
ar
X

iv
:1

30
2.

37
63

v1
 [

cs
.D

S]
 1

5
Fe

b
20

13

Faster exponential-time algorithms in graphs of bounded average

degree∗

Marek Cygan† Marcin Pilipczuk‡

August 13, 2018

Abstract

We first show that the Traveling Salesman Problem in an n-vertex graph with average degree bounded
by d can be solved in O

⋆(2(1−εd)n) time1 and exponential space for a constant εd depending only on d.
Thus, we generalize the recent results of Björklund et al. [TALG 2012] on graphs of bounded degree.

Then, we move to the problem of counting perfect matchings in a graph. We first present a simple
algorithm for counting perfect matchings in an n-vertex graph in O

⋆(2n/2) time and polynomial space;
our algorithm matches the complexity bounds of the algorithm of Björklund [SODA 2012], but relies
on inclusion-exclusion principle instead of algebraic transformations. Building upon this result, we show
that the number of perfect matchings in an n-vertex graph with average degree bounded by d can be
computed in O

⋆(2(1−ε2d)n/2) time and exponential space, where ε2d is the constant obtained by us for
the Traveling Salesman Problem in graphs of average degree at most 2d.

Moreover we obtain a simple algorithm that counts the number of perfect matchings in an n-vertex
bipartite graph of average degree at most d in O

⋆(2(1−1/(3.55d))n/2) time, improving and simplifying the
recent result of Izumi and Wadayama [FOCS 2012].

1 Introduction

Improving upon the 50-years old O⋆(2n)-time dynamic programming algorithms for the Traveling Salesman
Problem by Bellman [1] and Held and Karp [7] is a major open problem in the field of exponential-time
algorithms [14]. A similar situation appears when we want to count perfect matchings in the graph: a half-
century old O⋆(2n/2)-time algorithm of Ryser for bipartite graphs [12] has only recently been transferred to
arbitrary graphs [3], and breaking these time complexity barriers seems like a very challenging task.

From a broader perspective, improving upon a trivial brute-force or a simple dynamic programming
algorithm is one of the main goals the field of exponential-time algorithms. Although the last few years
brought a number of positive results in that direction, most notably the O⋆(1.66n) randomized algorithm for
finding a Hamiltonian cycle in an undirected graph [2], it is conjectured (the so-called Strong Exponential
Time Hypothesis [8]) that the problem of satisfying a general CNF-SAT formulae does not admit any
exponentially better algorithm than the trivial brute-force one. A number of lower bounds were proven
using this assumption [6, 10, 11].

In 2008 Björklund et al. [5] observed that the classical dynamic programming algorithm for TSP can be
trimmed to running time O⋆(2(1−ε∆)n) in graphs of maximum degree ∆. The cost of this improvement is the
use of exponential space, as we can no longer easily translate the dynamic programming algorithm into an
inclusion-exclusion formula. The ideas from [5] were also applied to the Fast Subset Convolution algorithm,
yielding a similar improvements for the problem of computing the chromatic number in graphs of bounded

∗Partially supported by NCN grant N206567140 and Foundation for Polish Science.
†Institute of Informatics, University of Warsaw, Poland, cygan@mimuw.edu.pl
‡Institute of Informatics, University of Warsaw, Poland, malcin@mimuw.edu.pl
1The O⋆-notation suppresses factors polynomial in the input size.

1

http://arxiv.org/abs/1302.3763v1

degree [4]. In this work, we investigate the class of graphs of bounded average degree, a significantly broader
graph class than this of bounded maximum degree.

In the first part of our paper we generalize the results of [5].

Theorem 1.1. For every d ≥ 1 there exists a constant εd > 0 such that, given an n-vertex graph G of
average degree bounded by d, in O⋆(2(1−εd)n) time and exponential space one can find in G a smallest weight
Hamiltonian cycle.

We note that in Theorem 1.1 the constant εd depends on d in doubly-exponential manner, which is worse
than the single-exponential behaviour of [5] in graphs of bounded degree.

The proof of Theorem 1.1 follows the same general approach as the results of [5] — we want to limit
the number of states of the classical dynamic programming algorithm for TSP — but, in order to deal with
graphs of bounded average degree, we need to introduce new concepts and tools. Recall that, by standard
averaging argument, if the average degree of an n-vertex graph G is bounded by d, for any D ≥ d there are
at most dn/D vertices of degree at least D. However, it turns out that this bound cannot be tight for a large
number of values of D at the same time. This simple observation lies at the heart of the proof of Theorem
1.1, as we may afford more expensive branching on vertices of degree more than D provided that there are
significantly less than dn/D of them.

In the second part, we move to the problem of counting perfect matchings in an n-vertex graph. We
start with an observation that this problem can be reduced to a problem of counting some special types
of cycle covers, which, in turn, can be done in O⋆(2n/2)-time and polynomial space using the inclusion-
exclusion principle (see Section 5.1). Note that an algorithm matching this bound in general graphs has
been discovered only last year [3], in contrast to the 50-years old algorithm of Ryser [12] for bipartite graphs.
Thus, we obtain a new proof of the main result of [3], using the inclusion-exclusion principle instead of
advanced algebraic transformations.

Once we develop our inclusion-exclusion-based algorithm for counting perfect matchings, we may turn it
into a dynamic programming algorithm and apply the ideas of Theorem 1.1, obtaining the following.

Theorem 1.2. Given an n-vertex graph G of average degree bounded by d, in O⋆(2(1−ε2d)n/2) time and
exponential space one can count the number of perfect matchings in G where ε2d is the constant given by
Theorem 1.1 for graphs of average degree at most 2d.

To the best of our knowledge, this is the first result that breaks the 2n/2-barrier for counting perfect
matchings in not necessarily bipartite graphs of bounded (average) degree.

When bipartite graphs are concerned, the classical algorithm of Ryser [12] has been improved for graphs
of bounded average degree first by Servedio and Wan [13] and, very recently, by Izumi and Wadayama [9].
Our last result is the following theorem.

Theorem 1.3. Given an n-vertex bipartite graph G of average degree bounded by d, in O⋆(2(1−1/(3.55d))n/2)
time and exponential space one can count the number of perfect matchings in G.

Hence, we improve the running time of [9, 13] in terms of the dependency on d. We would like to
emphasise that our proof of Theorem 1.3 is elementary and does not need the advanced techniques of coding
theory used in [9].

Organization of the paper Section 2 contains preliminaries. Next, in Section 3 we prove the main
technical tool, that is Lemma 3.4, used in the proofs of Theorem 1.1 and Theorem 1.2. In Section 4 we prove
Theorem 1.1, while in Section 5.1 we first show an inclusion-exclusion based algorithm for counting perfect
matchings, which is later modified in Section 5.2 to fit the bounded average degree framework and prove
Theorem 1.2. Finally, Section 6 contains a simple dynamic programming algorithm, proving Theorem 1.3.

We would like to note that both Section 5.1 and Section 6 are self-contained and do not rely on other
sections (in particular do not depend on Lemma 3.4).

2

2 Preliminaries

We use standard (multi)graph notation. For a graph G = (V,E) and a vertex v ∈ V the neighbourhood of
v is defined as NG(v) = {u : uv ∈ E} \ {v} and the closed neighbourhood of v as NG[v] = NG(v)∪ {v}. The
degree of v ∈ V is denoted degG(v) and equals the number of end-points of edges incident to v. In particular
a self-loop contributes 2 to the degree of a vertex. We omit the subscript if the graph G is clear from the
context. The average degree of an n-vertex graph G = (V,E) is defined as 1

n

∑

v∈V deg(v) = 2|E|/n. A
cycle cover in a multigraph G = (V,E) is a subset of edges C ⊆ E, where each vertex is of degree exactly
two if G is undirected or each vertex has exactly one outgoing and one ingoing arc, if G is directed. Note
that this definition allows a cycle cover to contain cycles of length 1, i.e. self-loops, as well as taking two
different parallel edges as length 2 cycle (but does not allow using twice the same edge).

For a graph G = (V,E) by Vdeg=c, Vdeg>c, Vdeg≥c let us denote the subsets of vertices of degree equal to
c, greater than c and at least c respectively.

We also need the following well-known bounds.

Lemma 2.1. For any n, k ≥ 1 it holds that
(

n

k

)

≤
(en

k

)k

.

Lemma 2.2. For any n ≥ 1, it holds that Hn−1 ≥ lnn, where Hn =
∑n

i=1
1
i .

Proof. It is well-known that limn→∞ Hn − lnn = γ where γ > 0.577 is the Euler-Mascheroni constant and
the sequence Hn − lnn is decreasing. Therefore Hn−1 = Hn − 1

n ≥ lnn+ γ − 1
n , hence the lemma is proven

for n ≥ 2 as γ > 1
2 . For n = 1, note that Hn−1 = lnn = 0.

3 Properties of bounded average degree graphs

This section contains technical results concerning bounded average degree graphs. In particular we prove
Lemma 3.4, which is needed to get the claimed running times in Theorems 1.1 and 1.2. However, as the
proofs of this section are not needed to understand the algorithms in further sections the reader may decide
to see only Definition 3.3 and the statement of Lemma 3.4.

Lemma 3.1. Given an n-vertex graph G = (V,E) of average degree at most d and maximum degree at most
D one can in polynomial time find a set A containing ⌈ n

2+4dD ⌉ vertices of degree at most 2d, where for each
x, y ∈ A, x 6= y we have NG[x] ∩NG[y] = ∅.

Proof. Note that |Vdeg≤2d| ≥ n/2. We apply the following procedure. Initially we set A := ∅ and all the
vertices are unmarked. Next, as long as there exists an unmarked vertex x in Vdeg≤2d, we add x to A and mark
all the vertices NG[NG[x]]. Since the set NG[NG[x]] contains at most 1+ 2d+2d(D− 1) = 1+2dD vertices,
at the end of the process we have |A| ≥ n

2+4dD . Clearly this routine can be implemented in polynomial
time.

Lemma 3.2. For any α ≥ 0 and an n-vertex graph G = (V,E) of average degree at most d there exists
D ≤ eα such that |Vdeg>D| ≤ nd

αD .

Proof. By standard counting arguments we have

∞
∑

i=0

|Vdeg>i| =
∞
∑

i=0

i|Vdeg=i| ≤ nd.

For the sake of contradiction assume that |Vdeg>i| >
nd
αi , for each i ≤ eα. Then

∞
∑

i=0

|Vdeg>i| ≥

⌊eα⌋
∑

i=1

|Vdeg>i| >
nd

α

⌊eα⌋
∑

i=1

1/i =
nd

α
H⌊eα⌋ ≥ nd,

3

where the last inequality follows from Lemma 2.2.

In the following definition we capture the superset of the sets used in the dynamic programming algorithms
of Theorems 1.1 and 1.2.

Definition 3.3. For an undirected graph G = (V,E) and two vertices s, t ∈ V by deg2sets(G, s, t) we define
the set of all subsets X ⊆ V \ {s, t}, for which there exists a set of edges F ⊆ E such that:

• degF (v) = 0 for each v ∈ V \ (X ∪ {s, t}),

• degF (v) = 2 for each v ∈ X,

• degF (v) ≤ 1 for v ∈ {s, t}.

Lemma 3.4. For every d ≥ 1 there exists a constant εd > 0, such that for an n-vertex graph G = (V,E) of
average degree at most d for any s, t ∈ V the cardinality of deg2sets(G, s, t) is at most O⋆(2(1−εd)n).

Proof. Use Lemma 3.2 with α = ecd for some sufficiently large universal constant c (it suffices to take c = 20).

Hence we can find an integer D ≤ eα = ee
cd

such that there are at most nd
αD vertices of degree greater than

D in G.
Let D′ = max(2d,D) and H = G[Vdeg≤D′]. Moreover let Y = Vdeg>D′ and recall |Y | ≤ nd

αD , as D′ ≥ D
and Y ⊆ Vdeg>D. Note that H contains at least n/2 vertices and has average degree upper bounded by d.
By Lemma 3.1 there exists a set A ⊆ V (H) of ⌈n/(4+8dD′)⌉ vertices having disjoint closed neighbourhoods
in H . Note that, since d ≥ 1 and D′ ≥ 2d:

|A| =

⌈

n

4 + 8dD′

⌉

≥
n

4 + 8dD′
≥

n

2dD′ + 8dD′
=

n

10dD′
. (1)

If n ≤ 8edD′

4−e , n = O(1) and the claim is trivial. Otherwise:

|A| =

⌈

n

4 + 8dD′

⌉

<
n

8dD′
+ 1 <

n

2edD′
. (2)

Moreover, as d ≥ 1 and D′ = max(2d,D) ≤ 2dD, for sufficiently large c we have:

|Y | ≤
nd

αD
≤

n

20dD′
·
40d3

ecd
<

n

20dD′
≤

|A|

2
. (3)

Consider an arbitrary set X ∈ deg2sets(G, s, t), and a corresponding set F ⊆ E from Definition 3.3.
Define ZX as the set of vertices x ∈ X ∩ V (H) such that NH(x) ∩X = ∅. Note that F is a set of paths and
cycles, where each vertex of ZX is of degree two, hence F contains at least 2|ZX | edges between ZX and Y ,
as any path/cycle of F visiting a vertex of ZX has to enter from Y and leave to Y . Hence by the upper
bound of 2 on the degrees in F we have |ZX | ≤ |Y |.

For each x ∈ A \ (ZX ∪ {s, t}) we have that NH [x] ∩ X 6= {x} and |NH [x]| ≤ 2d + 1. By definition, if
x ∈ A ∩ ZX , we have NH [x] ∩X = {x}. Therefore, for fixed v and A ∩ ZX there are at most

2n
(

22d+1 − 1

22d+1

)|A\(ZX∪{s,t})| (
1

22d+1

)|A∩ZX |

≤ 2n+2

(

22d+1 − 1

22d+1

)|A|

choices for X ∈ deg2sets(G, s).

Moreover, there are at most
∑|Y |

i=0

(

|A|
i

)

≤ n
(|A|
|Y |

)

choices for ZX ∩ A. Thus

|deg2sets(G, s, t)| ≤ 2n+2 ·

(

22d+1 − 1

22d+1

)|A|

· n

(

|A|

|Y |

)

. (4)

4

Let us now estimate
(|A|
|Y |

)

by Lemma 2.1. Since D ≤ D′, |Y | ≤ nd
αD and by (2) and (3):

(

|A|

|Y |

)

≤

(

e|A|

|Y |

)|Y |

≤

(

e
n

2edD′
·
αD

nd

)
nd

αD

≤
(α

2d2

)
nd

αD

< α
nd

αD . (5)

By the standard inequality 1− x ≤ e−x we have that

(22d+1 − 1)/22d+1 = (1− 1/22d+1) ≤ e−1/22d+1

. (6)

Using (1), (5) and (6) we obtain that

(

|A|

|Y |

)(

22d+1 − 1

22d+1

)|A|/2

≤ exp

(

nd lnα

αD
−

n

20dD′22d+1

)

.

Plugging in α = ecd and using the fact that e10d > 40d2 for d ≥ 1 we obtain:
(

|A|

|Y |

)(

22d+1 − 1

22d+1

)|A|/2

≤ exp

(

ncd

e(c−10)d20d · 2dD
−

n

20dD′22d+1

)

.

Since D′ = max(2d,D) ≤ 2dD′ and e4d > 22d+1 as d ≥ 1, we get

(

|A|

|Y |

)(

22d+1 − 1

22d+1

)|A|/2

≤ exp
(n

20dD′22d+1

(c

e(c−14)d
− 1

))

.

Finally, for sufficiently large c, as d ≥ 1, we have c < e(c−14)d and
(

|A|

|Y |

)(

22d+1 − 1

22d+1

)|A|/2

< 1. (7)

Consequently, plugging (7) into (4) and using (1) and (6) we obtain:

|deg2sets(G, s, t)| < n2n+2

(

22d+1 − 1

22d+1

)|A|/2

≤ n2n+2 exp
(

−
n

22d+1 · 20dD′

)

≤ n2n+2 exp
(

−
n

22d+1 · 20d · eecd

)

.

This concludes the proof of the lemma. Note that the dependency on d in the final constant εd is doubly-
exponential.

4 Algorithm for TSP

To prove Theorem 1.1, it suffices to solve in O⋆(2(1−εd)n) time the following problem. We are given an
undirected n-vertex graph G = (V,E) of average degree at most d, vertices a, b ∈ V and a weight function
c : E → R+. We are to find the cheapest Hamiltonian path between a and b in G, or verify that no
Hamiltonian ab-path exists.

We solve the problem by the standard dynamic programing approach. That is for each a ∈ X ⊆ V and
v ∈ X we compute t[X][v], which is the cost of the cheapest path from a to v with the vertex set X . The
entry t[V][b] is the answer to our problem. Note that it is enough to consider only such pairs (X, v), for
which there exists an av-path with the vertex set X .

We first set t[{a}][a] = 0. Then iteratively, for each i = 1, 2, . . . , n− 1, for each u ∈ V , for each X ⊆ V
such that |X | = i, a, u ∈ X and t[X][u] is defined, for each edge uv ∈ E where v 6∈ X , if t[X ∪ {v}][v] is
undefined or t[X ∪ {v}][v] > t[X][u] + c(uv), we set t[X ∪ {v}][v] = t[X][u] + c(uv).

Finally, note that if t[X][v] is defined then X \ {a, v} ∈ deg2sets(G, a, v). Hence, the complexity of
the above algorithm is within a polynomial factor from

∑

v∈V |deg2sets(G, a, v)|, which is bounded by

O⋆(2(1−εd)n) by Lemma 3.4.

5

5 Counting Perfect Matchings

In this section we design algorithms counting the number of perfect matchings in a given graph. First, in
Section 5.1 we show an inclusion-exclusion based algorithm, which given an n-vertex graph computes the
number of its perfect matchings in O⋆(2n/2) time and polynomial space. This matches the time and space
bounds of the algorithm of Björklund [3]. Next, in Section 5.2 we show how the algorithm from Section 5.1
can be reformulated as a dynamic programming routine (using exponential space), which together with
Lemma 3.4 will imply the running time claimed in Theorem 1.2.

5.1 Inclusion-exclusion based algorithm

In the following theorem we show an algorithm computing the number of perfect matchings of an undirected
graph in O⋆(2n/2) time and polynomial space, thus matching the time and space complexity of the algorithm
by Björklund [3].

Theorem 5.1. Given an n-vertex graph G = (V,E) in O⋆(2n/2) time an polynomial space one can count
the number of perfect matchings in G.

Proof. Clearly we can assume that n is even. Consider the edges of G being black and let V = {v0, . . . , vn−1}.
Now we add to the graph a perfect matching of red edges ER = {v2iv2i+1 : 0 ≤ i < n/2} obtaining
a multigraph G′. Observe that for any perfect matching M ⊆ E the multiset M ∪ ER is a cycle cover
(potentially with 2-cycles), where all the cycles are alternating - that is when we traverse each cycle of
M ∪ ER, the colors alternate (in particular, they have even length). Moreover, for any cycle cover Y of G′

composed of alternating cycles the set Y \ ER is a perfect matching in G. This leads us to the following
observation.

Observation 5.2. The number of perfect matchings in G equals the number of cycle covers in G′ where
each cycle is alternating.

Now we create a directed multigraph graph G′′ with arcs labeled with elements of L = {ℓ0, . . . , ℓn/2−1},
having n vertices and 2m arcs, where m = |E| is the number of black edges of G′. Let {v′′0 , . . . , v

′′
n−1} be the

set of vertices of the graph G′′. For each black edge vavb of G′ we add to G′′ two following arcs:

• (v′′a⊕1, v
′′
b) labeled ℓ⌊a/2⌋,

• and (v′′b⊕1, v
′′
a) labeled ℓ⌊b/2⌋.

By ⊕ we denote the XOR operation, that is, for any 0 ≤ x < n the vertex vx⊕1 is the other endpoint of the
red edge of G′ incident to vx.

Observation 5.3. The number of cycle covers in G′ where each cycle is alternating equals the number of
sets of cycles in G′′ of total length n/2, where each label ℓi (for 0 ≤ i < n/2) is used exactly once.

We are going to compute the of sets of cycles in G′′ where each label is used exactly once using the
inclusion-exclusion principle.

For a vertex v′′a of G′′, we say that a closed walk C is v′′a -nice if C visits v′′a exactly once and does not
visit any vertex v′′b for b < a. A closed walk is nice if it is v′′a -nice for some v′′a ; note that, in this case, the
vertex v′′a is defined uniquely. For a positive integer r let us define the universe Ωr as the set of r-tuples,
where each of the r coordinates contains a nice closed walk in G′′ and the total length of all the walks
equals n/2. For 0 ≤ i < n/2 let Ar,i ⊆ Ωr be the set of r-tuples, where at least one walk contains an
arc labeled ℓi. Note that by the observations we made so far the number of perfect matchings in G equals
∑

1≤r≤n/2 |
⋂

0≤i<n/2 Ar,i|/r!, as the tuples in Ωr are ordered and in any tuple of
⋂

0≤i<n/2 Ar,i all walks are
pairwise different. Therefore from now on we assume r to be fixed. By the inclusion-exclusion principle

∣

∣

∣

∣

∣

∣

⋂

0≤i<n/2

Ar,i

∣

∣

∣

∣

∣

∣

=
∑

I⊆{0,...,n/2−1}

(−1)|I|

∣

∣

∣

∣

∣

⋂

i∈I

(Ωr \Ar,i)

∣

∣

∣

∣

∣

6

hence to prove the theorem it is enough to compute the value |
⋂

i∈I(Ωr\Ar,i)| for a given I ⊆ {0, . . . , n/2−1}
in polynomial time. Let G′′

I be the graph G′′ with all the arcs with a label from LI = {ℓi : i ∈ I}
removed. Let pa,j be the number of v′′a -nice closed walks in G′′

I of length j. Note that the value pa,j can
be computed in polynomial time by standard dynamic programming algorithm, filling in a table tp[b][i],
a ≤ b < n/2, 0 ≤ i < j, where tp[b][j] is the number of walks W from v′′a to v′′b in G′′ of length i that visit v′′a
only once and does not visit any vertex v′′c for c < a.

Finally, having the values pa,j is enough to compute |
⋂

i∈I(Ωr \ Ai)| by the standard knapsack type
dynamic programming. That is, we fill in a table t[q][i], 0 ≤ q ≤ r, 0 ≤ i ≤ n/2, where t[q][i] is the number
of q-tuples of nice closed walks in G′′

I of total length i.

5.2 Dynamic programming based algorithm

To prove Theorem 1.2 we want to reformulate the algorithm from Section 5.1, to use dynamic programming
instead of the inclusion exclusion principle. This causes the space complexity to be exponential, however it
will allow us to use Lemma 3.4 to obtain an improved running time for bounded average degree graphs.

Assume that we are given an n-vertex undirected graph G = (V,E), where n is even, and we are to count
the number of perfect matchings in G. We are going to construct an undirected multigraph G′ having only
n/2 vertices, where the edges of G′ will be labeled with unordered pairs of vertices of G′, i.e. with edges of
G. As the set of vertices of G′ = (V ′, E′) we take V ′ = {v′0, . . . , v

′
n/2−1}. For each edge vavb of G we add to

G′ exactly one edge: v′⌊a/2⌋v
′
⌊b/2⌋ labeled with {va, vb}. For an edge e′ ∈ E′ by ℓ(e′) let us denote the label of

e′. Note that G′ may contain self-loops and parallel edges. Observe that if the graph G is of average degree
d, then the graph G′ is of average degree 2d.

In what follows we count the number of particular cycle covers of G′, where we use the labels of edges
to make sure that a cycle going through a vertex v′i ∈ V ′ never uses two edges of G′ corresponding to two
edges of G incident to the same vertex.

Lemma 5.4. The number of perfect matchings in G equals the number of cycle covers C ⊆ E′ of G′, where
⋃

e∈C ℓ(e) = V .

Proof. We show a bijection between perfect matchings in G and cycle covers C of G′ satisfying the condition
⋃

e∈C ℓ(e) = V .
Let M be a perfect matching in G. As f(M) we define f(M) = {v′⌊a/2⌋v

′
⌊b/2⌋ : vavb ∈ M}. Note that

f(M) is a cycle cover and moreover
⋃

e∈f(M) ℓ(e) = V . In the reverse direction, for a cycle cover C ⊆ E′

of G′, consider a set of edges h(C) defined as h(C) = {ℓ(e) : e ∈ C}. Clearly the condition
⋃

e∈C ℓ(e) = V
implies that h(C) is a perfect matching, and moreover h = f−1.

Observe, that if a cycle cover C ⊆ E′ of G′ does not satisfy
⋃

e∈C ℓ(e) = V , then there is a vertex v′i ∈ V ′,
such that the two edges of C incident to v′i do not have disjoint labels. Intuitively this means we are able to
verify the condition

⋃

e∈C ℓ(e) = V locally, which is enough to derive the following dynamic programming
routine.

Lemma 5.5. Once can compute the number of cycle covers C of G′ satisfying
⋃

e∈C ℓ(e) = V in
O⋆(

∑

s,t∈V |deg2sets(G′, s, t)|) time and space.

Proof. An ordered r-cycle cover of a graph H is a tuple of r cycles in H , whose union is a cycle cover of
H . As each cycle cover of H that contains exactly r cycles can be ordered into exactly r! different ordered
r-cycle covers, it is sufficient to count, for any 1 ≤ r ≤ n/2, the number of ordered r-cycle covers C in G′

such that each two edges in C have disjoint labels. In the rest of the proof, we focus on one fixed value of r.
For 0 ≤ q ≤ r and X ⊆ V ′ as t[q][X] let us define the number of ordered q-cycle covers in G′[X] where

each two edges have disjoint labels; note that t[r][V ′] is exactly the value we need. Moreover for 0 ≤ q < r,
X ⊆ V ′, v′a, v

′
b ∈ X , a < b and x ∈ {v2b, v2b+1} as t2[q][X][v′a][v

′
b][x] we define the number of pairs (C,P)

where

7

• C is a ordered q-cycle cover of G′[Y] for some Y ⊆ X \ {v′a, v
′
b};

• P is a v′av
′
b-path with vertex set X \ Y that does not contain any vertex v′c with c < a;

• any two edges of C ∪ P have disjoint labels;

• the label of the edge of P incident to v′a contains v2a;

• the label of the edge of P incident to v′b contains x.

Note that we have the following border values: t[0][∅] = 1 and t[0][X] = 0 for X 6= ∅.
Consider an entry t2[q][X][v′a][v

′
b][x], and let (C,P) be one of the pairs counted in it. We have two cases:

either P is of length 1 or longer. The number of pairs (C,P) in the first case equals t[q][X \{v′a, v
′
b}] · |{v

′
av

′
b ∈

E′ : ℓ(v′av
′
b) = {v2a, x}}|. In the second case, let v′cv

′
b be the last edge of P ; note that c > a by the assumptions

on P . The label of v′cv
′
b equals {v2c, x} or {v2c+1, x}. Thus, the number of elements (C,P) in the second

case equals
∑

v′
c
∈X\{v′

a
,v′

b
}

∑

y∈{v2c,v2c+1}
t2[q][X \ {v′b}][v

′
a][v

′
c][y ⊕ 1] · |{v′cv

′
b ∈ E′ : ℓ(v′cv

′
b) = {y, x}}|, where

for y = v′r we define y ⊕ 1 = v′r⊕1.
Let us now move to the entry t[q][X] and let C be an ordered q-cycle cover in G′[X]. Again, there are

two cases: either the last cycle of C (henceforth denoted W) is of length 1 or longer. The number of the
elements C of the first type equals

∑

v′
a
∈X t[q − 1][X \ {v′a}] · |{v

′
av

′
a ∈ E′}|. In the second case, let v′a be

the lowest-numbered vertex on W and let e = v′av
′
b be the edge of W where v2a+1 ∈ ℓ(e). Note that both v′a

and e are defined uniquely; moreover, a < b and no vertex v′c with c < a belongs to W . Thus the number
of elements C of the second type equals

∑

v′
a
,v′

b
∈X,a<b

∑

x∈{v2b,v2b+1}
t2[q− 1][X][v′a][v

′
b][x⊕ 1] · |{v′av

′
b ∈ E′ :

ℓ(v′av
′
b) = {v2a+1, x}}|.

So far we have given recursive formulas, that allow computing the entries of the tables t and t2. However
the values t[q][X], t2[q][X][v′a][v

′
b][x] for X 6∈

⋃

s,t∈V ′ deg2sets(G′, s, t) are equal to zero. The last step of
the proof is to show how to perform the dynamic programming computation in a time complexity within
a polynomial factor from the number of non-zero entries of the table. We do that in a bottom-up manner,
that is iteratively, for each q = 1, 2, . . . , r, for each i = 1, 2, . . . , n, we want to compute the values of non-zero
entries t[q][X] for all sets X of cardinality i and then compute the values of non-zero entries t2[q][X][∗][∗][∗]
for all sets X of cardinality i. Having the non-zero entries for the pairs (q′, i′) where q′ < q, i′ ≤ i one
can compute the list of non-zero entries t[q][X] for |X | = i by investigating to which recursive formulas the
non-zero entries for (q′, i′) contribute to. Analogously having the non-zero entries for the pairs (q′, i′) where
q′ ≤ q, i′ < i we generate the non-zero entries t2[q][X][∗][∗][∗] for |X | = i, which finishes the proof of the
lemma.

Theorem 1.2 follows directly from the Lemma 3.4 together with Lemma 5.5.

6 Counting Perfect Matchings in Bipartite Graphs

In this section we prove Theorem 1.3, i.e. show an algorithm counting the number of perfect matchings in
bipartite graphs of average degree d in O⋆(2(1−1/(3.55d))n/2) time, improving and simplifying the algorithm
of Izumi and Wadayama [9].

Let G = (V = A∪B,E) be a bipartite graph, where |A| = |B| = n/2, and denote k = n/2. Note that we
may assume that each vertex in G is of degree at least 2, as an isolated vertex causes no perfect matching to
exist, while a vertex of degree 1 has to be matched to its only neighbour, hence we can reduce our instance
in that case. Therefore we assume d ≥ 2.

Let B0 ⊆ B be a subset containing ⌊k/(αd)⌋ vertices of smallest degree in B, where α ≥ 2 is a constant
to be determined later. Moreover let A0 = N(B0) and observe that |A0| ≤ k/α, as vertices of B0 are of
average degree at most d. We order vertices of A, i.e. denote A = {a1, . . . , ak}, so that vertices of A \ A0

appear before vertices of A0. In particular for any 1 ≤ i ≤ k(1− 1/α) we have N(ai) ∩B0 = ∅.

8

Consider the following standard dynamic programming approach. For X ⊆ B define t[X] as the number
of perfect matchings in the subgraph of G induced by {a1, . . . , a|X|}∪X . Having this definition the number
of perfect matchings in G equals T [B]. Observe that the following recursive formula allows to compute the
entries of the table t, where we sum over the vertex matched to a|X|:

t[X] =
∑

v∈N(a|X|)∩X

t[X \ {v}] ,

where t[∅] is defined as 1.
Let us upper bound the number of sets X , for which t[X] is non-zero. If |X | ≤ (1− 1/α)k and t[X] > 0,

then X ∩ B0 = ∅, as otherwise each vertex of X ∩ B0 is isolated in G[{a1, . . . , a|X|} ∪ X]. Consequently

there are at most 2k−⌊k/(αd)⌋ ≤ 21+(1−1/(αd))k sets X with t[X] > 0 of cardinality at most (1 − 1/α)k. At
the same time there are at most k

(

k
⌈k/α⌉

)

sets of cardinality greater than (1 − 1/α)k. By using the binary

entropy function, we get
(

k
⌈k/α⌉

)

= O⋆(2H(1/α)k), where H(p) = −p log2 p− (1−p) log2(1−p). For d ≥ 2 and

α = 3.55 we have 2H(1/α) ≤ 21−1/(αd). Consequently if we skip the computation of values t[X] for sets X of
cardinality at most (1 − 1/α)k, such that X ∩ B0 6= ∅, we obtain the claimed running time, which finishes
the proof of Theorem 1.3.

Note that the constant α = 3.55 can be improved if we have a stronger lower bound on d. However, in
our analysis it is crucial that α > 2.

7 Conclusions and open problems

We would like to conclude with two open problems that arise from our work. First, can our ideas be applied
to obtain an O⋆(2(1−ε)n) time algorithm for computing the chromatic number of graphs of bounded average
degree? For graphs of bounded maximum degree such an algorithm is due to Björklund et al. [4].

Second, can we make a similar improvements as in our work if only polynomial space is allowed? To the
best of our knowledge, this question remains open even in graphs of bounded maximum degree.

References

[1] Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9, 61–63
(1962)

[2] Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS. pp. 173–182. IEEE Computer
Society (2010)

[3] Björklund, A.: Counting perfect matchings as fast as ryser. In: Rabani, Y. (ed.) SODA. pp. 914–921.
SIAM (2012)

[4] Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion and graphs of bounded
degree. Theory Comput. Syst. 47(3), 637–654 (2010)

[5] Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree
graphs. ACM Transactions on Algorithms 8(2), 18 (2012)

[6] Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S.,
Wahlström, M.: On problems as hard as CNF-SAT. In: IEEE Conference on Computational Complexity.
pp. 74–84. IEEE (2012)

[7] Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.
Math. 10, 196–210 (1962)

[8] Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

9

[9] Izumi, T., Wadayama, T.: A new direction for counting perfect matchings. In: FOCS. pp. 591–598.
IEEE Computer Society (2012)

[10] Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably
optimal. In: Randall, D. (ed.) SODA. pp. 777–789. SIAM (2011)

[11] Patrascu, M., Williams, R.: On the possibility of faster sat algorithms. In: SODA. pp. 1065–1075 (2010)

[12] Ryser, H.: Combinatorial Mathematics. The Carus mathematical monographs, Mathematical Associa-
tion of America (1963)

[13] Servedio, R.A., Wan, A.: Computing sparse permanents faster. Inf. Process. Lett. 96(3), 89–92 (2005)

[14] Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G.,
Rinaldi, G. (eds.) Combinatorial Optimization. Lecture Notes in Computer Science, vol. 2570, pp. 185–
208. Springer (2001)

10

	1 Introduction
	2 Preliminaries
	3 Properties of bounded average degree graphs
	4 Algorithm for TSP
	5 Counting Perfect Matchings
	5.1 Inclusion-exclusion based algorithm
	5.2 Dynamic programming based algorithm

	6 Counting Perfect Matchings in Bipartite Graphs
	7 Conclusions and open problems

