k-tree decomposition over G of a connected graph G is a rooted tree decom-
position T where some leaves (nodes of degree 1) of the tree are labelled degenerate and:

• for every node X of T , either G[[X]] ∈ G or X is a degenerate leaf (in which case G[[X]] may be
arbitrary),

• the separator corresponding to any edge uv ∈ T is of size at most k, unless it is incident to a degenerate
leaf, in which case it may be up to size p.

A pendant leaf is not necessarily degenerate but if it is not, then it corresponds to a graph in G. We use (k, p)-
tree decomposition as a shorthand notation. We call a multiflow in such a graphG flush with the decomposition
if every flow path that terminates at some node in a degenerate leaf L, also intersects SL (we recall that SL is
the separator V (L) ∩ V (X) where X is the parent node of L).

We may think of graphs with such flush / degenerate decompositions as having an effective treewidth of
size k. In effect, we can ignore that some separators can be larger, because we have the separate property of
flushness which we can leverage via results such as Proposition 3.3.

The next theorem describes the algorithm for converting an LP solution on some graph in Gp, into an integral
routing. As we process this solution, the tree decomposition becomes degenerate with the value of p fixed, k is
gradually reduced to 0. We will assume that p > 0 for if k = p = 0 all the separators are empty and the given
connected graph G is in G and we can simply use A.

Theorem 4.1. Let A be an (α, β) oracle for MAX EDP in a minor-closed family G. Let G be graph with a
(k, p)-tree decomposition T and suppose that G,H is an instance of MAX EDP with a fractional solution x̄
that is flush with T . Then there is an algorithm with oracleA, which computes an integral multicommodity flow
with congestion β + 3 and value γ =

∑
i xi

216·αp23k
. Moreover, this algorithm can be used to obtain the following:

1. an LP -based approximation algorithm with ratio O(αp23p) and congestion β + 3 for MAX EDP in Gp
2. an algorithm with approximation ratioO((p+1)3p) and congestion 1 for the class of graphs of treewidth
p.

The proof of the preceding theorem is somewhat long and technical and occupies the rest of the section.
To help the exposition we break it up into several components. The proof proceeds by induction on k and the
number of nodes. The base case with k = 0 is non-trivial and we treat it first.
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The base case: We can assume without loss of generality that G is connected. Throughout we assume a fixed
p ≥ 1 and consider a decomposition together with a flush fractional routing x̄ as described. Let x : V → R be
the marginal values of x̄. Again we use xi to denote the common value x(si) = x(ti). Hence |x̄| =

∑
i xi =

1
2

∑
v∈V (G) x(v) where we use the notation |x̄| to denote the value of the flow x̄.

Now assume that k = 0 and p ≥ 1. We may assume that T has more than one node otherwise G ∈ G
and we can apply A. Since G is connected, each separator corresponding to an edge of T must be non-trivial.
Since k = 0, each edge of T must be incident to a degenerate leaf. It follows that T is a single edge between
two degenerate leaves or a star whose leaves are all degenerate. If T is a single edge between two degenerate
leaves, all flow paths intersect the separator of size p associated with the edge; hence by Proposition 3.3, there
is an integral routing of value at least (

∑
i xi)/(12p). We therefore restrict our attention to the case when T is

a star with ` leaves. Let G∗ = G[X] where X is the bag at the center/root; we observe that G∗ ∈ G. Let Xi be
the bag at the i’th leaf. We let Gi denote the graph obtained from G[Xi] after removing the edges between the
separator nodes Si = X ∩Xi.

The base case of theorem assertion (2) on treewidth p graphs holds as follows. By flushness, all flow
paths intersect G∗, which has at most p + 1 nodes. Hence there is some node which is receiving at least
(
∑

i xi)/(p + 1) of this flow. Hence by Proposition 3.3, there is a (congestion 1) integral routing of value at
least (

∑
i xi)/(12(p+ 1)).

Now consider the general case with a minor-closed class G and T a star whose center is G∗ ∈ G. We
proceed in the following steps:

1. Using the flushness property move the terminals in each Gi to the separator Si that is contained in G∗

(using Lemma 3.1).

2. In G replace each Gi by a (p2, 2) sparsifier on Si to obtain a new graph G′. Via the sparsifier property,
scale the flow in G down by a factor of p2 to obtain a corresponding feasible flow in G′.

3. Apply the algorithm A on the new instance in G′.

4. Transfer the routing in G′ to a routing in G with additive +1 via the sparsifier property.

5. Use the second part of Lemma 3.1 to convert the routing in G into a solution for our original instance
before the terminals were moved (incur an additional +2 additive congestion).

We describe the steps in more detail. We observe that the graphs Gi are edge-disjoint. The first step is a simple
application of Lemma 3.1 where for each i, we move any terminals inGi−Si to the separator Si via clustering.
This is possible because of the flushness assumption; if P is a flow path with an endpoint in Gi − Si then
that path intersects Si. This incurs a factor 5 loss in the value of the new flow we work with (and it incurs
an additive 2 congestion when we convert back to an integral solution for our original instance). To avoid
notational overload we let f be the flow for the new instance which is at least 1

5 th of the original flow.

After the preceding step no node inGi−Si is the end point of a terminal. In step (2), we can simultaneously
replace each Gi by a (p2, 2)-sparsifier Fi on Si — see Theorem 3.2. Call the new instance G′ and note that
since we only added edges to the separators Si, G′ is a subgraph of G[[X]] and hence G′ ∈ G. At this step,
we also need to convert our flows in Gi’s to be flows in G′. The sparsifier guarantees that any multicommodity
flow on Si that is feasible in Gi can be routed in Fi with congestion p2. Hence, scaling the flow down by p2

guarantees its feasibility in G′.

We now work with the new flow x̄′ in the graph G′ and apply A to obtain a routing of size |x̄′| /α ≥
|x̄| /(5p2α) with congestion β. We must now convert this integral routing to one in G. Again, for each i, there
is an embedded integral routing in Fi which will be re-routed in Gi. We incur an additive 1 congestion for this;
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see Remark 1. Finally we apply the second part of Lemma 3.1 to route the original pairs in G before they were
moved to the separators, incurring an additive congestion of 2.

Thus the total number of pairs routed is at least |x̄| /(5αp2) and the overall congestion of the routing is
β + 3. This proves the base case when k = 0.

The induction step: Henceforth, we assume that p ≥ k > 0 and that T contains at least one edge e with the
associated separator Ve (the intersection of the bags at the two end points of e) of size equal to k; otherwise T
is a star with degenerate leaves as in the base case, or we may use k − 1. We consider an easy setting when
there is a flow g that simultaneously routes x(v)/6 amount from each vertex v to the set Ve. (Note that checking
the existence of the desired flow to Ve can be done by a simple maximum-flow computation.) We then obtain
an integral (congestion 1) flow of size (

∑
i xi)/(216k) via Proposition 3.4 which is sufficient to establish the

induction step for k.

Assume now that there is no such flow g. Then there is a cut U ⊂ V \ Ve with c(U) := c(δ(U)) < 1
6x(U).

We may assume that U is minimal and central (G[U ] and G[V \U ] are connected). Such a cut can be recovered
from the maximum flow computation. We now work with a reduced flow x̄′ obtained from x̄ by eliminating
any flow path that intersects δ(U). We also let x′ be the marginals for x̄′. Obviously we have

|x̄| −
∣∣x̄′∣∣ ≤ c(U) <

x(U)

6
.

Let fU , fŪ be the flow vectors obtained from x̄′, where fU only uses the flow paths contained in U , and fŪ uses
the flow paths contained in V \ U . The idea is that we recurse on G[U ] and G[V \ U ]. We modify the instance
on G[U ] to ensure that it has a (k−1, p)-tree decomposition and charge the lost flow to this side. The recursion
on G[V \ U ] is based on reducing the number of nodes, the width is not reduced. Reducing the width on the U
side and ensuring the flushness property is not immediate; it requires us to modifying fU and in the process we
may lose further flow. We explain this process before analyzing the number of pairs routed by the algorithm.

We note that G[U ] and G[V \ U ] easily admit (k, p)-tree decompositions, by intersecting the nodes of T
with U and V \U respectively, and removing the empty nodes; recallG[U ] andG[V \U ] are connected. Denote
these by TU and TŪ respectively. Degenerate leaves of TU and TŪ are the same as the degenerate leaves of T .
Some of these are “split” by the cut, otherwise they are simply assigned to either TU or TŪ . If split, the two
“halves” go to appropriate sides of the decomposition. The flows fU , fŪ will be flush with each such degenerate
leaf (if the leaf is split, any flow path that crosses the cut is removed).

We proceed in TŪ by induction on the number of nodes. However, since we charge the lost flow to the cut
(i.e., to TU ) we modify TU to obtain a (k − 1, p)-tree decomposition. We state a lemma that accomplishes this.

Lemma 4.2. For the residual instance onG[U ] with flow fU we can either route 1
216k ·|fU | /2 pairs integrally or

find a (k− 1, p)-tree decomposition T ′U and a reduced flow vector f ′U that is flush with T ′U with |f ′U | ≥ |fU | /2.

We postpone the proof of the above lemma and proceed to finish the recursive analysis. We apply the
induction hypothesis for k on TŪ with the number of nodes reduced; hence the algorithm routes at least |fŪ |

αp2216·3k
pairs inG[V \U ] with congestion at most β+3. ForG[U ] we consider two cases based on the preceding lemma.
In the first case the algorithm directly routes 1

216k ·|fU | /2 pairs integrally inG[U ]. In the second case we recurse
on G[U ] with the flow f ′U that is flush with respect to the (k − 1, p)-tree decomposition T ′U ; by the induction

hypothesis the algorithm routes at least |f ′U |
αp2216·3k−1 pairs with congestion β + 3. Since the number of pairs

routed in this second case is less than in the first case, we may focus on it, as we now show that the total
number of pairs routed in G[U ] and G[V \ U ] satisfies the induction hypothesis for k. We first observe that
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T ′U

Figure 2: Induction step: reducing the effective treewidth of G[U ] by creating degenerate leaves. T1, T2 are
maximal subtrees rooted at separators of size k, converted to degenerate leaves.

|f | ≤ |fU |+ |fŪ |+ c(U). Moreover, c(U) < x(U)/6, and since at least x(U)/2 flow originated in U , and we
lost at most c(U) of this flow, we have |fU | ≥ 2c(U). The total number of pairs routed is at least

|f ′U |
216αp2 · 3k−1

+
|fŪ |

216αp2 · 3k ≥
3 |f ′U |+ |fŪ |
216αp2 · 3k

≥ (3/2) |fU |+ |fŪ |
216αp2 · 3k

≥ |fU |+ |fŪ |+ c(U)

216αp2 · 3k

≥ |x̄|
216αp2 · 3k ,

which establishes the induction step for k. A very similar analysis shows the slightly stronger bound for
treewidth p graphs — we simply have to use the stronger induction hypothesis in the preceding calculations
and observe that the base case analysis also proves the desired stronger hypothesis.

Proof of Lemma 4.2: Recall that TU is a (k, p)-degenerate decomposition for G[U ] and that fU is flush with
respect to TU . However, we wish to find a (k − 1, p)-degenerate decomposition. Recall that U is disjoint from
Ve, the separator of size k associated with an edge e of T . We can assume that T is rooted and without loss of
generality that TU is a sub-tree of Te. The reason that TU may not be a (k − 1, p)-tree decomposition is that
it may contain a edge e′ not incident to a degenerate leaf such that |Ve′ | = k. Ve′ was then also a separator of
G since T is a (k, p)-tree decomposition. By centrality of U , every node that Ve′ separates from Ve must then
be in U ; therefore, letting U ′ = V (Te′) (the union of all bags contained in Te′), we have U ′ ⊂ U . We claim
that we can route x(v)/6 from each v ∈ U ′ to Ve′ in G′ = Ge′ (this is the graph induced by G[U ′] but edges
between the separator nodes Ve′ removed); this follows from the minimality of U since a cutset induced by
W ⊂ U ′ \Ve′ is also a cutset ofG. We define a (k−1, p)-tree decomposition T ′U , by contracting every maximal
subtree of TU rooted at such a separator of size k. Each such subtree identifies a new degenerate leaf in T ′U .
However, the flow fU may not be flush with T ′U due to the creation of new degenerate leaves. We try to amend
this by dropping flow paths with end points in a new degenerate leaf L that does not intersect the separator SL.
Let f ′U be the residual flow; observe that by definition f ′U is flush with respect to T ′U . Two cases arise.

• If |f ′U | ≥ |fU | /2 then we have the desired degenerate (k − 1, p)-decomposition of G[U ].
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• Else at least |fU | /2 of the flow is being routed completely within the new degenerate leaves L. Moreover,
these graphs and flows are edge-disjoint. Note also in such an L, we have that the terminals involved can
simultaneously route x(v)/6 each to SL. We can thus obtain a constant fraction of the profit by applying
the method from Proposition 3.4, separately to every new leaf. In particular, we route at least 1

216k ·|fU | /2
of the pairs. In this case, we no longer need to recurse on TU .

This finishes the proof of the lemma.

Finally, the main inductive claim implies the claimed algorithmic results since we can start with a proper p-
decomposition T of G ∈ Gp (viewed as a (p, p)-tree decomposition with no degenerate leaves) and an arbitrary
multiflow on its support (since there are no degenerate leaves the flushness is satisfied) in order to begin our
induction. This finishes the proof.

5 MEDP in Bounded Genus Graphs

In this section we consider MAX EDP and obtain an approximation ratio that depends on the genus of the
given graph. Throughout we use g to denote the genus of the given graph G; we assume that g > 0 since we
already understand planar graphs. We assume that the given instance of MAX EDP is a matching instance in
which the terminals are degree 1 leaves and that each terminal participates in exactly one pair. An instance of
MAX EDP with this restriction is characterized by a tuple (G,X,M) where G is the graph and X is the set
of terminals and M is a matching on the terminals corresponding to the given pairs. We also assume that the
degree of each node is at most 4; this can be arranged without changing the genus by replacing a high-degree
node by a grid (see [3] for the description for planar graphs which generalizes easily for any surface). Let x̄ be
a feasible fractional solution to the multicommodity flow based linear programming relaxation. We use again
the terminology |x̄| to denote

∑
i xi, the fractional amount of flow routed by x̄. We let βg denote the flow-cut

gap for product-multicommodity flow instances in a graph of genus g; this is known to be O(log(g + 1)) [18].
We implicitly assume that βg is an effective upper bound on the flow-cut gap in that there is a polynomial-time
algorithm that outputs a sparse cut no worse than βg times the maximum concurrent flow for a given product
multicommodity instance on a genus g graph. The main result is the following.

Theorem 5.1. Let x̄ be a feasible fractional solution to a MAX EDP instance in a graph of genus g > 0. Then
Ω(|x̄| /γg) pairs can be routed with congestion 3 where γg = O(g log2(g + 1)).

As we remarked previously we do not have currently have a polynomial-time algorithm for the guarantee
that we establishes in the preceding theorem. There are three high-level ingredients in establishing the preceding
theorem.

• A constant factor approximation with congestion 2 for planar graphs based on the LP relaxation [7, 23].

• An O(g)-approximation with congestion 3 for graphs with genus g when the terminals are well-linked.
This extends the result in [5] for planar graphs to bounded genus graphs via the use of grid minors.

• A modification of the well-linked decomposition of [5] that terminates the decomposition when the graph
is planar even if the terminals are not well-linked.

We first give some formal definitions on well-linked sets; the material follows [5] closely.

Well-linked Sets: Let X ⊆ V be a set of nodes and let π : X → [0, 1] be a weight function on X . We
say X is π-flow-well-linked in G if there is a feasible multicommodity flow in G for the following demand
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matrix: between every unordered pair of terminals u, v ∈ X there is a demand π(u)π(v)/π(X) (other node
pairs have zero demand). We say that X is π-cut-well-linked in G if |δ(S)| ≥ π(S ∩ X) for all S such that
π(S ∩X) ≤ π(X)/2. It can be checked easily that if a set X is π-flow-linked in G, then it is π/2-cut-linked.
If π(u) = α for all u ∈ X , we say that X is α-flow(or cut)-well-linked. If α = 1 we simply say that X is
well-linked. Given π : X → [0, 1] one can check in polynomial time whether X is π-flow-well-linked or not
via linear programming.

One can efficiently find an approximate sparse cut ifX is not π-flow-well-linked via the algorithmic aspects
of the product flow-cut gap; the lemma below follows from [18].

Lemma 5.2. Let G = (V,E) be a graph of genus at most g > 1. Let X ⊆ V and π : X → [0, 1]. There is
a polynomial-time algorithm that given G, X and π decides whether X is π-flow-well-linked in G and if not
outputs a set S ⊆ V such that π(S) ≤ π(V \ S) and |δ(S)| ≤ βg · π(S) where βg = O(log(g + 1)).

We now formally state the theorems that correspond to the high-level ingredients. The first is a constant
factor approximation for routing in planar graphs.

Theorem 5.3 ([7, 23]). Let x̄ be a feasible fractional solution to a MAX EDP instance in a planar graph. Then
there is a polynomial-time algorithm that routes Ω(|x̄|) pairs with congestion 2.

The second ingredient is an O(g)-approximation if the terminals are well-linked. More precisely we have
the following theorem which we prove in Section 5.2.

Theorem 5.4. Let x̄ be a feasible fractional solution to a MAX EDP instance in a graph of genus g > 0.
Moreover, suppose the terminal set X is π-flow-well-linked in G where π(v) = ρ · x(v) for some scalar ρ ≤ 1.
Then there is an algorithm that routes Ω(ρ · |x̄| /g) pairs with congestion 3.

The last ingredient is the following adaptation of the well-linked decomposition from [5].

Theorem 5.5. Let (G,X,M) be an instance of MAX EDP in a graph of genus at most g and let x̄ be a feasible
fractional solution. Then there is a polynomial-time algorithm that decomposes the given instances into several
instances (G1, X1,M1), . . . , (Gh, Xh,Mh) with the following properties.

• The graphs G1, G2, . . . , Gh are node-disjoint subgraphs of G.

• For 1 ≤ j ≤ h, Mj ⊆M and the end points of Mj are in Gj .

• For 1 ≤ j ≤ h, there is a feasible fractional solution x̄j for the instance (Gj , Xj ,Mj) such that∑
j

∣∣x̄j∣∣ = Ω(|x̄|).

• For 1 ≤ j ≤ h, Gi is planar or the terminals Xj are x̄j/(10βg log(g + 1))-flow-well-linked in Gj .

Assuming the preceding three theorems we finish the proof of Theorem 5.1. LetG be a graph of genus≤ g.
We apply the decomposition given by Theorem 5.4 which reduces the original problem instance (G,X,M) to
a collection of separate instances (G1, X1,M1), . . . , (Gh, Xh,Mh). Note that pairs in these new instances are
from the original instance and routings in these instances can be combined into a routing in the original graph
G since the G1, G2, . . . , Gh are node-disjoint (and hence also edge-disjoint). The total fractional solution
value in the new instances is Ω(|x̄| /βg log(g + 1)). If Gj is planar we use Theorem 5.3 to route Ω(

∣∣x̄j∣∣)
pairs from Mj in Gj with congestion 2. If Gj is not planar, then Xj is x̄j/(10βg log(g + 1))-flow-well-
linked. Then, via Theorem 5.4, we can route Ω(

∣∣x̄j∣∣ /(gβg log(g + 1))) pairs from Mj in Gj with congestion
4. Thus we route in total Ω(

∑
j |x̄j | /(gβg log(g + 1)) pairs. Since

∑
j |x̄j | = Ω(|x|), we route a total of

Ω(|x̄| /(gβg log(g + 1))) = Ω(|x̄| /(g log2(g + 1))) pairs from M in G with congestion 3.
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5.1 Proof of Theorem 5.5

We start with a well-known fact.

Proposition 5.6. Let G = (V,E) be a connected graph of genus g. Let S ⊂ V be such that G1 = G[S] and
G2 = G[V \ S] are both connected. Then g1 + g2 ≤ g where g1 is the genus of G and g2 is the genus of G2.

The algorithm below is an adaptation of the well-linked decomposition algorithm from [5] that recursively
partitions a graph if the terminals are not well-linked (with a certain parameter). In the adaptation below we
stop the partitioning if the graph becomes planar even if the terminals are not well-linked. We start with an
instance (G,X,M) and an associated fractional solution x̄. We fix a particular selection of flow paths for the
solution x̄. The algorithm recursively cuts G into subgraphs by removing edges. The flow paths that use the
removed edges are lost and each connected component retains flow corresponding to those flow paths which
are completely contained in that component.

Decomposition Algorithm:

1. If |x̄| < 10βg log(g + 1) or if G is a planar graph stop and output (G,X,M) with fractional solution x̄.

2. Else if X is x̄/(10βg log(g + 1)) flow-well-linked in G then stop and output (G,X,M) with fractional
solution x̄.

3. Else find a sparse cut δ(S) such that x(S) ≤ |x̄| /2 and |δ(S)| ≤ 1/(10 log(g+1))·x(S). LetG1 = G[S]
and G2 = G[V \ S]. (Assume wlog that G1, G2 are connected). Let (G1, X1,M1) and (G2, X2,M2) be
the induced instances on G1 and G2 with fractional solutions x̄1 and x̄2 respectively. Recurse separately
on (G1, X1,M1) and (G2, X2,M2).

We now prove that the above algorithm outputs a decomposition as stated in Theorem 5.5. The only property
that is non-trivial to see is the one about the total flow retained in the decomposition. As in [5] it is easier to
upper bound the total number of edges cut by the algorithm which in turn upper bounds the total amount
of flow from the original solution x̄ that is lost during the decomposition. We write a recurrence for this as
follows. Let L(a, r) be total number of edges cut by the algorithm if a is the amount of flow in the graph and
r ≤ g is the genus. The base case is L(a, 0) = 0 since the algorithm stops when the graph is planar. The
algorithm cuts and recurses only when the terminals are not x̄/(10βg log(g + 1)) flow-well linked. Suppose
H is the current graph with flow value a =

∑
v x(v)/2 and genus r, and H is partitioned into H1 and H2.

Let a1 and a2 be the total flow values in H1 and H2 and let r1 and r2 be their genus respectively. We have
a1 + a2 ≤ a and by Proposition 5.6 we have r1 + r2 ≤ r. We claim that the number of edges cut is at
most 1

4 log(g+1) min{a1, a2}. To see this, suppose δ(S) is the sparse cut in H that resulted in H1 and H2 with
H1 = H[S] and H2 = H[V \ S] and a1 = min{a1, a2}. Let x̄ be the fractional solution in H and x̄′ the
solution after the partitioning. We have a = x(V (H))/2. Since the terminals are not x̄/(10βg log(g + 1))
flow-well-linked in H , by Lemma 5.2, |δ(S)| ≤ βg · x(S)/(10βg log(g + 1)) ≤ x(S)/(10 log(g + 1)). We
have a1 = x′(S)/2. Moreover, x′(S) ≥ x(S) − 2|δ(S)| since a flow path p crossing the cut with flow fp can
contribute at most 2fp to the reduction of the marginal values of x(S) at its end points. Thus 2a1 = x′(S) ≥
x(S) − 2|δ(S)| ≥ (10 log(g + 1) − 2)|δ(S)| ≥ 8|δ(S)| since g ≥ 1, which implies that |δ(S)| ≤ a1/4, as
claimed.

Therefore we have the following recurrence for the total number of edges cut in the overall decomposition:

L(a, r) ≤ L(a1, r1) + L(a2, r2) +
1

4 log(g + 1)
min{a1, a2}.
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We prove by induction on r and number of nodes of G that for r ≤ g, L(a, r) ≤ log(r+1)
2 log(g+1) · a. We

had already seen the base case with r = 0 since L(a, r) = 0. By induction L(a1, r1) ≤ log(r1+1)
2 log(g+1) · a1 and

L(a2, r2) ≤ log(r2+1)
2 log(g+1) · a2. Since r1 + r2 ≤ r, min{r1 + 1, r2 + 1} ≤ (r + 1)/2. It is not hard to see that

a1 log(r1 + 1) + a2 log(r2 + 1) ≤ (a1 + a2) log(r + 1)−min{a1, a2} log 2. Using the recurrence.

L(a, r) ≤ L(a1, r1) + L(a2, r2) +
1

4 log(g + 1)
min{a1, a2}

≤ log(r1 + 1)

2 log(g + 1)
· a1 +

log(r2 + 1)

2 log(g + 1)
· a2 +

1

4 log(g + 1)
min{a1, a2}

≤ log(r + 1)

2 log(g + 1)
(a1 + a2)− log 2

2 log(g + 1)
min{a1, a2}+

1

4 log(g + 1)
min{a1, a2}

≤ log(r + 1)

2 log(g + 1)
· a.

Thus L(|x̄| , g) ≤ log(g+1)
2 log(g+1) |x̄| ≤ |x̄| /2. Hence the total flow that remains after the decomposition is at

least |x̄| /2.

5.2 Proof of Theorem 5.4

We start with a grouping technique from [5] that boosts the well-linkedness.

Theorem 5.7. Let x̄ be a feasible fractional solution to an MAX EDP instance (G,X,M). Moreover, suppose
the terminal set X is π-flow-well-linked in G where π(v) = ρ · x(v) for some scalar ρ ≤ 1. Then there
is a polynomial-time algorithm that routes Ω(ρ · |x̄|) pairs of M edge-disjointly or outputs a new instance
(G,X ′,M ′) where M ′ ⊂M and X ′ is well-linked and |M ′| = Ω(ρ|M |).

Using the preceding theorem we assume that we are working with an instance (G,X,M) where X is well-
linked. Recall that G has genus at most g and degree of each node is at most 4. We use the observation below
(see [3]) that relates the size of a well-linked set and the treewidth.

Lemma 5.8. Let G be a graph with maximum degree ∆ and let X ⊆ V be a well-linked set in G. Then the
treewidth of G is Ω(|X|/∆).

Thus we can assume that G has treewidth Ω(|X|). Demaine et al. [12] showed the following theorem on
the size of a grid minor in graphs of genus g following the work of Robertson and Seymour.

Theorem 5.9 ([12]). Let G be a graph of genus at most g. Then G has a grid minor of size Ω(h/g) where h is
the treewidth of G.

Following the scheme from [5], one can use the grid minor as a cross bar to route a large number of pairs
from M provided we can route Ω(|X|/g) terminals to the “interface” of the grid-minor of size Ω(|X|/g) that is
guaranteed to exist inG. We can view the grid minor as rows and columns. In our current context we take every
other node in the first row of the grid as the interface of the grid-minor. Each node v of the minor corresponds
to a subset of connected nodes Av in original graph G that are contracted to form v. To simplify notation we
say that S ⊂ V is the interface of a grid-minor in G if |S ∩Av| = 1 for each interface node v of the grid-minor.
The following lemma is essentially implicit in previous work, in particular [4] used in the context of planar
graphs.

16



Lemma 5.10. Suppose G = (V,E) contains a h × h grid as a minor. Let S ⊆ V be the interface of the
grid-minor. Then S is well-linked in G. Moreover, any matching M on S is routable in G with congestion 2.

The key technical difficulty is to ensure that G contains a large grid-minor whose interface is reachable
from the terminals X . In a sense, the grid-minor’s existence is shown via the well-linkedness of X and hence
there should be such a “reachable” grid-minor. The following theorem formalizes the existence of the desired
grid-minor.

Theorem 5.11. Let G be a graph of genus g > 0. Suppose X is a well-linked set in G. Then G contains a
h × h grid-minor with interface S such that h = Ω(|X|/g) and at least h/8 edge-disjoint paths in G from X
to S.

Proving the preceding theorem formally requires work. In [4] an argument tailored to planar graphs was
used to prove a similar theorem, and in fact a polynomial-time algorithm was given to find the desired grid-
minor. In that same paper a general deletable edge lemma [2] was announced (though never published); in the
appendix we give a streamlined proof based on the original manuscript. We postpone the proof of the preceding
theorem and outline how to complete the proof of Theorem 5.4. We start with our well-linked set X , and via
Theorem 5.11, find a grid-minor of size h = Ω(|X|/g) such that there are h/8 edge-disjoint paths from X to
the interface S. Let X ′ ⊂ X be h/8 terminals that are the end points of these edge-disjoint paths. Recall that
we are interested in routing a given matching M on X . If X ′ contains a “large” sub-matching M ′ ⊂ M then
we can use the grid-minor to routeM ′ with congestion 3 as follows. Let S′ ⊂ S be end points of the paths from
X ′ to S. Clearly M ′ induces a matching on S′ and the grid-minor can route this matching with congestion 2.
Patching this routing with the paths from X ′ to S′ gives the desired congestion 3 routing of M ′ in G. However,
it may be the case that |M ′| is very small, even zero, becauseX ′ only contains one end point from every edge in
M . However, here, we can use the fact thatX and S are well-linked inG to argue that we can route any desired
subset of X of sufficiently large size to S. Thus, we can assume that indeed |M ′| is a constant fraction of |X ′|.
This was essentially done in [3] and details are also included in the appendix (see Lemma A.3). This shows the
number of pairs from M that can be routed with congestion 3 in G is a constant fraction of h, the size of the
grid-minor. Since h = Ω(|X|/g) we route Ω(|X|/g) pairs from M . This finishes the proof of Theorem 5.4.

Now we come to the proof of Theorem 5.11. This is done in Section A via the following high-level ap-
proach. Suppose X is a well-linked set in G. We are guaranteed that G has a grid-minor of size h = Ω(|X|/g).
Let S be its interface. If there are h/8 edge-disjoint paths from X to S then we are done. Otherwise the
claim is that there is an edge e such that X is well-linked in G − e. This is established in Theorem A.4. In
other words, if we start with a graph which is edge-minimal subject to X being well-linked, then following the
procedure above yields a grid-minor that is reachable from X . The reason that this does not immediately lead
to a polynomial-time algorithm to find such a grid-minor is the fact that checking whether a given set X is not
well-linked is NP-Complete. Note that we can check if X if flow-well-linked but the deletable edge lemma we
have works with the notion of cut-well-linkedness which is hard to check. In [4] a poly-time deletable edge
lemma was obtained for the special case of planar graphs and we believe that it can be extended to the case of
genus g graphs but the technical details are quite involved.

6 Open Problems and Concluding Remarks

Resolving Conjecture 1 is the main open problem that arises from this work. In particular, does a planar graph
with a single vortex satisfy the CFCC property? This is is the key technical obstacle.

Theorem 4.1 loses an approximation factor that is exponential in k. Is this necessary? In particular, the
known integrality gap for the flow LP on graphs of treewidth k is only Ω(k); this comes from the grid example.
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Moreover, the congestion we obtain for Gk is β + 3 where β is the congestion guaranteed for the class G. Can
this be improved further, say to β or β + 1?

We believe that Theorem 5.1 can be made algorithmic and also conjecture that the congestion bound can be
improved to 2. The key bottleneck is to find an algorithmic proof of Theorem 5.11.

Acknowledgments: We thank Sanjeev Khanna for allowing us to include Section A in the paper for the sake
of completeness.
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A A Deletable Edge Lemma

The following results are from the unpublished note [2]. We have streamlined the original proofs and include it
for completeness.

Throughout this section we use well-linked to mean cut-well-linked. We say that S ⊆ V is routable to
T ⊆ V in G if there are |S| edge-disjoint paths from S to T in G such that each node in S ∪ T is the end point
of at most one of the paths. We allow paths of length 0 if for example a node belongs to S ∩ T . If S can be
routed to T then of course |S| ≤ |T |.

Given a graph G, two sets of nodes A and B, we define an auxiliary graph G(A,B) obtained by attaching
a node sA (or just s) and a node tB (or just t). The node s has an edge to each node in A and t has an edge to
each node in B. The max s-t flow in G(A,B) identifies the maximum routable set from A to B.

Proposition A.1. If H is well-linked in G then for any X,Y ⊂ H and |X| ≤ |Y |, X is routable to Y in G.
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Proof. Consider the auxiliary graph G′ := G(X,Y ). It is sufficient to prove that the s-t mincut in G′ is |X|.
Let δ(S′) be an s-t minimum cut in G′ with s ∈ S′. Let S = S′−{s}. We assume wlog that |S ∩H| ≤ |H|/2,
otherwise we can work with V (G′) \ S. Since H is well-linked it follows that |δG(S)| ≥ |S ∩ H|. We have
that |δG′(S′)| ≥ |X \ S|+ |δG(S)| ≥ |X \ S|+ |S ∩H| ≥ |X \ S|+ |S ∩X| ≥ |X|.

Lemma A.2. Let H1 and H2 be two disjoint well-linked sets in G. Suppose A ⊂ H1 is routable to B ⊂ H2

and |A| ≤ |H1|/2. Then given any A′ ⊂ H1 with A′ ≤ |A|/2, A′ is routable to B.

Proof. Consider the auxiliary graph G′ := G(A′, B). Let δG′(S′) be an s-t minimum cut in G′ with s ∈ S′.
Let S = S′ − {s}. We argue that |δG′(S′)| ≥ |A′| which proves the lemma. Let a = |A|. We have the equality
that

|δG′(S′)| = |δG(S)|+ |A′ \ S|+ |B ∩ S|. (2)

We consider two cases. In the first case |S ∩ A| ≥ a/2. Since A is routable to B it follows that |δG(S)| ≥
a/2− |S ∩B|. Hence from Equation 2 we have that |δG′(S′)| ≥ a/2 ≥ |A′|.

In the second case, |S∩A| < a/2 which implies that |(V −S)∩A| ≥ a/2. Let Y = (V −S)∩A. Therefore
|Y | ≥ a/2. By Proposition A.1 we have that S ∩A′ is routable to Y . It follows that |δG(S)| ≥ |S ∩A′|. From
Equation 2 |δG′(S′)| ≥ |S ∩A′|+ |A′ \ S| = |A′|.

Lemma A.3. Let H1 and H2 be two disjoint well-linked sets in G. Suppose A ⊂ H1 is routable to B ⊂ H2.
Then given any A′ ⊂ H1 and B′ ⊂ H2 with |A′| = |B′| ≤ |A|/3, A′ is routable to B′.

Proof. Consider the auxiliary graph G′ := G(A′, B′). Let δG′(S′) be an s-t minimum cut in G′ with s ∈ S′.
Let S = S′ − {s} and T = V (G)− S. We argue that |δG′(S′)| ≥ |A′| which proves the lemma. Let a = |A|.
We have the equality that

|δG′(S′)| = |δG(S)|+ |A′ \ S|+ |B′ ∩ S|. (3)

We can assume that |B| = |A|. Consider a fixed routing from A to B. We call u ∈ A, v ∈ B a pair if u
and v are joined by a path in the fixed routing. Suppose the cut δG(S) separates at least a/3 pairs. Then clearly
|δG(S)| ≥ a/3 and we are done. Therefore either S contains at least a/3 pairs or T contains a/3 pairs. If S
contains at least a/3 pairs, then S contains a/3 nodes from H2. Then by the well-linkedness of H2 we see that
|δG(S)| ≥ |T ∩B′| and hence |δG′(S′)| ≥ |T ∩B′|+ |B′ ∩S| = |B′|. If T contains at least a/3 pairs, then we
can use the well-linkedness of H1 to argue that |δG′(S′)| ≥ |A′|.

We note that Lemmas A.3 and A.3 are tight.

Let H1 and H2 be two disjoint well-linked sets in G. Let γ be the size of a min-cut s-t cut in the auxiliary
graph induced by H1 and H2. Thus there is a subset A of H1, and subset B of the H2 such that |A| = |B| = γ
and A is routable to B.

The main result in this section is the following:

Theorem A.4. If γ < |H2|/8, then there is an edge e in G such that H1 is well-linked in G− e.

For simplicity we assume that each node in H1 has degree one in G. This is without loss of generality. For
each node v ∈ H1 we can add a dummy node v′ and attach v′ to v by a single edge; the set H ′1 = {v′|v ∈ H1}
is easily seen to be well-linked and the routability of H ′1 to H2 is the same as that from H1 to H2. Further,
none of the edges (v′, v) is deletable and hence any edge that we show is deletable in the modified instance is
an edge in the original graph.
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Let k = |H2|. To prove the above theorem we consider an s-t minimum cut δ(S′) in the auxiliary graph
G′ := G(H1, H2). Let S = S′ − s and T = V (G) − S. We can evidently choose such a cut so that
|T ∩H1| = 0 since each node in H1 is a leaf. We also have that that |T ∩H2| ≥ |H2| − γ ≥ |H2|/2. Given the
existence of T , we may now choose a γ-cut δ(M) in G with M minimal subject to satisfying the property that
|M ∩H2| ≥ |H2|/2 = k/2 and |M ∩H1| = 0. Note that M is not a stable set for otherwise |δ(M)| ≥ k/2 but
by definition |δ(M)| = γ.

S

M

A = M ∩ S

B = M − S

D = S −M

C = V − (S ∪M)

`
H1

nodes

i
H2

nodes

j
H2

nodes

ad

ab

bc

cd
ac

bd

Figure 3: Illustration for proof of removable edge from M .

Lemma A.5. Any edge with both ends in M is deletable.

Proof. Let e be an edge inside M . Suppose e is not deletable. Then there is a light set S with respect to H1

that is tight and e crosses S. That is, |S ∩H1| = ` ≤ |H1|/2 and |δ(S)| = ` and e ∈ δ(S). Let i and j be the
number of H2 nodes in M ∩ S and M − S respectively. Recall that M does not contain any H1 nodes. See
Fig 3.

We first observe that (i+j) ≥ k−γ ≥ 7k/8, otherwise more than γ nodes are in V −M and |δ(V −M)| =
|δ(M)| = γ; this would violate the well-linkedness of H2. Second, by submodularity and symmetry of the
function |δG| : 2V → Z+, we have,

|δ(M)|+ |δ(S)| ≥ |δ(M ∩ S)|+ |δ(M ∪ S)|,

and
|δ(M)|+ |δ(S)| ≥ |δ(M − S)|+ |δ(S −M)|.

We have |δ(M)| = γ and |δ(S)| = `. Both M ∪ S and S −M have exactly ` nodes of H1; since H1 is
well-linked, |δ(M ∪ S)| ≥ ` and |δ(S −M)| ≥ `. Thus, from the above submodularity inequalities, we get a
contradiction if we can prove that |δ(M ∩S)| > γ or |δ(S−M)| > γ. If i ≥ k/2 we have |δ(M ∩S)| > γ for
otherwiseM ∩S contradicts the minimality ofM . Similarly if j ≥ k/2 we have |δ(M −S)| > γ for otherwise
M − S contradicts the minimality of M .

We now consider the case that i < k/2 and j < k/2. Since (i+ j) ≥ 7k/8 we have 7k/16 ≤ max{i, j} <
k/2. If i = max{i, j} then by well-linkedness of H2, |δ(M ∩ S)| ≥ i ≥ 7k/16 > γ. If j = max{i, j}
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then again by well-linkedness of H2, |δ(M − S)| ≥ j ≥ 7k/16 > γ. In both cases we get the desired
contradiction.
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