
S. Yamamoto (Ed.): HIMI/HCII 2013, Part I, LNCS 8016, pp. 295–304, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Unified Modeling Language:
The Teen Years and Growing Pains

John Erickson1 and Keng Siau2

1 Department of Marketing and Management,
College of Business Administration,

University of Nebraska at Omaha, Omaha, NE 68182, USA
johnerickson@unomaha.edu

2 Department of Business & Information Technology,
Missouri University of Science and Technology, Rolla, MO 65409, USA

siauk@mst.edu

Abstract. Unified Modeling Language (UML) is adopted by the Object Man-
agement Group as a standardized general-purpose modeling language for ob-
ject-oriented software engineering. Despite its status as a standard, UML is still
in a development stage and many studies have highlighted its weaknesses and
challenges - including those related to human factor issues. Further, UML has
grown considerably more complex since its inception. This paper traces the
history of Unified Modeling Language (UML) from its formation to its current
state and discusses the current state of the UML language. The paper first in-
troduces UML and its various diagrams, and discusses its characteristics and
features. The paper then looks at UML's strengths, challenges, and possible fu-
ture development. The human factor issues with using UML are discussed and
elaborated. Potential research questions related to UML are also highlighted.

Keywords: Unified Modeling Language, Human Factors, Systems Analysis
and Design, Object Orientation.

1 Object-Orientation and UML’s Genesis

1.1 Introduction

The continuing proliferation and development of information systems has proceeded
at a pace amazing to even those intimately involved in the creation of such systems.
The number of large companies building, revising or re-engineering their information
systems seems to be ever increasing. Fortune 500 companies currently engaged upon
multi-hundred million dollar IS/IT projects include Union Pacific Railroad, ConAgra
Foods, Walmart, eBay/PayPal, and Blue-Cross Blue Shield to name only a very few.
Given the increasing use of Cloud-based services, there appears to be some moves
toward modularization and standardization of software and systems. Even with much
progress, it appears, however, that software engineering is not keeping pace with the
advances in hardware and general technological capabilities.

296 J. Erickson and K. Siau

While technological change continuously swirls around many businesses and or-
ganizations , systems development often still adheres to the general ADCT (Ana-
lyze, Design, Code, Test) rubric, and utilizes such specific methodologies as the
Waterfall Method, the Spiral Method, the System Life Cycle (alternatively known as
the System Development Lifecycle, or SDLC), Prototyping, Rapid Application
Development (RAD), Joint Application Development (JAD), End-User development,
Outsourcing in various forms, or ‘simply’ buying pre-designed software from vendors
(e.g., SAP, J. D. Edwards, Oracle, and People Soft).

In the past, systems and software development methods did not require that devel-
opers adhere to a specific approach to building systems, and while this may have been
beneficial in that it allowed developers the freedom to choose a method that they were
most comfortable with and knowledgeable about, such open-ended approaches can
affect and constrain the system in unexpected ways or even result in failure. For ex-
ample, system development and implementation failure rates remain stubbornly high.
Cost overruns and time overruns are still the norm, rather than the exception. Also,
open-ended approaches sometimes result in maintenance issues as not all systems
analysts are trained in all methods. . In the current development environment, a dif-
ferent approach to systems development, one that provides close integration between
analysis, design, and coding, would appear to be necessary. Further, many of the
information system project failures are the result of human issues and human factors.
Thus, not only do we need to enhance systems analysis and design methods, but we
also need to enhance them with the human factor issues in mind. In this paper, we
explore the role of the Unified Modeling Language (UML) as a modeling language
that enables such an approach.

The first section of the paper explores the concept of object-orientation, including
object-oriented systems analysis and design, the idea of modeling and modeling lan-
guages, and the history of UML. The following section, Section 2, covers the basic
UML constructs, and Section 3 examines UML from a practical or practitioner pers-
pective, while Section 4 discusses the future of UML and the human factor issues that
need to be studied in enhancing UML.

1.2 Object-Orientation

Over the past two to three decades, object-oriented programming languages have
emerged as the approach that many developers prefer to use during the Coding part of
the systems development life cycle. However, in most cases the Analysis and Design
steps have continued to proceed in the traditional style. This has often created ten-
sion, since traditional analysis and design are process-oriented instead of being
object-oriented.

Object-oriented systems analysis and design (OOSAD) methods were developed to
close the gap between the different stages, the first methods appearing in the 1980s.
By the early 1990s, a virtual explosion in the number of OOSAD approaches began to
flood the new paradigmatic environment. Between 1989 and 1994 the number of OO
development methods grew from around ten to more than fifty (Booch, Rumbaugh

 Unified Modeling Language: The Teen Years and Growing Pains 297

and Jacobson, 1999). Two of these modeling languages are of particular interest for
the purposes of this paper, Booch and Jacobson’s OOSE (Object-Oriented Software
Engineering), and Rumbaugh’s OMT (Object Modeling Technique). A partial listing
of methods/languages is shown below:

Table 1. Examples of Object Oriented Method/Language

• Bailin • Hood
• Berard • Jacobson
• Booch • Martin-Odell
• Coad-Yourdon • Rumbaugh
• Colbert • Schlaer-Mellor
• Embley • Seidewitz
• Firesmith • UML
• Gibson • Wirfs-Brock

1.3 The Emergence of UML

Prominent developers of different object-oriented modeling approaches joined forces
to create UML, which was originally based on the two distinct OO modeling languag-
es mentioned above: Booch and Jacobson’s OOSE (Object-Oriented Software Engi-
neering), and Rumbaugh’s OMT (Object Modeling Technique). Development began
in 1994 and continued through 1996, culminating in the January 1997 release of UML
version 1.0 (Booch, Rumbaugh and Jacobson, 1999). The Object Management Group
(OMG) adopted UML 1.1 as a standard modeling language in November of 1997.
Version 2.4.1 is the most current release.

2 Current UML Models and Extensibility Mechanisms

2.1 Modeling

UML, as its name implies, is really all about creating models of software systems.
Models are an abstraction of reality, meaning that we cannot, and really do not care to
model in total reality settings, simply because of the complexity that such models
would entail. Without abstraction, models would consume far more resources than
any benefit gained from their construction. For the purposes of this paper, a model
constitutes a view into the system. UML originally proposed a set of nine distinct
modeling techniques representing nine different models or views of the system. With
the release of UML 2.0 in July, 2005, five additional diagramming techniques were
incorporated into the language. The techniques can be separated into structural (stat-
ic) and behavioral (dynamic) views of the system. UML 2.4.1, the latest version of
the modeling language, includes additional diagram types for model management.

298 J. Erickson and K. Siau

Structural Diagrams

Profile Diagrams, Class Diagrams, Object Diagrams, Component Diagrams, Deploy-
ment Diagrams, Composite Structure Diagrams, and Package Diagrams comprise the
static models of UML. Static models represent snapshots of the system at a given
point or points in time, and do not relate information about how the system achieved
the condition or state that it is in at each snapshot.

Class diagrams represent the basis of the OO paradigm to many adherents and
depict class models. Class diagrams specify the system from both an analysis and
design perspective. They depict what the system can do – analysis, and provide a
blueprint showing how the system will be built – design (Ambler, 2000). Class dia-
grams are self-describing, and include a listing of the attributes, behaviors, and re-
sponsibilities of the system classes. Properly detailed class diagrams can be directly
translated into physical (program code) form. In addition, correctly developed class
diagrams can guide the software engineering process, as well as provide detailed
system documentation (Lago, 2000).

Object Models and Diagrams represent specific occurrences or instances of class
diagrams, and as such are generally seen as more concrete than the more abstract class
diagrams.

Component diagrams depict the different parts of the software that constitute a
system. This would include the interfaces of and between the components as well as
their interrelationships. Ambler (2000) and Booch, Rumbaugh and Jacobson, (1999)
defined component diagrams as class diagrams at a more abstract level.

Deployment diagrams can also be seen as a special case of class diagrams. In this
case, the diagram models how the run-time processing units are connected and work
together. The primary difference between component and deployment diagrams is
that component diagrams focus on software units, while deployment diagrams depict
the hardware arrangement for the proposed system.

Profile Diagrams are structure diagrams that describe lightweight extension me-
chanisms to the UML by defining custom stereotypes, tagged values, and constraints.
Profiles allow adaptation of the UML metamodel for different platforms and domains.

Composite Structure Diagrams depict the relationships and communications be-
tween the functional parts of a system. These diagrams depict high level and abstract
views of the system being modeled.

Package Diagrams are essentially a subtype of Class or Object Diagrams. They
are intended to depict or show a grouping of related UML elements. Package Dia-
grams make it easier to see dependencies among different parts of the system being
modeled (Pilone and Pitman, 2005). As such, Package Diagrams represent a high
level view of the systems being modeled and therefore a good possibility for convey-
ing understanding to users and other interested parties.

Behavioral Diagrams

Use Case Diagrams, Activity Diagrams, State Diagrams are the primary types of
Behavioral Diagrams. The set of four Interaction Diagrams form a sub-type of
Behavioral Diagram: Sequence Diagrams, Communication Diagrams, Interaction

 Unified Modeling Language: The Teen Years and Growing Pains 299

Overview Diagrams, and Timing Diagrams. In contrast to the static diagrams, the
dynamic diagrams in UML are intended to depict the behavior of the system as it
transitions between states, interacts with users or internal classes and objects, and
moves through the various activities that it is designed to accomplish.

Use Case Diagrams. While class models and diagrams represent the basis of OO as
previously discussed, use case models and diagrams portray the system from the pers-
pective of an end-user, and represent tasks that the system and users must execute in
performance of their jobs (Pooley and Stevens, 1999). Use case models and the re-
sulting use case diagrams consist of actors (those persons or systems outside the sys-
tem of interest that need to interact with the system under development), use cases,
and relationships among the actors and use cases. Booch, Rumbaugh, and Jacobson
(1999) proposed that developers begin the analysis process with use cases. By that,
they mean that developers should begin the analysis process by interviewing end us-
ers, perusing the basic legacy system documentation, etc. and creating from those
interviews and documents the use cases that drive the class model development as
well as the other models of the system. Dobing and Parsons (2006) propose that Use
Case Narratives, which are written descriptions of Use Cases, are also heavily em-
ployed by developers to aid in assembling and understanding Use Case Diagrams.

Activity diagrams model the flow of control through activities in a system and, as
such, are really just flow charts. In addition, activity diagrams are special instances of
statechart diagrams.

State diagrams model state machines. State machines model the transition be-
tween states within an object, and the signals or events that trigger or elicit the change
in state from one value to another (Booch, Rumbaugh and Jacobson, 1999). For
example, a change in air temperature triggers a thermostat to activate a heating or
cooling system that regulates the temperature in a room or building. A rise in air
temperature in this case would be sensed by the thermostat and would cause the cool-
ing system to change states from inactive (or idle) to active, and begin the cooling
process. Once the ideal temperature is reached, the thermostat would sense that and
trigger a state change in the cooling system back to inactive.

Interaction Diagrams are intended to depict communications, such as messages
and events between and among objects. UML 2.X substantially enhanced flow of
control in Interaction Diagrams over UML 1.X. The old isomorphic Sequence and
Collaboration Diagrams from UML 1.X have been supplemented by two new dia-
grams -- Interaction Overview Diagrams and Timing Diagrams. Collaboration Dia-
grams are known as Communication Diagrams in UML 2.X. The four interaction
diagrams are briefly described below.

Sequence Diagrams portray and validate in detail the logical steps of use cases
(Ambler, 2000). Sequence diagrams depict the time ordering of messages between
objects in the system, and as such include lifelines for the objects involved in the
sequence as well as the focus of control at points in time (Booch, Rumbaugh and
Jacobson, 1999).

Interaction Overview Diagrams are a simplification of and a sub-type of Activity
Diagrams. These diagrams can aid the user in understanding the flow of control as a
system operates, but they suppress the details of the messages and information the

300 J. Erickson and K. Siau

messages pass among objects. These are high level diagrams that are not intended
to convey the specifics or details of how a system interacts with other systems or
subsystems.

Communication Diagrams stress or depict the items involved in the interactions
as opposed to the sequencing and control flows. There is some level of isomorphism
present between Communication and Sequence Diagrams because one can easily be
converted to the other. However, the mapping is not one to one (a formal isomor-
phism). In other words, some details can be lost when converting from Sequence
Diagrams to Communication Diagrams.

Timing Diagrams are most often used with real-time systems and attempt to con-
vey the timing element related to the massages being passed throughout the system
being modeled. Timing Diagrams show a lifeline and the events that occur temporal-
ly as the system works at run time. The details of temporal constraints included in
messages are the elements highlighted in these diagrams.

2.2 Extensibility Mechanisms

UML is intended to be a fully expressive modeling language. As such, UML pos-
sesses a formal grammar, vocabulary, and syntax for expressing the necessary details
of the system models through the nine diagramming techniques. Even though UML
represents a complete and formal modeling development language, there is no realis-
tic way that it can suffice for all models across all systems.

In order to help deal with the dual problems of the general nature of UML, and the
necessity to make it also domain specific, UML 2.X was developed to create a mod-
ified version of the language that can extend the language so that it also covers specif-
ic domains, rather like SAP’s “industry solutions” for customizing their ERP product
to specific industries. Similarly, UML allows tool developers to create profiles that
might be tailored to a specific type of system, real-time, for example. UML 2.x con-
tinues with the three Extensibility mechanisms from UML 1.x While UML provides
for four commonly used mechanisms, Specifications, Adornments, Common Divi-
sions, and Extensibility (Booch, Rumbaugh and Jacobson, 1999), we will concern
ourselves only with Extensibility for the purposes of this exposition.

Stereotypes

In a basic sense, Stereotypes simply add new “words” to UML’s vocabulary. Stereo-
types are generally derivations from existing structures already found within UML,
but yet are different enough to be specific to a particular context. Booch, Rumbaugh
and Jacobson (1999) used the example of modeling exceptions in C++ and Java as
classes, with special types of attributes and behaviors.

Tagged Values

Providing information regarding version numbers or releases is an example of tagged
values in use (Booch, Rumbaugh and Jacobson, 1999). Tagged values can be added

 Unified Modeling Language: The Teen Years and Growing Pains 301

to any UML building block to provide clarity to developers and users during and after
the development cycle.

Constraints

Constraints are simply that – constraints. UML allows developers to add constraints
to systems that modify or extend rules to apply (or not apply) under conditions and
triggers that might be exceptions to those rules.

3 The Current State of UML

3.1 UML’s Teen Years: The Positives

The characteristics of UML described in the preceding discussion have helped it gain
broad acceptance and support among the developer community. The widespread
adoption and use of UML as a primary, modeling language for OO systems develop-
ment efforts can be seen as at least indirect evidence of the usability of the language
in analysis, design, and implementation tasks.

UML presents a standard way of modeling object-oriented systems that enhances
systems development efforts, and future enhancements to UML will provide even
greater standardization and interoperability. UML also provides a vital and much
needed communication connection (Fowler, 2000) between users and designers by
incorporating use case modeling and diagramming in its repertoire.

UML can be used with a variety of development methodologies, and is not
shackled to only one approach. This can only broaden its appeal and overall useful-
ness to developers in the industry. In a nutshell, UML has provided some vital and
much needed stability in the modeling arena, and the software development commu-
nity as a whole can only benefit from that (Siau and Cao, 2001; Siau and Loo 2006;
Siau and Tian 2009).

Selic, Ramakers, and Kobryn (2002) propose that as information systems become
ever more complex, modeling software for constructing understandable representa-
tions of those systems will become correspondingly more important for developers in
such complex and quickly changing environments. As such, UML is still positioned
to provide modeling support for developers. The continuing push toward MDA
(Model-Driven Architecture) is evidence that, if a developer wishes, executable mod-
els are ever closer and more practical.

3.2 UML’s Teen Years: the Negatives

Use cases are more process than object-oriented. Thus, the use case-centric approach
has been criticized because it takes a process-oriented rather than an object-oriented
view of system. This is a point of controversy among researchers and developers
alike. Dobing and Parsons (2000) go so far as to propose that since use cases, and
resulting use case diagrams, are process-oriented, their role in object-oriented systems
development should be questioned, and possibly removed from use in OO develop-
ment methods for that very reason.

302 J. Erickson and K. Siau

However, since nearly all businesses are process-oriented, or at least are seen that
way by most end users, it might be desirable, even necessary, for developers to cap-
ture essential end-user requirements by means of their process-based descriptions of
the tasks that they and the system must perform. Other proposals to extend UML
include the one by Tan, Alter, and Siau (2011). They propose that service responsi-
bility table be used to supplement UML in system analysis. Another proposal is by
Siau and Tan (2006) to use cognitive mapping techniques to supplement UML.

In addition, UML has been criticized for being overly complex, too complex for
mere mortals to understand or learn to use in a reasonable time (Siau and Cao 2001).
Some research has been done with regard to complexity. Rossi and Brinkkemper’s
(1996) study established a set of metrics for measuring diagram complexity, while
Siau and Cao (2001) apply the metrics to UML and other modeling techniques. Their
results indicated that although none of the individual UML diagrams is more complex
than those used in other techniques, UML as a whole is much more complex. Since
UML 2.0 was released in 2005, the language reached new levels of complexity.

Siau, Erickson, and Lee (2005), extending the work of Siau and Cao (2001), argue
that there is a different between theoretical and practical complexity. Siau and Cao
(2001) study the theoretical complexity of UML. In practice, not all the constructs
will be used and some constructs are more important than others. Therefore, the prac-
tical complexity of UML is not as great as that computed by Siau and Cao (2001).

However, Duddy (2002) takes a more pessimistic view of both current and future
versions of UML. He believes that even though UML 2.X provides coverage for
development tools and paradigms currently in use, there is no way that it can provide
support for emerging application development approaches or tools, such as applica-
tion servers, loosely coupled messaging, and Web services. To be fair, however, it is
also somewhat unrealistic to expect any tool to be a panacea for whatever methodolo-
gies, approaches or paradigms capture the attention of developers at any given point
in time.

Finally, with the appearance of aspect-oriented programming, it is entirely possible
that the entire object-oriented approach could be supplanted with a new paradigm. If
that were to happen, it might become problematic in that UML is constrained by its
limited extensibility mechanisms. In other words, we must ask whether or not UML
is robust enough to adapt, or be adapted to a radically new paradigm?

3.3 UML’s Teen Years: Growing Pains and Acne

UML’s complexity discussed above means one of two things: companies considering
the use of UML will either have to provide extensive (that is, expensive) training if
they plan to develop in house, or they will have to hire UML trained (that is, also
expensive) consultants to carry out their systems development efforts. Either way,
this indicates that UML-based systems development projects will probably not get
any less expensive in the future. However, the same criticism could be leveled at
most other modeling tools as well.

As evidenced by several research streams since UML 2.0 was released, many de-
velopers and projects make use of UML simply as a post hoc documentation tool
(Dobing and Parsons, 2005, Erickson & Siau, 2008). This basically means that there
is a dichotomous split between two different types of UML users, those who support

 Unified Modeling Language: The Teen Years and Growing Pains 303

MDA and fully executable modeling, and those who use UML simply as a documen-
tation tool. These behaviors beg the following question: if most systems developers
do not use many of the features and capabilities of UML, is it worthwhile to maintain
in the language those capabilities and features that are rarely used? Only research
into the issue will be able to answer that question. For more information regarding
this issue see Siau and Halpin (2001).

None of this should be surprising, since no modeling tool will be adopted by eve-
ryone. However, a critical point here is the middle group, those that use UML, but
not in a formal fashion, may do so by changing the diagramming techniques as they
feel necessary in the pursuit of their projects. Valid questions are, do they not fully
use the capabilities of UML because the tools are too expensive, because fully using
UML is too complex, or for any of a variety of other reasons?

While these questions and suppositions are based on anecdotal evidence, at least
one highlights an issue with UML. Do developers feel that UML is too complex for
them to use easily? If the development tool is extremely difficult to use, then it ap-
pears that perhaps more effort is expended toward understanding and using the tools
than toward developing the system, which is the primary goal in the first place. If so,
and this would need research, then does or will future versions of UML be improve-
ments from a usage perspective?

The paper by Siau and Tian (2009) points out some of the human factor issues in
UML graphical notations. Human factor studies seem necessary to evaluate the usa-
bility of many of the UML constructs and propose modifications to the existing UML
constructs to make them more useable and user friendly.

4 Conclusions

Neither UML nor any other modeling language, development method, or methodolo-
gy has proven to be a panacea for the Analysis, Design, and Implementation of infor-
mation systems. As suggested by Brooks (1987), this is not surprising because the
inherent, essential characteristics of software development make it a fundamentally
complex activity. UML is not perfect but it integrates many important software engi-
neering practices that are important enhancements to systems development, and it
does so in a way that, if not clear to everyone, is at least enlightening to developers.
 Finally, looking back at the past 40 years of systems development chaos and woes,
it appears that UML can and should be seen, problems notwithstanding, as one of the
most important innovations in systems development since the advent of the structured
approaches.

References

1. Ambler, S.: How the UML Models Fit Together (2000),
http://www.sdmagazine.com/articles/2000/003/003z/003z1.htmp?
topic=uml

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, MA (1999)

304 J. Erickson and K. Siau

3. Brooks, F.: No Silver Bullet: Essence and Accidents of Software Engineering. IEEE Com-
puter 20(4), 10–19 (1987)

4. Dobing, B., Parsons, J.: Understanding the Role of Use Cases in UML: A Review and
Research Agenda. Journal of Database Management 11(4), 28–36 (2000)

5. Dobing, B., Parsons, B.: How UML is Used. Communications of the ACM 49(5), 109–113
(2006)

6. Duddy, K.: UML2 Must Enable a Family of Languages. Communications of the
ACM 45(11), 73–75 (2002)

7. Erickson, J., Siau, K.: Theoretical and Practical Complexity of Modeling Methods. Com-
munications of the ACM 50(8), 46–51 (2007)

8. Fowler, M.: Why Use the UML? (2000),
http://www.sdmagazine.com/articles/2000/003/003z/003z3.htmp?
topic=uml

9. Kobryn, C.: What to Expect from UML 2.0. SD Times (2002)
10. Lago, P.: Rendering Distributed Systems in UML. In: Siau, K., Halpin, T. (eds.) Unified

Modeling Language: Systems Analysis, Design, and Development Issues. Idea Group Pub-
lishing, Hershey (2000)

11. Mellor, S.: Make Models Be Assets. Communications of the ACM 45(11), 76–78 (2002)
12. Miller, J.: What UML Should Be. Communications of the ACM 45(11), 67–69 (2002)
13. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly Media (2005)
14. Pooley, R., Stevens, P.: Using UML: Software Engineering with Objects and Components.

Addison Wesley Longman Limited, Harlow (1999)
15. Rossi, M., Brinkkemper, S.: Complexity Metrics for Systems Development Methods and

Techniques. Information Systems 21(2), 209–227 (1996)
16. Selic, B., Ramackers, G., Kobryn, C.: Evolution, Not Revolution. Communications of the

ACM 45(11), 70–72 (2002)
17. Siau, K., Cao, Q.: Unified Modeling Language - A Complexity Analysis. Journal of Data-

base Management 12(1), 26–34 (2001)
18. Siau, K., Erickson, J., Lee, L.: Theoretical versus Practical Complexity: The Case of UML.

Journal of Database Management 16(3), 40–57 (2005)
19. Siau, K., Lee, L.: Are Use Case and Class Diagrams Complementary in Requirements

Analysis? – An Experimental Study on Use Case and Class Diagrams in UML. Require-
ments Engineering 9(4), 229–237 (2004)

20. Siau, K., Loo, P.: Identifying Difficulties in Learning UML. Information Systems Man-
agement 23(3), 43–51 (2006)

21. Siau, K., Halpin, T.: Unified Modeling Language: Systems Analysis, Design, and Devel-
opment Issues. Idea Group Publishing, Hershey (2001)

22. Siau, K., Tan, X.: Using Cognitive Mapping Techniques to Supplement UML and UP in
Information Requirements Determination. Journal of Computer Information Sys-
tems 46(5), 59–66 (2006)

23. Siau, K., Tian, Y.: A Semiotics Analysis of UML Graphical Notations. Requirements
Engineering 14(1), 15–26 (2009)

24. Sieber, T., Siau, K., Nah, F., Sieber, M.: SAP Implementation at the University of Ne-
braska. Journal of Information Technology Cases and Applications 2(1), 41–72 (2000)

25. Tan, X., Alter, S., Siau, K.: Using Service Responsibility Tables to Supplement UML in
Analyzing e-Service Systems. Decision Support Systems 51(3), 350–360 (2011)

26. Zhao, L., Siau, K.: Component-Based Development Using UML. Communications of the
AIS 9, 207–222 (2002)

	Unified Modeling Language:
The Teen Years and Growing Pains
	1 Object-Orientation and UML’s Genesis
	1.1 Introduction
	1.2 Object-Orientation
	1.3 The Emergence of UML

	2 Current UML Models and Extensibility Mechanisms
	2.1 Modeling
	2.2 Extensibility Mechanisms

	3 The Current State of UML
	3.1 UML’s Teen Years: The Positives
	3.2 UML’s Teen Years: the Negatives
	3.3 UML’s Teen Years: Growing Pains and Acne

	4 Conclusions
	References

