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Abstract. In this paper we consider word equations with one variable (and arbitrary many occur-
rences of it). A recent technique of recompression, which is applicable to general word equations, is
shown to be suitable also in this case. While in general case the recompression is non-deterministic it
determinises in case of one variable and the obtained running time is O(n + #X log n), where #X is
the number of occurrences of the variable in the equation. This matches the previously-best algorithm
due to Dąbrowski and Plandowski. Then, using a couple of heuristics as well as more detailed time
analysis, the running time is lowered to O(n) in the RAM model. Unfortunately, no new properties of
solutions are shown.

1. Introduction

1.1. Word equations. The problem of satisfiability of word equations was considered as one of the
most intriguing in computer science and its study was initiated by Markow already in the ’50. The first
algorithm for it was given by Makanin [13], despite earlier conjectures that the problem is undecidable.
The proposed solution was very complicated in terms of proof-length, algorithm and computational
complexity. It was improved several times, however, no essentially different approach was proposed
for over two decades.

An alternative algorithm was proposed by Plandowski and Rytter [19], who shoved that each min-
imal solution of a word equation is exponentially compressible, in the sense that for a word equation
of size n and minimal solution of size N the LZ77 (a popular practical standard of compression) rep-
resentation of the minimal solution is polynomial in n and logN . Hence a simple non-deterministic
algorithm that guesses a compressed representation of a solution and verifies the guess has running
time polynomial in n and logN . However, at that time the only bound on N followed from Makanin’s
work (with further improvements) and it was triply exponential in n.

Soon after Plandowski showed, using novel factorisations, that N is at most doubly exponential [16],
showing that satisfiability of word equations is in NEXPTIME. Exploiting the interplay between fac-
torisations and compression he improved the algorithm so that it worked in PSPACE [17].

Producing a description of all solutions of a word equation, even when a procedure for verification
of its satisfiability is known, proved to be also a non-trivial task. Still, it is also possible to do this in
PSPACE [18], though insight and non-trivial modifications to the earlier procedure are needed.

On the other hand, it is only known that the satisfiability of word equations is NP-hard.

1.1.1. Two variables. Since in general the problem is outside P, it was investigated, whether some
subclass is feasible, with a restriction on the number of variables being a natural candidate. It was
shown by Charatonik and Pacholski [2] that indeed, when only two variables are allowed (though with
arbitrarily many occurrences), the satisfiability can be verified in deterministic polynomial time. The
degree of the polynomial was very high, though. This was improved over the years and the best known
algorithm is by Dąbrowski and Plandowski [3] and it runs in O(n5) and returns a description of all
solutions.

1.1.2. One variable. Clearly, the case of equations with only one variable is in P. Constructing a cubic
algorithm is almost trivial, small improvements are needed to guarantee a quadratic running time.
First non-trivial bound was given by Obono, Goralcik and Maksimenko, who devised an O(n logn)
algorithm [15]. This was improved by Dąbrowksi and Plandowski [4] to O(n + #X logn), where #X

is the number of occurrences of the variable in the equation. Furthermore they showed that there
are at most O(logn) distinct solutions and at most one infinite family of solutions. Intuitively, the
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2 A. JEŻ

O(#X logn) summand in the running time comes from the time needed to find and test these O(logn)
solutions.

This work was not completely model-independent, as it assumed that the alphabet Γ is finite or that
it can be identified with numbers. A more general solution was presented by Laine and Plandowski [11],
who improved the bound on the number of solutions to O(log #X) (plus the infinite family) and gave
an O(n log #X) algorithm that runs in a pointer machine model (i.e. letters can be only compared
and no arithmetical operations on them are allowed); roughly one candidate for the solution is found
and tested in linear time.

1.2. Recompression. Recently, the author proposed a new technique of recompression based on pre-
vious techniques of Mehlhorn et. al[14] (for dynamic text equality testing), Lohrey and Mathissen [12]
(for fully compressed membership problem for NFAs) and Sakamoto [20] (for construction of the small-
est grammar for the input text). This method was successfully applied to various problems related
to grammar-compressed strings [7, 5, 6]. Unexpectedly, this approach was also applicable to word
equations, in which case alternative proofs of many known algorithmic results were obtained using a
unified approach [8].

The technique is based on iterative application of two replacement schemes performed on the text
t:

pair compression of ab: For two different letters a, b such that substring ab occurs in t replace
each of ab in t by a fresh letter c.

a’s block compression: For each maximal block a`, where a is a letter and ` > 1, that occurs
in t, replace all a`s in t by a fresh letter a`.

In one phase, pair compression (block compression) is applied to all pairs (blocks, respectively) that
occurred at the beginning of this phase. Ideally, each letter is then compressed and so the length of t
halves, in a worst-case scenario during one phase t is still shortened by a constant factor.

The surprising property is that such a schema can be efficiently applied to grammar-compressed
data [7, 5] or to text given in an implicit way, i.e. as a solution of a word equation [8]. In order to do so,
local changes of the variables (or nonterminals) are needed: X is replaced with a`X (or Xa`), where
a` is prefix (suffix, respectively) of the substitution for X. In this way the solution that substitutes
a`w (or wa`, respectively) for X is implicitly replaced with one that substitutes w.

1.2.1. Recompression and one-variable equations. Clearly, as the recompression approach works for
general word equations, it can be applied also to restricted subclasses. However, while in case of word
equations it heavily relies on the nondeterminism, when restricted to instances with one variable it
can be easily determinised; Section 2 recalls the main notions of word equations and recompression.
Furthermore, a fairly natural implementation has O(n + #X logn) running time, so the same as the
Dąbrowski and Plandowski algorithm [4]; this is presented in Section 3. Furthermore adding a few
heuristics, data structures as well as applying a more sophisticated analysis yields a linear running
time, this is described in Section 4.

1.3. Outline of the algorithm. In this paper we present an algorithm for one-variable equation
based on the recompression. It also provides a compact description of all solutions of such an equation.
Intuitively: when pair compression is applied, say ab is replaced by c (assuming it can be applied)
then there is a one-to-one correspondence of the solutions before and after the compression, this
correspondence is simply an exchange of all abs by cs and vice-versa. The same applies to the block
compression. On the other hand, the modification of X can lead to loss of solutions (note that for
technical reasons we do note consider the solution S(X) = ε): when X is to be replaced with a`X the
new equation has corresponding solutions for S other than S(X) = a`. So before the replacement, it
is tested whether S(X) = a` is a solution and if so, it is reported. The test itself is simple: both sides
of the equation are read and their values under substitution S(X) = a` are created on the fly and
compared symbol by symbol, until a mismatch is found or both strings end.

It is easy to implement the recompression so that one phase takes linear time. Then the cost can
be distributed to explicit words between the variables, each of them is charged proportionally to its
length. Consider such a string w, if it is long enough, its length decreases by a constant factor in
one phase, see Lemma 10. Thus, the cost of compressing this fragment and testing a solution can be
charged to the lost length. However, this is not true when w is short and the #X logn summand in
the running time comes from bounding the running time for such ‘short’ strings.
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In Section 4 it is shown that using a couple of heuristics as well as more involved analysis the
running time can be lowered to O(n). The mentioned heuristics are as follows:

• The problematic ‘short’ words between the variables need to be substrings of the ‘long’ words,
this allows smaller storage size and consequently faster compression.
• When we compare Xw1Xw2 . . . wmX from one side of the equation with its copy (i.e. another
occurrence Xw1Xw2 . . . wmX) on the other side, we make such a comparison in O(1) time
(using suffix arrays).
• (S(X)u)m and (S(X)u′)m′ (perhaps offsetted) are compared in O(|u| + |u′|) time instead of
naive O(m · |u|+m′ · |u′|), using simple facts from combinatorics on words.

Furthermore a more insightful analysis shows that problematic ‘short’ words in the equation can be
used to invalidate several candidate solutions fast, even before a mismatch in the equation is found
during the testing. This allows a tighter estimation of the time spent on testing the solutions.

A note on the computational model. In order to perform the recompression efficiently, some algorithm
for grouping pairs is needed. When we can identify the symbols in Γ with consecutive numbers, the
grouping can be done using RadixSort in linear time. Thus, all (efficient) applications of recompression
technique make such an assumption. On the other hand, the second of the mentioned heuristics craves
checking string equality in constant time, to this end a suffix array [9] plus a structure for answering
longest common prefix query (lcp) is employed [10] on which we use range minimum queries [1]. The
last structure needs the flexibility of the RAM model to run in O(1) time per query.

2. Preliminaries

2.1. One-variable equations. A word equation with one variable over the alphabet Γ and variable
X is ‘A = B’, where A,B ∈ (Γ ∪ {X})∗. During the run of algorithm WordEqSat we introduce new
letters into Γ, but no new variable is introduced. In this paper we shall consider only equations with
one variable.

Without loss of generality in a word equation A = B one of A and B begin with a variable and the
other with a letter:

• if they both begins with the same symbol (be it letter or nonterminal), we can remove this
symbol from them, without affecting the set of solutions;
• if they begin with different letters, this equation clearly has no solution.

The same applies to the last symbols of U and V . Thus, in the following we assume that the equation
is of the form

(1) A0XA1 . . . AnA−1XAnA = XB1 . . . BnB−1XBnB ,

where Ai, Bi ∈ Γ∗ (we call them words or explicit words) and nA (nB) denote the number of X
occurrences in A (B, respectively). Note that exactly one of AnA , BnB is empty and A0 is non-
empty. If this condition is violated for any reason, we greedily repair it by cutting identical letters
(or variables) from both sides of the equation. We say that A0 is the first word of the equation and
the non-empty of AnA and BnB is the last word. We additionally assume that none of words Ai, Bj is
empty. We later (after Lemma 4) justify why this is indeed without loss of generality.

A substitution S assigns a string to X, we expand it to (X ∪ Γ)∗ with an obvious meaning. A
solution is a substitution such that S(A) = S(B). For a given equation A = B we are looking for a
description of all its solutions. We treat the empty solution S(X) = ε in a special way and always
assume that S(X) 6= ε.

Note that if S(X) 6= ε, then using (1) we can always determine the first (a) and last (b) letter of
S(X) in O(1) time. In fact, we can determine the length of the a-prefix and b-suffix of S(X).

Lemma 1. For every solution S of a word equation the first letter of S(X) is the first letter of A0
and the last the last letter of AnA or BnB (whichever is non-empty).

If A0 ∈ a+ then S(X) ∈ a+ for each solution S of A = B.
If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution S(X) ∈ a+, existence

of such a solution can be tested (and its length returned) in O(|A| + |B|) time. Furthermore, for
S(X) /∈ a+ the lengths of the a-prefixes of S(X) and A0 are the same.

It is later shown that finding all solutions from a+ can be done in linear time, see Lemma 11.
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Proof. Concerning the first claim, observe that the first letter of S(A) is the first letter of A0, while
the first letter of S(B) is the first letter of S(X), hence those letters are equal. The same applies to
the last letter of S(X) and the last letter of AnA or BnB , whichever of them is non-empty.

Consider the case when A0 ∈ a+ and suppose that S(X) /∈ a∗, let ` ≥ 0 be the length of the a-prefix
of S(X). The length of the a-prefix of S(A) is then |A0|+ ` > `, which is the length of the a-prefix of
S(B), contradiction. Hence S(X) ∈ a+.

Consider now the case when A0 begins with a but A0 /∈ a+, let its a-prefix has length `A. Consider
S(X) ∈ a+, say S(X) = a`. Let the first letter other than a in B be the `B + 1 letter in B and let it be
in explicit word Bi. If there is no such Bi then there is no solution S(X) ∈ a+, as then S(B) consists
only of as, which is not true for S(A). The length of the a-prefix of S(A) is `A, while the length of
the a-prefix of S(B) is `B + i · `. Those two need to be equal, so `A = `B + i · ` and consequently
` = `A−`B

i , so this is the only candidate for the solution.
It is easy to verify whether S(X) = a` is a solution for a single ` in linear time. It is enough to

compare S(A) and S(B) letter by letter, note that they can be created on the fly while reading A and
B. Each such comparison consumes one symbol from A and B (note that if we compare a suffix of
S(X), i.e. some a`′ for `′ < `, with S(X) = a` we simply remove a`′ from both those strings). So the
running time is linear.

Lastly, consider S(X) /∈ a∗. Then the a-prefix of S(A) has length `A and as S(X) /∈ a+, the a-prefix
of S(B) is the same as the a-prefix of S(X), which consequently has length `A. �

Symmetric version of Lemma 1 holds for the suffix of S(X).
By TestSimpleSolution(a) we denote a procedure, described in Lemma 1, that for A0 /∈ a∗ establishes

the unique possible solution S(X) = a`, tests it and returns ` if this indeed is a solution.

2.2. Representation of solutions. Consider any solution S of A = B. We claim that S(X) is
uniquely determined by its length and so when describing solution of A = B it is enough to give their
lengths.

Lemma 2. Each solution S of equation of the form (1) is of the form S(X) = (A0)kA, where A is a
prefix of A0 and k ≥ 0. In particular, it is uniquely defined by its length.

Proof. If |S(X)| ≤ |A0| then S(X) is a prefix of A0, so S(X) is uniquely determined by its length.
When |S(X)| > |A0| then S(A) begins with A0S(X) while S(B) begins with S(X) and thus S(X) has
a period A0. Consequently, it is of the form Ak

0A, where A is a prefix of A0. �

Weight. Each letter in the current instance of our algorithm represents some string (in a compressed
form) of the input equation, we store its weight which is the length of such a string. Furthermore,
when we replace X with a`X (or Xa`) we keep track of sum of weights of all letters removed so far
from X. In this way, for each solution of the current equation we know what is the length of the
corresponding solution of the original equation (it is the sum of weights of letters removed so far from
X and the weight of the current solution). Therefore, in the following, we will not explain how we
recreate the solutions of the original equation from the solution of the current one.

2.3. Recompression. We recall here the technique of recompression [7, 5, 8], restating all important
facts about it. Note that in case of one variable many notions simplify.

2.3.1. Preserving solutions. All subprocedures of the presented algorithm should preserve solutions,
i.e. there should be a one-to-one correspondence between solution before and after the application of
the subprocedure. However, when we replace X with a`X (or Xbr), some solutions may be lost in the
process and so they should be reported. We formalise these notions.

We say that a subprocedure preserves solutions when given an equation A = B it returns A′ = B′
such that for some strings u and v (calculated by the subprocedure)

• some solutions of A = B are reported by the subprocedure;
• for each unreported solution S of A = B there is a solution S′ of A′ = B′, where S(X) =
uS′(X)v and S(A) = uS′(A′)v;
• for each solution S′ of A′ = B′ the S(X) = uS′(X)v is an unreported solution of A = B.

The intuitive meaning of these conditions is that during transformation of the equation, either we
report a solution or the new equation has a corresponding solution (and no new ‘extra’ solutions).
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By hc→ab(w) we denote the string obtained from w by replacing each c by ab, which corresponds
to the inverse of pair compression. We say that a subprocedure implements pair compression for ab,
if it satisfies the conditions for preserving solutions above, but with S(X) = uhc→ab(S′(X))v and
S(A) = uhc→ab(S′(A′))v replacing S(X) = uS′(X)v and S(A) = uS′(A′)v. Similarly, by ha`→a`(w)
we denote a string with letters a` replaced with blocks a` (note that this requires that we know, which
letters ‘are’ a` and what is the value of `, but this is always clear from the context) and we say that
a subprocedure implements blocks compression for a letter a. The intuitive meaning is the same as in
case of preserving solutions: we not loose, nor gain any solutions.

Given an equation A = B, its solution S and a pair ab ∈ Γ2 occurring S(U) (or S(V )) we say
that this occurrence is explicit, if it comes from substring ab of A (or B, respectively); implicit, if it
comes (wholly) from S(X); crossing otherwise. A pair is crossing if it has a crossing occurrence and
non-crossing otherwise. Similar notion applies to maximal blocks of as, in which case we say that a
has a crossing block or it has no crossing blocks. Alternatively, a pair ab is crossing if b is the first
letter of S(X) and aX occurs in the equation or a is the last letter of S(X) and Xb occurs in the
equation or a is the last and b the first letter of S(X) and XX occurs in the equation.

Unless explicitly stated, we consider crossing/non-crossing pairs ab for a 6= b. Note that as the first
(last) letter of S(X) is the same for each S, see Lemma 1, the definition of the crossing pair does not
depend on the solution; the same applies to crossing blocks.

When a pair ab is non-crossing, its compression is easy, as it is enough to replace each explicit ab
with a fresh letter c

Algorithm 1 PairCompNCr(a, b) Pair compression for a non-crossing pair
1: let c ∈ Γ be an unused letter
2: replace each explicit ab in A and B by c

Similarly when none block of a has a crossing occurrence, the a’s blocks compression consists simply
of replacing explicit a blocks.

Algorithm 2 BlockCompNCr(a) Block compression for a letter a with no crossing block
1: for each explicit a’s `-block occurring in U or V with ` > 1 do
2: let a` ∈ Γ be an unused letter
3: replace every explicit a’s `-block occurring in A or B by a`

Lemma 3. Let ab be a non-crossing pair then PairCompNCr(a, b) implements the pair compression
for ab. Let a has no crossing blocks, then BlockCompNCr(a) implements the block compression for a.

Proof. Consider first the case of PairCompNCr. Suppose that A = B has a solution S. Define S′:
S′(X) is equal to S(X) with each ab replaced with c (where c is a new letter). Consider S(A) and
S′(A′). Then S′(A′) is obtained from S(A) by replacing each ab with c (as a 6= b this is well-defined):
the explicit occurrences of ab are replaced by PairCompNCr(a, b), the implicit ones are replaced by the
definition of S′ and by the assumption there are no crossing occurrences. The same applies to S(B)
and S′(B′), hence S′ is a solution of A′ = B′.

Since c is a free letter, the S(A) is obtained from S′(A′) by replacing each c with ab, the same applies
to S(X) and S′(X) as well as S(B) and S′(B′). Hence S(A) = hc→ab(S′(A)) = hc→ab(S′(B)) = S(B)
and S(X) = hc→ab(S′(X)), as required by the definition of implementing the pair compression.

Lastly, for a solution S′ of A′ = B′ take the corresponding S defined as S(X) = hc→ab(S′(X))
(i.e. replacing each c with ab in S′(X)). It can be easily shown that S(A) = hc→ab(S′(A′)) and
S(B) = hc→ab(S′(B′)), thus S is a solution of A = B.

The proof for the block compression follows in the same way. �

The main idea of the recompression method is the way it deals with the crossing pairs: imagine ab
is a crossing pair, this is because S(X) = bw and aX occurs in A = B or S(X) = wa and bX occurs
in it (the remaining case, in which S(X) = awb and XX occurs in the equation is treated in the same
way). The cases are symmetric, so we deal only with the first one. To ‘uncross’ ab in this case it
is enough to ‘left-pop’ b from X: replace each X in the equation with bX and implicitly change the
solution to S(X) = w. Note that before replacing X with aX we need to check, whether S(X) = a
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is a solution, as this solution cannot be represented in the new equation; similar remark applies to
replacing X with Xb.

Algorithm 3 Pop(a, b)
1: if b is the first letter of S(X) then
2: if TestSimpleSolution(b) returns 1 then . S(X) = b is a solution
3: report solution S(X) = b

4: replace each X in A = B by bX . Implicitly change S(X) = bw to S(X) = w

5: if a is the last letter of S(X) then
6: if TestSimpleSolution(a) returns 1 then . S(X) = a is a solution
7: report solution S(X) = a

8: replace each X in A = B by Xa . Implicitly change S(X) = w′a to S(X) = w′

Lemma 4. Pop(a, b) preserves solutions and after its application the pair ab is noncrossing.
Note that Lemma 4 justifies our earlier claim that without loss of generality we can assume that

none of Ai, Bj is empty: at the beginning of the algorithm we can run Pop(a, b) once for a being the
first and B the last letter of S(X). This ensures the claim and increases the size of the instance at
most thrice.

Proof. It is easy to verify that a pair ab is crossing if and only if one of the following situations occurs:
CP1 aX occurs in the equation and the first letter of S(X) is b;
CP2 Xb occurs in the equation and the last letter of S(X) is a;
CP3 XX occurs in the equation, the first letter of S(X) is b and the last a.
Let A′ = B′ be the obtained equation, we show that ab in A′ = B′ is noncrossing. Consider whether
X was replaced by bX is line 4. If not, then the first letter of S(X) and S′(X) is not b, so ab cannot
be crossing because of (CP1) nor (CP3). Suppose that X was replaced with bX. Then to the left of
each X there is a letter which is not a, so none of situations (CP1), (CP3) occurs.

A similar analysis applied to the last letter of S(X) yields that (CP2) cannot happen and so ab
cannot be a crossing pair.

Pop can be naturally divided into two parts, which correspond to the replacement of X by bX and
the replacement of X by Xa. We show for the first one that it preserves solutions, the proof for the
second one is identical.

If S(X) does not begin with b (recall that all solutions have the same first letter) then nothing
changes and the set of solutions is preserved. Otherwise S(X) = bw. In this case the solutions of
the new equation shall be obtained by prepending b to them. Consider what happens with a solution
S(X) = bw

if w = ε: then it is reported in line 3;
if w 6= ε: then S′(X) = w is a solution of the obtained equation.

Note that the solution reported by Pop is verified, so it is indeed a solution. Furthermore, the only
reported solutions is S(X) = b, none of which corresponds to a non-empty solution after popping.
Lastly, when S′(X) = w is a solution after popping b then clearly S(X) = bw is a solution of A = B.
A symmetric analysis is done for the operation of right-popping a, which ends the proof. �

Now the presented procedures can be merged into one procedure that turns crossing pairs into
noncrossing ones and then compresses them, effectively compressing crossing pairs.

Algorithm 4 PairComp(a, b) Turning crossing pair ab into non-crossing ones and compressing it
1: run Pop(a, b)
2: run PairCompNCr(a, b)

Lemma 5. PairComp(a, b) implements the pair compression of the pair ab.
The proof follows by combining Lemma 3 and 4.
There is one issue: the number of non-crossing pairs can be large, however, a simple preprocessing,

which basically applies Pop, is enough to reduce the number of crossing pairs to 2.
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Algorithm 5 PreProc Ensures that there are at most 2 crossing pairs
1: let a, b be the first and last letter of S(X)
2: run Pop(a, b)

Lemma 6. PreProc preserves solution and after its application there are at most two crossing pairs.
Proof. It is enough to show that there are at most 2 crossing pairs, as the rest follows form Lemma 4.
Let a and b be the first and last letters of S(X), and a′, b′ such letters after the application of PreProc.
Then each X is proceeded with a and succeeded with b in A′ = B′. So the only crossing pairs are aa′
and b′b (note that this might be the same pair or part of a letter-block, i.e. a = a′ or b = b′). �

The problems with crossing blocks can be solved in a similar fashion: a has a crossing block if and
only if aa is a crossing pair. So we ‘left-pop’ a from X until the first letter of S(X) is different than
a, we do the same with the ending letter b. This can be alternatively seen as removing the whole
a-prefix (b-suffix, respectively) from X: suppose that S(X) = a`wbr, where w does not begin with a
nor end with b. Then we replace each X by a`Xbr implicitly changing the solution to S(X) = w, see
Algorithm 6.

Algorithm 6 CutPrefSuff Cutting prefixes and suffixes; assumes that A0 is not a block of letters
Require: A0 is not a block of letters, the non-empty of AnA , BnB is not a block of letters
1: let a be the first letter of S(X)
2: report solution found by TestSimpleSolution(a) . Excludes S(X) ∈ a+ from further

considerations.
3: let ` > 0 be the length of the a-prefix of A0 . By Lemma 1 S(X) has the same a-prefix
4: replace each X in A = B by a`X . a` is stored in a compressed form,
5: . implicitly change S(X) = a`w to S(X) = w
6: let b be the last letter of S(X) . It cannot be that S(X) ∈ b+

7: report solution found by TestSimpleSolution(b) . Exclude S(X) ∈ b+ from furhter considerations.
8: let r > 0 be the length of the b-suffix of the non-empty of AnA , BnB

. By Lemma 1 S(X) has the same b-suffix
9: replace each X in A = B by Xbr . br is stored in a compressed form,

10: . implicitly change S(X) = wbr to S(X) = w

Lemma 7. Let a be the first letter of the first word and b the last of the last word. If the first word
is not a block of as and the last not a block of bs then CutPrefSuff preserves solutions and after its
application there are no crossing blocks of letters.
Proof. Consider first only the changes done by the modification of the prefix. Suppose that S(X) =
a`w, where w does not begin with a. If w = ε then as A0 /∈ a+ by Lemma 1 there is only one such
solution and it is reported in line 2. Otherwise, by Lemma 1, each solution S of the equation is of
the form S(X) = a`w, where a` is the a-prefix of A0 and w 6= ε nor does it begin with a. Then the
S′(X) = w is the solution of the new equation. Similarly, for any solution S′(X) = w the S(X) = a`w
is the solution of the original equation.

The same analysis can be applied to the modifications of the suffix: observe that if at the beginning
the last word was not a block of bs it did not become one during the cutting of the a-prefix.

Lastly, suppose that some letter c has a crossing block, without loss of generality assume that c is
the first letter of S(X) and cX occurs in the equation. But this is not possible: X was replaced by
a`X and so the only letter to the left of X is a and S(X) does not start with a, contradiction. �

The CutPrefSuff allows defining a procedure BlockComp that compresses maximal blocks of all
letters, regardless of whether they have crossing blocks or not.

Algorithm 7 BlockComp Compressing blocks of a
1: Letters ← letters occurring in the equation
2: run CutPrefSuff . Removes crossing blocks of a
3: for each letter a ∈ Letters do
4: BlockCompNCr(a)
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Lemma 8. Let a be the first letter of the first word and b the last of the last word. If the first word
is not a block of as and the last not a block of bs then BlockComp implements the block compression
for letters present in A = B before its application.

The proof follows by combining Lemma 3 and 7.

3. Main algorithm

The following algorithm OneVarWordEq is basically a specification of the general algorithm for
testing the satisfiability of word equations [8] and is built up from procedures presented in the previous
section.

Algorithm 8 OneVarWordEq Reports solutions of a given one-variable word equation
1: while the first block and the last block are not blocks of a letter do
2: Pairs ← pairs occurring in S(A) = S(B)
3: BlockComp . Compress blocks, in O(|A|+ |B|) time.
4: PreProc . There are only two crossing pairs, see Lemma 6
5: Crossing ← list of crossing pairs from Pairs . There are two such pairs
6: Non-Crossing ← list of non-crossing pairs from Pairs
7: for each ab ∈ Non-Crossing do . Compress non-crossing pairs, in time O(|A|+ |B)|
8: PairCompNCr(a, b)
9: for ab ∈ Crossing do . Compress the 2 crossing pairs, in time O(|A|+ |B)|

10: PairComp(a, b)
11: TestSolution . Test solutions from a∗, see Lemma 11

We call one iteration of the main loop a phase.

Theorem 1. OneVarWordEq runs in time O(|A|+ |B|+(nA+nB) log(|A|+ |B|)) and correctly reports
all solution of a word equation A = B.

Before showing the running time, let us first comment on how the equation is stored. Each of sides
(A and B) is represented as two lists of pointers to strings, i.e. to A0, A1, . . . , AnA and to B0, B1, . . . ,
BnB . Each of those words is stored as a doubly-linked list. When we want to refer to a concrete word
in a phase, we use names Ai and Bj , when we want to stress its evolution in phases, we use names A
i-word and B j-word.

Shortening of the solutions. The most important property of OneVarWordEq is that the explicit strings
between the variables shorten (assuming that they have a large enough length). To show this we use
the following technical lemma, which is also used several times later on:

Lemma 9. Consider two consecutive letters a, b in S(A) for any solution S. At least one of those
letters is compressed in this phase.

Proof. Consider whether a = b or not:
a = b: Then they are compressed using BlockComp.
a 6= b: Then ab is a pair occurring in the equation at the beginning of the phase and so it was

listed in Pairs in line 2 and as such we try to compress it, either in line 8 or in line 10. This
occurrence cannot be compressed only when one of the letters a, b was already compressed, in
some other pair or by BlockComp. In either case we are done. �

We say that a word Ai (Bi) is short if it consists of at most 100 letters and long otherwise. To
avoid usage of strange constants and its multiplicities, we shall use N = 100 to denote this value.

Lemma 10. Consider the length of the A i-word (or B j-word). If it is long then its length is reduced
by 1/4 in this phase. If it is short then after the phase it still is. The length of each unreported solution
is reduced by at least 1/4 in a phase.

Additionally, if the first (last) word is short and has at least 2 letters then its length is shortened by
at least 1 in a phase.
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Proof. We shall first deal with the words and then comment how this argument extends to the solutions.
Consider two consecutive letters a, b in any word at the beginning of a phase. By Lemma 9 at least
one of those letters is compressed in this phase. Hence each uncompressed letter in a word (the last
letter) can be associated with the two letters to the right that are compressed. This means that in a
word of length k during the phase at least 2(k−1)

3 letters are compressed i.e. its length is reduced by
at least k−1

3 letters.
On the other hand, letters are introduced into words by popping them from variables. Let symbol

denote a single letter or block a` that is popped into a word, we investigate, how many symbols are
introduced in this way in one phase. At most one symbol is popped to the left and one to the right by
BlockComp in line 3, the same holds for PreProc in line 4. Moreover, one symbol is popped to the left
and one to the right in line 10; since this line is executed twice, this yields 8 symbols in total. Note
that the symbols popped by BlockComp are replaced by single letters, so the claim in fact holds for
letters as well.

So, consider any word Ai ∈ Γ∗ (the proof for Bj is the same), at the beginning of the phase and let
A′i be the corresponding word at the end of the phase. There were at most 8 symbols introduced into
A′i (some of them might be compressed later). On the other hand, by Lemma 9, at least |Ai|−1

3 letters
were removed Ai due to compression. Hence

|A′i| ≤ |Ai| −
|Ai| − 1

3 + 8 ≤ 2|Ai|
3 + 81

3 .

It is easy to check that when Ai is short, i.e. |Ai| ≤ N = 100, then A′i is short as well and when Ai is
long, i.e. |Ai| > N then |A′i| ≤ 3

4 |Ai|.
It is left to show that the first word shortens by at least one letter in each phase. Consider that if

a letter a is left-popped from X then we created B0 and in order to preserve (1) the first letters of B0
and A0 are removed. Thus, A0 gained one letter on the right and lost one on the left, so its length
stayed the same. Furthermore the right-popping does not affect the first word at all (as X is not to its
left); the same analysis applies to cutting the prefixes and suffixes. Hence the length of the first word
is never increased by popping letters. Moreover, if at least one compression (be it block compression
or pair compression) is performed inside the first word, its length drops. So consider the first word at
the end of the phase let it be A0. Note that there is no letter representing a compressed pair or block
in A0: consider for the sake of contradiction the first such letter that occurred in the first word. It
could not occur through a compression inside the first word (as we assumed that it did not happen),
cutting prefixes does not introduce compressed letters, nor does popping letters. So in A0 there are
no compressed letters. But if |A0| > 1 then this contradicts Lemma 9.

Now, consider a solution S(X). We know that S(X) is either a prefix of A0 or of the form A`
0A,

where A is a prefix of A0, see Lemma 2. In the former case, S(X) is compressed as a substring of A0.
In the latter observe that argument follows in the same way, as long as we try to compress every pair
of letters in S(X). So consider such a pair ab. If it is inside A0 then we are done. Otherwise, a is the
last letter of A0 and b the first. Then this pair occurs also on the crossing between A0 and X in A,
i.e. ab is one of the crossing pairs. In particular, we try to compress it. So, the claim of the lemma
holds for S(X) as well. �

The correctness of the algorithm follows from Lemmata 8 (for BlockComp), Lemma 6 (for PreProc),
Lemma 3 (for PairCompNCr), Lemma 5 (for PairComp) and from the lemma below, which deals with
TestSolution.

Lemma 11. For a ∈ Γ we can report all solutions in which S(X) = a` for some natural ` in
O(|A|+ |B|) time. There is either exactly one ` for which S(X) = a` is a solution or S(X) = a` is a
solution for each ` or there is no solution of this form.

Note that we do not assume that the first or last word is a block of as.

Proof. The algorithm and proof is similar as in Lemma 1. Consider a substitution S(X) = a`. We
calculate the length of the a-prefix of S(A) and S(B). Consider first letter other than a in A, let it
be in the AkA

and suppose that there were `A letters a before it (if there is non such letter, imagine
we attach an ‘ending marker’ to both A and B, which then becomes such letter). Then the length of
the a-prefix of S(A) is kA · `+ `A. Let additionally A′ be obtained from A by removing those letters
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a and variables in between them. Similarly, define kB, `B and B′. Then the length of the a-prefix of
S(B) is kB · `+ `B.

The substitution S(X) = a` is a solution if and only if kA · `+ `A = kB · `+ `B and S(A′) = S(B′).
Consider the number of natural solutions of the equation

kA · x+ `A = kB · x+ `B :
no natural solution: clearly there is no solution of the word equation A = B;
one solution x = `: then S(X) = a` is the only possible solution from a+ of A = B. To verify

whether S satisfies A′ = B′ we apply the same strategy as in TestSimpleSolution(a): we evaluate
both sides of A′ = B′ under the substitution S(X) = a` on the fly. The same argument as in
Lemma 1 shows that the running time is linear in |A′|+ |B′|

satisfied by all natural numbers: then the a-prefixes of A and B are of the same length for
each S(X) ∈ a∗. We thus repeat the procedure for A′ = B′, shortening them so that they obey
the form (1), if needed. Clearly, solutions in a∗ of A′ = B′ are exactly the solutions of A = B
in a∗.

The stopping condition for the recurrence above is obvious: if A′ and B′ are both empty then we are
done (each S(X) = a` is a solution of this equation), if exactly one of them is empty and the other is
not then there is no solution at all.

Lastly, observe that the cost of the subprocedure above is proportional to the amount of read letters,
which are then not read again, so the running time is O(|A|+ |B|) �

Running time. Concerning the running time, we first show that one phase runs in linear time, which
follows by standard approach, and then that in total the running time is O(n + #X logn). To this
end we assign in a fixed phase to each A i word and B j word cost proportional to its length. For a
fixed A i word the sum of costs assigned while it was long forms a geometric sequence, so sums up to
at most constant more than the initial length of A i word; on the other hand the cost assigned when
A i word is short is O(1) per phase ad there are O(logn) phases.

Lemma 12. One phase of OneVarWordEq can be performed in O(|A|+ |B|) time.

Proof. For grouping of pairs and blocks we use RadixSort, to this end it is needed that the alphabet
of (used) letters can be identified with consecutive numbers, i.e. with an interval of at most |A|+ |B|
integers. In the first phase of OneVarWordEq this follows from the assumption on the input. 1 At the
end of this proof we describe how to bring back this property at the end of the phase.

To perform BlockComp we want for each letter a occurring in the equation to have lists of all
maximal a-blocks occurring in A = B (note that after CutPrefSuff there are no crossing blocks, see
Lemma 7). This is done by reading A = B and listing triples (a, k, p), where k is the length of a
maximal block of as and p is a pointer to the beginning of this occurrence. Notice, that the maximal
block of a’s may consist also of prefixes/suffixes that were cut from X by CutPrefSuff. However, by
Lemma 1 such a prefix is of length at most |A0| ≤ |A| + |B| (and similar analysis applies for the a
suffix). Then each maximal block includes at most one such prefix and one such suffix thus the length
of the a maximal block is at most 3(|A|+ |B|). Hence, the triples (a, k, p) can be sorted by their first
two coordinates using RadixSort in total time O(|A|+ |B|).

After the sorting, we go through the list of maximal blocks. For a fixed letter a, we use the pointers
to localise a’s blocks in the rules and we replace each of its maximal block of length ` > 1 by a fresh
letter. Since the blocks of a are sorted, all blocks of the same length are consecutive on the list, and
replacing them by the same letter is easily done.

To compress all non-crossing pairs, i.e. to perform the loop in line 8, we do a similar thing as for
blocks: we read both A and B, whenever we read a pair ab where a 6= b and both a and b are not
letters that replaced blocks during the blocks compression, we add a triple (a, b, p) to the temporary
list, where p is a pointer to this position. Then we sort all these pairs according to lexicographic order
on first two coordinates, we use RadixSort for that. Since in each phase we number the letters occurring
in A = B using consecutive numbers, this can be done in time O(|A| + |B|). The occurrences of the
crossing pairs can be removed from the list: by Lemma 6 there are at most two crossing pairs and
they can be easily established (by looking at A0XA1). So we read the sorted list of pairs occurrences

1In fact, this assumption can be weakened a little: it is enough to assume that Γ ⊆ {1, 2, . . . , poly(|A|+ |B|)}: in such
case we can use RadixSort to sort Γ in time O(|A|+ |B|) and then replace Γ with set of consecutive natural numbers.
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and we remove from it the ones that correspond to a crossing pair. Lastly, we go through this list
and replaces pairs, as in the case of blocks. Note that when we try to replace ab it might be that this
pair is no longer there as one of its letters was already replaced, in such a case we do nothing. This
situation is easy to identify: before replacing the pair we check whether it is indeed ab that we expect
there, as we know a and b, this is done in costant time.

We can compress each of the crossing pairs naively in O(|A| + |B|) time by simply first applying
the popping and then reading the equation form the left to the right and replacing occurrences of this
fixed pair.

It is left to describe, how to enumerate (with consecutive numbers) letters in Γ at the end of each
phase. Firstly notice that we can easily enumerate all letters introduced in this phase and identify
them (at the end of this phase) with {1, . . . ,m}, where m is the number of introduced letters (note
that none of them were removed during the WordEqSat). Next by the assumption the letters in Γ
(from the beginning of this phase) are already identified with a subset of {1, . . . , |A|+ |B|}, we want
to renumber them, so that the subset of letters from Γ that are present at the end of the phase is
identified with {m+ 1, . . . ,m+m′} for an appropriate m′. To this end we read the equation, whever
we spot a letter a that was present at the beginning of the phase we add a pair (a, p) where p is a
pointer to this occurrence. We sort the list in time O(|A|+ |B|). From this list we can obtain a list of
present letters together with list of pointers to their occurrences in the equation. Using those pointers
the renumbering is easy to perform in O(|A|+ |B|) time.

So the total running time is O(|A|+ |B|). �

The amortisation, especially in the next section, is much easier to be shown when we know that
both the first and last words are long. This assumption is not restrictive, as as soon as one of them
becomes short, the remaining running time of WordEqSat is linear.

Lemma 13. As soon as first or last word becomes short, the rest of the running time of OneVarWordEq
is O(n).

Proof. One phase takes O(|A|+ |B|) time by Lemma 12 (this is at most O(n) by Lemma 10) and as
Lemma 10 guarantees that both the first word and the last word are shortened by at least one letter
in a phase, there will be at most N = O(1) many phases. Lastly, Lemma 11 shows that TestSolution
also runs in O(n). �

So it remains to estimate the running time until one of the last or first word becomes short.

Lemma 14. The running time of OneVarWordEq till one of first or last word becomes short is O(n+
(nA + nB) logn).

Proof. By Lemma 12 the time of one iteration of OneVarWordEq is O(|A|+ |B|). We distribute the cost
among the A words and B words: we charge β|Ai| to A i-word and β|Bj | to B j-word, for appropriate
positive β. Fix A i-word, we separately estimate how much was charged to it when it was a long and
short word.

long: Let ni be the initial length of A i-word. Then by Lemma 10 the length in the (k + 1)-th
phase it at most (3

4)kni and so these costs are at most βni + 3
4βni + (3

4)2βni + . . . ≤ 4βni.
short: Since A i-word is short, its length is at most N , so we charge at most Nβ to it. Notice,

that there are O(logn) iterations of the loop in total, as first word is of length at most n and
it shortens by 3

4 in each iteration when it is long and we calculate only the cost when it is long.
Hence we charge in this way O(logn) times, so in total O(logn).

Summing those costs over all phases over all words and phases yields O((nA + nB) logn). �

4. Heuristics and Better Analysis

The intuition gained from the analysis in the previous section, especially in Lemma 14 is that
the main obstacle in obtaining the linear running time is the necessity of dealing with short words,
as the time spend on processing them is difficult to charge. This applies to both the compression
performed within the short words, which does not guarantee any reduction in length, see Lemma 10,
and to testing of the candidate solutions, which cannot be charged to the length decrease of the whole
equation.
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Observe that by Lemma 13 as soon as the first or last word becomes short, the remaining running
time is linear. Hence, in our improvements of the running time we can restrict ourselves to the case,
in which the first and last word are long.

The improvement to linear running time is done by four improvements in algorithm analysis and
employed data structures, which are described in details in the following subsections:

several equations: Instead of a single equation, we store a system of several equations and look
for a solution of such a system. This allows removal of some words from the equations that
always correspond to each other. and thus decreases the overall storing space and testing time.
This is described in Section 4.2 and Section 4.4.

small solutions: We identify a class of particularly simple solutions, called small, and show
that a solution is reported within O(1) phases from the moment when it became small. In
several problematic cases of the analysis we are able to show that the solutions involved are
small and so it is easier to charge the time spent on testing them. Section 4.3 is devoted to
this issue.

storage: The storage is changed so that all words are represented by a structure of size pro-
portional to the size of the long words. In this way the storage space decreases by a constant
factor in each phase and so the running time (except for testing) is linear. This is explained
in Section 4.4

testing: The testing procedure is modified, so that the time it spends on the short words is
reduced. In particular, we improve the rough estimate that one TestSimpleSolution takes time
proportional to the equation to an estimation that actually counts for each word whether it
was included in the test or not. Section 4.5 is devoted to this.

4.1. Suffix arrays and lcp arrays. We use a standard data structure for comparisons on strings: a
suffix array SA[1 . .m] for a string w[1 . .m] stores the m non-trivial suffixes of w, that is w[m], w[m−
1 . .m], . . . , w[1 . .m] in (increasing) lexicographical order. In other words, SA[k] = p if and only if
w[p . . .m] is the k-th suffix according to the lexicographical order. It is known that such an array
can be constructed in O(m) time [9] assuming that RadixSort is applicable to letters, i.e. that they
are integers from {1, 2, . . . ,mc} for some constant c. We assume explicitly that this is the case in our
problem.

Using a suffix array the equality testing for substrings of w reduces to the longest common prefix
(lcp) query: observe that w[i . . i+ k] = w[j . . j + k] if and only if the common prefix of w[i . .m] and
w[j . .m] is at least k. The first step in constructing a data structure for answering such queries is
the LCP array: for each i = 1, . . . ,m − 1 the LCP [i] stores the length of the longest common prefix
of SA[i] and SA[i + 1]. Given a suffix array, the LCP array can be constructed in linear time [10],
however, the linear-time construction of suffix arrays can be in fact extended to return also the LCP
array [9].

When the LCP array is supplied, the general longest prefix queries reduce to the range mini-
mum queries: the longest common prefix of SA[i] and SA[j] (for i < j) is the minimum among
LCP [i], . . . , LCP [j − 1], and so it is enough to have a data structure that answers the queries about
the minimum in the range in constant time. Such data structures in general case are known and
in case of LCP arrays even simpler construction were given [1]. The construction time is linear and
query time is O(1) [1]. Hence, after a linear preprocessing, we can calculate the length of the longest
common prefix of two substrings of a given string in O(1) time.

4.2. Several equations. The improved analysis assumes that we do not store a single equation,
instead, we store several equations and look for substitutions that simultaneously satisfy all of them.
Hence we have a collection Ai = Bi of equations, for i = 1, . . . ,m, each of them is of the form described
by (1); by A = B we denote the whole system of those equations. In particular, each of those equations
specifies the first and last letter of the solution, length of the a-prefix and suffix etc., exactly in the
same way as it does for a single equation. If there is a conflict, as two equations give different answers
regarding the first/last letter or the length of the a-prefix or b-suffix, then there is no solution at all.
Still, we do not check the consistency of all those answers, instead, we use an arbitrary equation, say
A1 = B1, to establish the first, last letter, etc., and as soon as we find out that there is a conflict, we
stop the computation and terminate immediately.

The system of equations stored by OneVarWordEq is obtained by replacing one equation A′iA′′i =
B′iB′′i (where A′i,A′′i ,B′i,B′′i ∈ (Γ ∪ {X})∗) with equivalent two equations A′i = B′i and A′′i = B′′i (note
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that in general the latter two equation are not equivalent to the former one, however, we perform the
replacement only when they are; moreover, we need to trim them so that they satisfy the form (1)).

The described way of splitting the equations implies a natural order on the equations in the system:
when A′iA′′i = B′iB′′i is split to A′i = B′i and A′′i = B′′i then A′i = B′i is before A′′i = B′′i (moreover, they
are both before/after each equation before/after which A′iA′′i = B′iB′′i was). This order is followed
whenever we perform any operations on all words of the equations. We store a list of all equations, in
this order.

We store each of those equations in the same way as described for a single equation in the previous
phase, i.e. for an equation Ai = Bi we store a list of pointers to words on one side and list of pointers
to words on the other side. Additionally, the first word of Ai has a link to the last word of Ai−1 and
the last word of Ai similarly, the last word of Ai has a link to the first word of Ai and the first word
of Ai+1. We also say that Ai (Bj) is first or last if it is in any of the stored equations.

All operations on a single equation introduced in the previous sections (popping letters, cutting
prefixes and suffixes, pair compression, blocks compression) generalise to a system of equations. The
running times are addressed in detail later on. Concerning the properties, they are the same, we list
those for which the generalisation or the proof are non-obvious: PreProc should ensure that there are
only two crossing pairs. This is the case, as each X in every equation is replaced by the same aXb and
S(X) is the same for all equations, which is the main fact used in the proof of Lemma 6. Lemma 10
ensured that in each phase the length of the first and last word is decreased. Currently the first words
in each equation may be different, however, the analysis in Lemma 10 applies to each of them.

4.3. Small solutions. We say that a word w is almost periodic with period size p and side size s if it
can be represented as w = w1w

`
2w3 (where ` is an arbitrary number), where |w2| ≤ p and |w1w3| ≤ s;

we often call w2 the periodic part of this factorisation. (Note that several such representation may
exist, we use this notion for a particular representation that is clear from the context). A substitution
S is small, if S(X) = (w)kv, where w, v are almost periodic with period and side sizes N .

The following theorem shows the main result of this section: if a solution is small, then it is reported
by OneVarWordEq within O(1) phases.

Theorem 2. If S(X) is a small solution then OneVarWordEq reports it within O(1) phases.

We would like to note that the rest of the paper is independent from the proof of Theorem 2, so it
might be skipped in reading.

Intuition is as follows: observe first that in each phase we make Pop and test whether S(X) = a,
where a is a single letter, is a solution. Thus it is enough to show that a small solution is reduced
to one letter within O(1) phases. To see this, consider first an almost periodic word, represented as
w1w

`
2w3. Ideally, all compressions performed in one phase of OneVarWordEq are done separately on

w1, w3 and each w2. In this way we obtain a string w′1w′`2w′3 and from Lemma 9 it follows that w′i is
shorter than wi by a constant fraction. After O(log |w2|) steps we obtain a word w′′1w′′`2 w

′′
3 in which

w′′2 is a single letter, and so in this phase w′′`2 is replaced with a single letter. Then, since the length
of w′′′1 w′′′3 is at most N , after O(1) phases this is also reduced to a single letter. Concerning the small
solution, wkv we first make such an analysis for w, when it is reduced to a single letter (after O(1)
phases) after one additional phase wk = ak is also reduced to one letter (by BlockComp) and so the
obtained string akv

′ is a concatenation of two almost periodic strings. Using the same analysis as
above for each of them we obtain that it takes O(1) time to reduce them all to single letters. Thus
we have a 2-letter string, which is reduced to a single letter within 2 phases.

In reality we need to take into the account that some compression are made on the crossings of
the considered strings, however, we can alter the factorisation (into almost periodic words and almost
periodic words into periodic part and rest) of the string so that the result is almost as in the idealised
case.

We say that for a substring w of S(X) during one phase of OneVarWordEq the letters in w are
compressed independently, if every compressed pair or block were either wholly within this w or wholly
outside this w (in some sense this corresponds to the non-crossing compression).

The following lemma shows that given an almost periodic substring of S(X) with period size p and
side size s we can find an alternative representation in which the period size is the same, side size
increases (a bit) but each w in wk in this new representation is compressed independently. This shows
that the intuition about shortening of almost periodic strings is almost precise — we can think that
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u a vbz bza bza bza bza

cd z′ cdu′

v′

z′cd z′cd z′cd

Figure 1. The alternative factorisation. The first compressed letters are in grey. For
simplicity m = r = 1. Each z′ between the cds is compressed independently.

periodic part in almost periodic strings are compressed independently, but we need to pay for that by
an increase in the side size.

Lemma 15. Consider almost periodic substring of S(X) with period size p and side size s represented
as w1w

`
2w3, where w is not a block of single letter. Then there is a representation of this string as

w′1w
′`′
2 w

′
3 such that

• `− 2 ≤ `′ ≤ `
• |w′2| = |w2| (and consequently |w′1|+ |w′3| ≤ |w1|+ |w3|+ 2|w2|)
• the form of w′2 depends solely on w2 and does not depend on w1, w3 (it does depend on the
equation and on the order of blocks and pairs compressed by OneVarWordEq)
• the compression in one phase of OneVarWordEq compresses each w′ from w′`

′ independently.
In particular, this other representation has period size p and side size s+ 2p.

Proof. First of all, if ` ≤ 2 then we take w′2 = ε, k′ = 0 and concatenate wk
2 to w1 to obtain w′1 (and

take w3 = w′3). So in the following we consider the case in which ` > 2 and set `′ = `− 2.
Let w2 = amzbr, where a, b ∈ Γ, m, r ≥ 1 and z ∈ Γ∗ does not start with a nor it ends with b,

such a representation is possible, as w2 is not a block of letters. Then w1w
`
2w3 = w1(amzbr)`w3. Since

w1 can end with a and w2 can begin with b, we are interested in compressions within the middle
zbr(amzbr)`−2amz. We first show that indeed there is a compression of a substring that is fully within
the zbr(amzbr)`−2amz:

• If m > 1 or r > 1 then we compress the block am or br.
• If m = r = 1, a = b then ab = aa is a block and it is compressed.
• If m = r = 1, a 6= b and z = ε then this substring is b(ab)`−2a. As ` > 2 the pair ab is listed
by OneVarWordEq and we try to compress it. If we fail then it means that one of the letters
was already compressed with a letter inside the considered string.
• If m = r = 1 and a 6= b and z 6= ε then ba is listed among the pairs and we try to compress the
occurrence right after the first z. If we fail then it means that one of the letters was compressed
with its neighbouring letter, which is also in the string.

Consider the first substring that is compressed and it is wholly within zbr(amzbr)`−2amz. There are
two cases: the compressed substring is a block of letters or it is a pair. We give a detailed analysis in
the latter case, the analysis in the former case is similar.

So, let the first pair compressed wholly within this fragment zbr(amzbr)`−2amz be cd, see Fig. 1
for an illustration. We claim that all pairs cd that occurred within this fragment at the beginning of
the phase are compressed at this moment. Assume for the sake of contradiction that this is not the
case. So this means that one of the letters, say c was already compressed in some other compression
performed earlier. By the choice of the compressed pair (i.e. cd), this c is compressed with a letter
from outside of the fragment zb(amzbr)`−2az, there are two possibilities:

c is the last letter of zbr(amzbr)`−2amz: Observe that the letter succeeding c is either b or
a letter representing a compressed pair/string. In the latter case we do not make a further
compression, so it has to be b. This is a contradiction: each c that is a last letter of z was
initially followed by b, and so in fact some compression of cb (note that by our choice the last
letter of z was not b, and so b 6= c) was performed wholly within zbr(amzbr)`−2amz and it was
done earlier than the compression of cd, contradiction with the choice of cd.

c is the first letter of zbr(amzbr)`−2amz: The argument is symmetric, with a preceding c in
this case.

There are at least `− 1 occurrences of cd that are separated by |w|− 2 letters, i.e. the (cdz′)`−2cd is
a substring of zbr(amzbr)`−2amz, for some z′ of length |w| − 2, see Fig. 1. We take w′2 = cdz′ and let
w′1 be the w1 concatenated with string proceeding the (cdz′)`−2cd and w′3 the w3 concatenated with



ONE-VARIABLE WORD EQUATIONS IN LINEAR TIME 15

the string following this (cdz′)`−2 (note that the latter includes the ending cd, see Fig. 1). Clearly
|w′2| = |w2| and consequently |w′1| + |w′3| = |w1| + |w3| + 2|w2|. Note that each w′2 begins with cd,
which is the first substring even partially within w′2 that is compressed, furthermore, each of those
w′2 is also followed by cd. So the compression inside each w′2 is done independently (because by the
choice of cd there was no prior compression applied in w′2).

Concerning the analysis when the first compressed substring is some cm it can be routinely verified
that there are no essential differences in the analysis. �

The immediate consequence of Lemma 15 is that when an almost periodic string is a substring of
S, then we can give bounds on the period size and side size on the corresponding word after one phase
of OneVarWordEq.

Lemma 16. Consider an almost periodic substring of S(X) with period size p and side size s. Then
the corresponding substring after the phase of OneVarWordEq has a factorisation with period size at
most 3

4p and side size at most 2
3s+ 7

3p.

There are two remarks: firstly, if period size of the original word was 1 then the given bound is
3
4 < 1, which holds, i.e. the corresponding word has no periodic part in the factorisation. Secondly, the
first (last) letter of the substring may be compressed with the letter to the left (tight, respectively), so
outside of the considered substring. In such a case we still include the letter representing the replaced
pair or block in the corresponding substring.

Proof. Let us fix the factorisation w1w
`
2w3 of w, where p = |w2| is the period size and s = |w1w3| is

the side size. First of all, consider the special case, in which w2 is a block of letters, say a, without
loss of generality we may assume that it is a single letter (note that this simple borderline case is not
covered by Lemma 15). Without loss of generality we also may assume that w1 does not end and w3
does not begin with a, as otherwise we can move those letters to w`

2, decreasing the side size and not
increasing the period size. Then during the block compression the w`

2 = a` is going to be replaced by a
single letter (this block may also include some letters from outside of w, when w1 or w3 is empty, this
does not affect the analysis). Now consider w1: its first letter can be compressed with letters outside
it, otherwise each letter not compressed in the phase, except perhaps the last one, is followed by two
letters that are, see Lemma 9. Hence at most 2 + |w1|−2

3 letters are uncompressed and so the length of
the corresponding compressed w′1 is at most 2|w1|+2

3 and similarly for w′3 its length is at most 2|w3|+2
3 .

Adding 1 for the letter replacing w`
2 we obtain 2|w1w3|+7

3 = 2s
3 + 7p

3 , as claimed.
In other cases, by Lemma 15 we can refactor w into u1u

`′
2 u3 such that |u1u3| ≤ |w1w3| + 2|w2|

and |u2| = |w2| and each u2 is compressed independently (note that |u2| ≥ 2). Then after one
phase of OneVarWordEq the corresponding word w′ can be represented as u′1u′`

′
2 u
′
3. Let us inspect

its compression rate. The argument for u1 and u3 is the same as for w1 and w2 in the previous
case, so |u′1| ≤

2|u1|+2
3 and |u′3| ≤

2|u3|+2
3 . As |u1u3| ≤ |w1w3| + 2|w2|, the new side size is at most

2
3s+ 4

3p+ 4
3 ≤

2
3s+ 2p, as p ≥ 2. For the period size, consider u2. By Lemma 9, each uncompressed

letter (perhaps except the last one) is followed by a compressed one, and so |u′2| ≤
2|u2|+1

3 . For |u2| ≥ 4
this yields the desired compression rate 3

4 , for |u2| = 2 and |u2| = 3 observe that by Lemma 9 at least
one letter inside u2 is compressed and we know that the compressions inside u2 are done independently,
so |u′2| ≤ |u2| − 1, which yields the desired bound for those two border cases. �

Imagine now we want to make a similar refactoring also for the small word (in order to draw
conclusions about shortening of S(X), which is small). So take wkv where both w and v are almost
periodic words (with some period sizes and side sizes) and k is some number. When we look at wk,
each single w can be refactored so that its periodic part is compressed independently. Note that this
is the same word, i.e. we are still given wkv, though we have in mind a different factorisation of w.
However, the compression of the w is influenced by the neighbouring letters, so while each of the middle
w in wk−2 is compressed in the same way, both the first and the last w can be compressed differently.
Hence, after the compression we obtain something of the form w1w

′k−2w2v
′, where w1, w

′, w2, v
′ are

almost periodic. In the next phase the process continues and we accumulate almost periodic words
on both sides of w′k′ . So in general we deal with a word of the form uwkv, where w is almost periodic
and u, v are concatenations of almost periodic words. The good news is that we can bound the sum
of side sizes and period sizes of almost periodic words occurring in u, v. Moreover, the period size of
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w drops by a constant factor in each phase, so after O(1) phases it is reduced to 0, i.e. wk is almost
periodic.

As a first technical step we show that Lemma 15 can be used to analyse what happens with a
concatenation of almost periodic words in one phase of OneVarWordEq: as in the case of a single word,
see Lemma 16, the sum of period sizes drops by a constant factor, while the sum of side sizes drops
by a constant factor but it increases by magnitude of sum of period sizes.

Lemma 17. Let u, a substring of S(X), be a concatenation of almost periodic words with a factorisa-
tion for which the sum of period sizes if p and side sizes is s. Then after one phase of OneVarWordEq
the corresponding string u′ is a concatenation of almost periodic words with a factorisation for which
the sum of period sizes is at most 3

4p and sum of side sizes is at most 2
3s+ 7

3p.

Note that as in the case of Lemma 16 when sum of the period sizes is 1, then after one phase we are
guaranteed that all almost periodic words in the factorisation have empty periodic parts. Moreover,
as in the case of Lemma 16 the first and last letter of u may be compressed with the letters outside
u, in which case we include in the corresponding word the letters that are obtained in this way.

Proof. Let the promised factorisation of u into almost periodic words be u1 · u2 · · ·um. We apply
Lemma 16 to each of them. By a simple summation of the guarantees from Lemma 16 the bound on
the size of the period sizes is 3

4p while the bound on the sum of the side sizes is 2
3s+ 7

3p. �

The following lemma is the crowning stone of our considerations. It gives bounds on the period
sizes and side sizes for the word that can be represented as uwkv, where w is almost periodic and u, v
are concatenations of almost periodic words.

Lemma 18. Suppose that at the beginning of the phase of OneVarWordEq a substring of S(Ai) can
be represented as S(X) = uwkv, where w is almost periodic with period size pw > 0 and side size sw

while u, v are concatenations of almost periodic words, let the sum of their period sizes be puv and side
sizes suv. Then the corresponding substring at the end of the phase can be represented as u′(w′)k′

v′,
where w′ is almost periodic with period size p′w ≤ 3

4pw and side size s′w ≤ 2
3sw + 11

3 pw and u′, v′ are
concatenations of almost periodic words, the sum of their period sizes is p′uv ≤ 3

4(puv + 2pw) and the
sum of their side sizes s′uv at most 2

3(suv + sw) + 7
3(puv + 2pw).

Proof. Consider the factorisation of w as an almost periodic word. Consider first the main case, in
which the periodic part of w is not a block of single letter. Then we can apply Lemma 15 to each w,
obtaining a factorisation w = w1w

`
2w3 such that |w2| ≤ pw and |w1w3| ≤ sw + 2pw. Then uwkv can

be represented as
u

(
w1w

`
2w3

)k
v = uw1

(
w`

2w3w1
)k−1

w`
2w3v .

Define u′ = uw1 and v′ = (w`
2)w3v, they are concatenations of almost periodic words, the sum of their

period sizes is puv + |w2| = puv + pv while side sizes suv + |w1| + |w3| = suv + sw + 2pw. Define also
w′ = w`

2w3w1, observe that each such w′ is delimited by w2 (it includes it in the left end and to the
right there is a copy of it which is not inside this w′) and each w2 is compressed independently, so
also each w′ is compressed independently, so in particular it is compressed in the same way. Thus
u′w′k−1v′ is compressed into u′′w′′k−1v′′, let us estimate their sizes.

For u′ and v′ can can straightforwardly apply Lemma 17, obtaining that the sum of their period sizes
is at most 3

4(puv +pw) while their side sizes 2
3(suv +sw +2pw)+ 7

3(puv +pw) = 2
3(suv +sw)+ 7

3puv + 11
3 pw.

Concerning w′: we apply Lemma 16, which shows that the new period size is at most 3
4pw and new

side size 2
3(sw + 2pw) + 7

3pw = 2
3sw + 11

3 pw, so all as claimed.
Let us return to the trivial case, in which w = w1w

`
2w3 and w2 is a block of a single letter. Note

that without a loss of generality, we can assume that w2 is a single letter (we replace w`
2 with a|w2|`)

and that w1 does not end and w3 does not begin with a (we can move those letters to w2, decreasing
side size and not increasing the period size). Then uwkv = u(w1a

`w3)kv. If w1w3 = ε this is equal to
uak`v, we treat ak` as a almost periodic word with period size 1 and side size 0, so uak`v have a sum
of period sizes puv + 1 = puv + pw and sum of side sizes suv. Applying Lemma 17 yields the claim:
the sum of period sizes is at most 3

4(puv + pw) while the new side sizes 2
3suv + 7

3(puv + pw). Similarly,
when k = 1 we can treat uwv as a concatenation of almost periodic words, the sum of their period
sizes is at most puv + pw and side sizes suv + sw; again, applying Lemma 17 yields the claim: the sum
of period sizes is at most 3

4(puv + pw) while the new side sizes 2
3(suv + sw) + 7

3(puv + pw).
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So let us go back to the main case, in which w1w3 6= ε and k ≥ 2. Then uwkv = u(w1a
`w3)kv =

uw1a
`w3w1(a`w3w1)k−2a`w3v. As w3w1 is non-empty and does not end, nor begin with a, each a` in

(a`w3w1)k−2 is compressed independently. We set u′ = uw1a
`w3w1, v′ = a`w3v and w′ = a`w3w1.

Applying Lemma 17 to u′ and w′ yields that after one phase the sum of period sizes is 3
4(puv + 2pw)

while side size 2
3(suv + 2sw) + 7

3(puv + 2pw). On the other hand, the period size of w′′ is 3
4pw while its

side size at most 2
3sw + 7

3pw �

With Lemma 18 established, we can prove Theorem 2.

proof of Theorem 2. Consider the string S(X). We show that within O(logN) = O(1) this string is
reduced to a single letter. This means that S(X) is reported in the same time. Note that in the
following phases the corresponding solution (if unreported) is not the corresponding string, as we also
pop letters from X. However, the corresponding solution is the substring of this string.

So fix a small solution and its occurrence within S(A). It can be represented as wkv, where w
and v are almost periodic with period and side size N We claim that in each following phase the
corresponding string can be represented as u′w′k′

v′, where u′ and v′ are concatenations of almost
periodic words, the sum of their period sizes is at most 6N while side sizes 78N . Also, w′ is almost
periodic with side size at most 11N and period size dropping by 3

4 in each phase (and at most N at
the beginning). This claim can be easily verified by induction on the estimations given by Lemma 18.
As the period size of w′ drops by 3

4 in each phase and initially it is N , after O(logN) phases w′ has
period size 0. Then inside u′w′k′

v′ we treat w′k′ as a periodic word with period size |w′| ≤ 11N and
side size 0. Thus u′w′k′

v′ is a concatenation of almost periodic words with sum of period sizes at most
17N and sum of side size at most 78N . Then, by easy induction on bounds given by Lemma 17,
in the following phases the corresponding string will be a concatenation of almost periodic strings,
with sum of period sizes decreasing by 3

4 in each phase (and initial value 17N)and sum of side sizes
at most 78N . Thus after O(logN) phase its sum of period sizes is reduced to 0 and so it is a string
of length at most 78N , which will be reduced to a single letter within O(logN) rounds, as claimed.
Since N = O(1). �

4.4. Storing of an equation. To reduce the running time we store duplicates of short word only
once. Recall that for each equation we store lists of pointers pointing to strings that are the explicit
words in this equation. We store the long words in a natural way, i.e. each long word is represented by
a separate string. The short words are stored more efficiently: if two short words in equations are equal
we store only one string, to which both pointers point. In this way all identical short words are stored
only once (though each of them has a separate pointer pointing to it); we call such a representation
succinct.

We show that the compression can be performed on the succinct representation, without the need
of reading the actual equation. This allows bounding the running time using the size of the succinct
representation and not the equation.

We distinguish two types of short words: those that are substrings of long words (normal) and those
that are not (overdue). We can charge the cost of processing the normal short words to the time of
processing the long words. The overdue words can be removed from the equation after O(1) phases
after becoming overdue, so their processing time is constant per A-i word (or B-j word).

The rest of this subsection is organised as follows:
• We first give precise details, how we store short and long words, see Section 4.4.1 and prove
that we can perform compression using only succinct representation, see Lemma 19.
• We then define precisely the normal and overdue words, see Section 4.4.2 as well as show that
we can identify new short and overdue words, see Lemma 21. Then we show that overdue
words can be removed O(1) phases after becoming overdue, see Lemma 22 and 23.
• Lastly, in Section 4.4.3, we show that the whole compression time, summed over all phases is
O(n). The analysis is done separately for long words normal short words and overdue short
words.

As observed at the beginning of Section 4, as soon as the first or last word becomes short, the
remaining running time is linear. Thus, when such a word becomes short, we drop our succinct
representation and recreate out of it the simple representation used in Sections2–3. Such a recreation
takes linear time.
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4.4.1. Storing details. We give some more details about the storing: All long words are stored on
two doubly-linked lists, one representing the long words on the left-hand sides and the other the long
words on the right-hand sides. Those words are stored on the lists according to the initial order of
the words in the input equation. Furthermore, for each long word we store additionally, whether it
is a first or last word of some equation (note that a short word cannot be first or last). The short
words are also organised as a list, the order on the list is irrelevant. Each short word has a list of its
occurrences in the equations, the list points to the occurrences in the natural order (occurrences on
the left-hand sides and on the right-hand sides are stored separately).

We say that such a representation is succinct and its size is the sum of lengths of words stored in it
(so the sum of sizes of long words, perhaps with multiplicities, plus the sum of sizes of different short
words). Note that we do not include the number of pointers from occurrences of short words. We
later show that in this way we do not need to actually read the whole equation in order to compress
it; it is enough to read the words in the succinct representation, see Lemma 20.

We now show that such a storage makes sense, i.e. that if two short words become equal, they
remain equal in the following phases (note again that none of them are first, nor last).
Lemma 19. Consider any explicit words A and B in the input equation. Suppose that during OneVar-
WordEq they were transformed to A′ = B′, none of which is a first or last word in one of the equations.
Then A = B if and only if A′ = B′.
Proof. By induction on operation performed by OneVarWordEq. Since none of the A′, B′ is the first
or last word in the equation, it means that during the whole OneVarWordEq they had X to the left
and to the right. So whenever a letter was left-popped or right-popped from X, it was prepended or
appended to both A and B; the same applies to cutting prefixes and suffixes. Compression is never
applied to a crossing pair or a crossing block, so after it two strings are equal if and only if they were
before the operation. The removal of letters (in order to preserve (1)) is applied only to first and last
words, so it does not apply to words considered here. Partitioning the equation into subequations
does not affect the equality of explicit words. �

We now show the main property of succinct representation: the compression (both pair and block)
can be performed on succinct representation in linear time.
Lemma 20. The compression in one phase of OneVarWordEq can be performed in time linear in size
of the succinct representation.
Proof. The long words are stored in a list and we can compress them without the need of reading
the word table. We know which one of them is first or last, so when letters are popped from X we
know what letters are appended/prepended to each of those words. Since they are stored explicitly,
the claim for them follows from the analysis of the original version of OneVarWordEq, see Lemma 12.
This analysis in particular requires that we can identify the letters used in the equation with numbers
from an interval of linear size. Here the size is the size of the succinct representation. Note though
that this part of the proof follows in the same way: when listing letters (to replace them with new
ones) we do not need to list letters in different occurrences of the same short word, it is enough to do
this once, which can be done using the succinct representation.

For the short words stored in the list of short words, from Lemma 19 it follows that if an explicit
word A occurs twice in the equations (both times not as a first, nor last word of the equation) it is
changed during OneVarWordEq in the same way at both those instances. So it is enough to perform
the operations on the words stored in the list, doing so as in the original version of OneVarWordEq
takes time linear in the size of the tables of short words, as in Lemma 12. �

4.4.2. Normal and overdue short words. The short words stored in the tables are of two types: normal
and overdue. The normal words are substrings of the long words or A2

0 and consequently the sum of
their sizes is proportional to the size of the long words. A word becomes overdue if at the beginning
of the phase it is not a substring of a long word nor A2

0. It might be that it becomes a substring of
such a word later, it does not stop to be an overdue word in such a case.

Since the normal words are of size O(N) = O(1), the sum of lengths of normal words stored in short
word list is at most O(1) larger than the sum of sizes of the long words. Hence the processing time of
normal short words can be charged to the long words. For the overdue words the analysis is different:
we show that after O(1) phases we can remove them from the equation (splitting the equations). Thus
their processing time is O(1) per A-i word (or B-j word) and thus O(n) in total.



ONE-VARIABLE WORD EQUATIONS IN LINEAR TIME 19

X B

X XA

X

Figure 2. A is arranged against B. The periods of length at most |B| − |A| are in
ligther grey. Since A 6= B, at least one of them is non-empty.

The new overdue words can be identified in linear time: this is done by constructing a suffix array
for a concatenation of long and short words occurring in the equations.

Lemma 21. In time proportional to the size of succinct representation size we can identify the new
overdue words.

Proof. Consider all long words A0, . . . , Am (with or without multiplicities, it does not matter) and
all short (not already overdue) words A′1, . . .A′m′ , without multiplicities; in both cases this is just a
listing of words stored in the representation (except for old overdue words). We construct a suffix
array for the string

A2
0$A1$ . . . Am$A′1$ . . . A′m′# .

As it was already observed that the size of the alphabet is linear in the size of the succinct represen-
tation, the construction of the suffix array can be done in linear time [9].

Now A′i is a factor in some Aj (the case of A2
0 is similar, it is omitted to streamline the presentation)

if and only if for some suffix A′′j of Aj the strings A′′j $Aj+1 . . . Am$A′1$ . . . $A′m′# and A′i$ . . . $A′m′#
have a common prefix of length at least |A′i|. In terms of a suffix array, the entries for A′i$ . . . $A′m′#
and A′′j $Aj+1 . . . $Am$A′1$ . . . $A′m′# should have a common prefix of length at least |A′i|. Recall that
the length of the longest common prefix of two suffixes stored at positions p < p′ in the suffix array is
the minimum of LCP [p], LCP [p+ 1], . . . , LCP [p′ − 1].

For fixed suffix A′i$ . . . $A′m′# we want to find A′′j $Aj+1 . . . $Am$A′1$ . . . $A′m′# (where A′′j is a suffix
of some long word Aj) with which it has the longest common prefix. As the length of the common
prefix of pth and p′th entry in a suffix array is min(LCP [p], LCP [p + 1], . . . , LCP [p′ − 1]), this is
is either the first previous or first next suffix of this form in the suffix array. Thus the appropriate
computation can be done in linear time: we first go down in the suffix array, storing the last spotted
entry corresponding to a suffix of some long Aj , calculating the LCP with consecutive suffixes and
storing them for the suffixes of the form A′i$ . . . $A′m′#. We then do the same going from the bottom
of the suffix array. Lastly, we choose the larger from two stored values; for A′i$ . . . $A′m′# it is smaller
than |A′i| if and only if A′i just became an overdue word.

Concerning the running time, it linearly depends on the size of the succinct representation and
alphabet size, which is also linear in size of succinct representation, as claimed. �

The main property of the overdue words is that they can be removed from the equations in O(1)
phases after becoming overdue. This is shown by a serious of lemmata.

First we need to define what does it mean that for solution word A in one side of the equation is
at the same position as its copy on the other side of the equation: we say that for a substitution S
the explicit word Ai (or its subword) is arranged against the explicit word Bj (S(X) for some fixed
occurrence of X) if the position within S(Ak) occupied by this explicit word Ai (or its subword) are
within the positions occupied by explicit word Bj (S(X), respectively) in Bk.

Lemma 22. Consider a short word A in a phase in which it becomes overdue. Then for each solution
S(X) either S is small or in every S(Ak) = S(Bk) each explicit word Ai equal to A is arranged against
another explicit word Bj equal to A.

Proof. Consider an equation and a solution S such that in some S(Ai) = S(Bi) an explicit word Ai

(equal to an overdue word A) is not arranged against another explicit word equal to A. There are
three cases:

A is arranged against S(X). Note that in this case A is a substring of S(X). Either S(X) is a
substring of A0 or S(X) = Ak

0A
′
0, where A′0 is a prefix of A0. In the former case A is a factor of A0,

which is a contradiction, in the latter it is a factor of Ak+1
0 . As A0 is long and A short, it follows that

|A| < |A0| and so A is a factor of A2
0, contradiction with the assumption that A is overdue.
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BX

A

Figure 3. Subword of Ai is arranged against the whole S(X).

B

XA

XX

X

Figure 4. Subword of Ai is arranged against S(X). The overlapping S(X) are in in
grey, the S(X) has a period shorter than Ai.

A is arranged against some word. Since A is an overdue word, this means that Ai is arranged against
a short word Bj . Note that both Ai and Bj are preceded and succeeded by S(X), since Ai 6= Bj we
conclude that S(X) has a period at most |Bj | − |Ai|, see Fig. 2; in particular S is small.

Other case. Since Ai is not arranged against any word, nor arranged against S(X), it means that some
substring of Ai is arranged against S(X) and as Ai is preceded and succeeded by S(X), this means
that either S(X) is shorter than Ai or it has a period at most |A|, see Figure 3 and 4, respectively. In
both cases S is small. �

Observe that due to Theorem 2 and Lemma 22 the A-i-words and B-j-words that are overdue can
be removed in O(1) phases after becoming overdue: suppose that A becomes an overdue word in phase
`. Any solution, in which an overdue word A is not arranged against another occurrence of A is small
and so it is reported after O(1) phases. Consider an equation Ai = Bi in which A occurs. Then the
first occurrence of A in Ai and the first occurrence of A in Bj are arranged against each other for each
solution S. In particular, we can write Ai = Bi as A′iXAXA′′i = B′iXAXB′′i , where Ai and Bi do not
have A as an explicit word (recall that A is not the first, nor the last word in Ai = Bi). This equation
is equivalent to two equations A′i = B′i and A′′i = B′′i . This procedure can be applied recursively to
A′′i = B′′i . In this way, all occurrences of A are removed and no solutions are lost in the process. There
may be many overdue strings so the process is a little more complicated, however, as each word can
be removed once during the whole algorithm, in total it takes O(n) time.

Lemma 23. Consider the set of overdue words introduced in phase `. Then in phase ` + O(1) we
can remove all occurrences of overdue words from the equations. The obtained set of equations has the
same set of solutions. The amortised time spend on removal of overdue words, over the whole run of
OneVarWordEq, is O(#X).

Proof. Consider any word A that become overdue in phase ` and any solution S of this equation, such
that in some S(Ai) = S(Bi) the explicit word A is not arranged against another instance of the same
explicit word. Then due to Lemma 22 the S(X) is small. Consequently, from Theorem 2 this solution
is reported before phase ` + c, for some constant c. So any solution S′ in phase ` + c corresponds
to a solution S from phase ` that had each explicit word A arranged in each S(Ai) = S(Bi) against
another explicit word A. Since all operations in a phase either transform solution, implement the pair
compression of implement the blocks compression for a solution S(X), it follows that in phase ` + c
the corresponding overdue words A′ are arranged against each other in S′(A′i) = S′(B′i). Moreover,
by Lemma 19 each explicit word A′ in this phase corresponds to an explicit word A in phase `.

This observation allows removing all overdue words introduced in phase `. Let C1, C2, . . . , Cm (in
phase ` + c) correspond to all overdue words introduced in phase `. By Lemma 21 we have already
identified the overdue words. Using the list of short words, for each overdue word C, we have the
list of pointers to occurrences of C in left-hand sides of the equations and right-hand sides of the
equations, those lists are sorted according to the order of occurrences. In phase ` + c we go through
those lists, if the first occurrences of A in the left-hand sides and right-hand sides are in different
equations then the equations are not satisfiable, as this would contradict that in each solution both
A is arranged against its copy. Otherwise, they are in the same equation Ai = Bi, which is of the
form A′iXAXA′′i = B′iXAXB′′i , where A′i and B′i do not have any occurrence of A within them. We
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X

X Bj′Bj

Figure 5. Let Bj and Bj′ both have their letters arranged against letters from fixed
occurrence of X. Then the X separating them is a proper substring of another X,
contradiction.

split Ai = Bi into two equations A′i = B′i and A′′i = B′′i and we trim them so that they are in the form
described in (1). The new equations have exactly the same set of solutions as the original one.

Note that as new equations are created, we need to reorganise the pointers from the first/last words
in the equations, however, this is easily done in O(1) time. The overall cost can be charge to the
removed X, which makes in total at most O(#X) cost. �

4.4.3. Compression running time.

Lemma 24. The running time of OneVarWordEq, except for time used to test the solutions, is O(n).

Proof. By Lemma 20 the cost of compression is linear in terms of the size of the succinct representation
by Lemma 21 in the same time bounds we can also identify the overdue words. Lastly, by Lemma 22
the total cost of removing the overdue words is O(n). So it is enough to show that the sum of sizes of
the succinct representations summed over all phases is O(n).

When the overdue words are excluded, the size of the succinct representation is proportional to the
total length of long words. Since by Lemma 10 this sum of lengths decreases by a constant in each
phase, the sum of those costs is linear in n.

Concerning the costs related to the overdue words: Note that an A i-word or B j-word is overdue
for only O(1) phases, after which it is deleted from the equation see Lemma 23. So in O(1) phases it
is charged O(N) = O(1) cost, during the whole run of OneVarWordEq. Summing over all A i-words
and B j-words yields O(n) time. �

4.5. Testing. We already know that thanks to appropriate storing the compression of the equations
can be performed in linear time. It remains to explain how to test the solutions fast, i.e. how to
perform TestSimpleSolution when all first and last words are still long.

Recall that TestSimpleSolution checks whether S,which is of the form S(X) = a` for some `, is a
solution by comparing S(Ai) and S(Bi) letter by letter, replacing X with a` on the fly. We say that
in such a case a letter b in S(Ai) is tested against the corresponding letter in S(Bi). Note that during
the testing we do not take advantage of the smaller size of the succinct representation, so we need to
make a separate analysis. Consider two letters, from Ai and Bj , that are tested against each other. If
one of Ai and Bj is long, this can be amortised against the length of the long word. The same applies
when one of the words Ai+1 or Bj+1 is long. So the only problematic case is when all of those words
are short. To deal with this case efficiently we distinguish between different test types, in which we
exploit different properties of the solutions to speed up the tests. In the end, we show that the total
time spent on testing is linear.

For a substitution S by a mismatch we denote the first position on which S is shown not be a
solution, i.e. sides of the equation have different letters (we use a natural order on the equations);
clearly, a solution has no mismatch. Furthermore, OneVarWordEq stops the testing as soon as it finds
a mismatch, so in the rest of this section, if we use a name test for a comparison of letters, this means
that the compared letters are before the mismatch (or that there is no mismatch at all).

There are two preliminary technical remarks: First we note that for when testing a substitution S,
for a fixed occurrence of X there is at most explicit word whose letters are tested against letters from
this occurrence of X.

Lemma 25. Fix a tested substitution S and an occurrence of X in the equation. Then there is at
most one explicit word whose letters are arranged against letters from this fixed occurrence of S(X).

Proof. Without loss of generality assume that X occurs within A` in an equation A` = B`. Suppose
that Bj and Bj′ (for j′ > j) have their letters arranged against a letter from this fixed occurrence of
S(X), see Fig 5. But Bj and Bj′ are separated by at least one X in the equation, and whole this X
is also arranged against this fixed occurrence of X, contradiction. �
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As a second remark, observe that tests include not only explicit letters from S(A`) and S(B`) but
also letters from S(X). In the following we will focus on tests in which at least one letter comes from
an explicit word. It is easy to show that the time spent on other tests is at most as large as time spent
on those tests. This follows from the fact that such other tests boil down to comparison of long blocks
of a and the previous test is of a different type, so we can account the comparison between two long
blocks of a to the previous test. However, our fast testing procedures in some times makes a series
of tests in O(1) time, so this argument can be made precise only after the explanation of the details
of various testing optimisations. For this reason the proof of Lemma 26 is delayed till the end of this
section.

Lemma 26. Suppose that we can perform all tests in which at least one letter comes from an explicit
word in O(n) time. Then we can perform all test in O(n) time.

Thus, in the following section we consider only the tests in which at least one letter comes from an
explicit word.

4.5.1. Test types. Suppose that for a substitution S a letter from Ai is tested against a letter from
S(XBj) or a letter from Bj is tested against a letter from S(XAi) (the special case, when there is no
explicit word after X is explained later). We say that this test is:

protected: if at least one of Ai, Ai+1, Bj , Bj+1 is long;
failed: if Ai, Ai+1, Bj and Bj+1 are short and a mismatch for S is found till the end of Ai+1 or
Bj+1;

aligned: if Ai = Bj and Ai+1 = Bj+1, all of them are short and the first letter of Ai is tested
against the first letter of Bj ;

misaligned: if all of Ai, Ai+1, Bj , Bj+1 are short, Ai+1 6= Ai or Bj+1 6= Bj and this is not an
aligned nor failed test;

periodical: if Ai+1 = Ai, Bj+1 = Bj , all of them are short and this is not an aligned nor failed
test.

This classification does not apply to the case, when a letter from Ai is tested against letter from X
that is not followed by an explicit word. There are two cases:

• If Ai is not followed by X in the equation then Ai is a last word, in particular it is long.
Therefore this test is protected.
• If Ai is followed by X then there is a mismatch till the end of AiX, so this test is failed.

Observe that ‘failed test’ does not mean a mismatch, just a fact that soon there will be a mismatch.
The protected, misaligned and failed tests are done in a letter-by-letter way, while the aligned and
periodical tests are made in larger groups (in O(1) time per group, this of course means that we use
some additional data structures).

It is easy to show that there are no other tests, see Lemma 27. We separately calculate the cost
of each type of tests. As some tests are done in groups, we distinguish between number of tests of
a particular type (which is the number of letter-to-letter comparisons) and the time spent on test of
a particular type (which may be smaller, as group of tests are performed in O(1) time); the latter
includes also the time needed to create and sustain the appropriate data structures.

For failed tests note that they take constant time per phase and we know that there are O(logn)
phases. For protected tests, we charge the cost of the protected test to the long word and only O(|C|)
such tests can be charged to one long word C in a phase. On the other hand, each long word is
shortened by a constant factor in a phase, see Lemma 10, and so this cost can be charged to those
removed letters and thus the total cost of those tests (over the whole run of OneVarWordEq) is O(n).

In case of the misaligned tests, it can be shown that S in this case is small and that it is tested at
the latest O(1) phases after the last of Ai+1, Ai, Bi+1, Bi becomes short, so this cost can be charged
to, say, Bi becoming short and only O(1) such tests are charged to this Bi (over the whole run of the
algorithm). Hence the total time of such tests is O(n).

For the aligned tests, consider the consecutive aligned tests, they correspond to comparison of
AiXAi+1 . . . Ai+kX and BjXBj+1 . . . Bj+kX, where Ai+` = Bj+` for ` = 1, . . . , k. So to perform
them efficiently, it is enough to identify the maximal (syntactically) equal substrings of the equation
and from Lemma 19 it follows that this corresponds to the (syntactical) equality of substrings in the
original equation. Such an equality can be tested in O(1) using a suffix array constructed for the input
equation (and general lcp queries on it). To bound the total running time it is enough to notice that
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the previous test is either misaligned or protected. There are O(n) such tests in total, so the time
spent on aligned tests is also linear.

For the periodical test suppose that we are to test the equality of (suffix of) S((AiX)`) and (prefix
of) S(X(BjX)k). If |Ai| = |Bj | then the test for Ai+1 and Bj+1 is the same as for Ai and Bj and
so can be skipped. If |Ai| > |Bj | then the common part of S((AiX)`) and S(X(BjX)k) have periods
|S(AiX)| and |S(BjX)| and consequently has a period |Ai| − |Bj | ≤ N . So it is enough to test first
common |Ai| − |Bj | letters and check whether |S(AiX)| and |S(BjX)| have period |Ai| − |Bj |, which
can be checked in O(1) time.

This yields that the total time of testing is linear. The details are given in the next subsections.
We begin with showing that indeed each test is either failed, protected, misaligned or periodical.

Lemma 27. Each test is either failed, protected, misaligned, aligned or periodical. Additionally,
whenever a test in made, in O(1) time we can establish, what type of test this is.

Proof. Without loss of generality, consider a test of a letter from Ai and from S(XBj). If any of Ai+1,
Bj+1, Ai or Bj is long then it is protected (this includes the case in which some of Ai+1, Bj , Bj+1 does
not exist). Concerning the running time, for each explicit word we keep a flag, whether it is short or
long. Furthermore, as each explicit word has a link to its successor and predecessor, we can establish
whether any of Ai+1, Bj+1, Ai or Bj is long in O(1) time.

So consider the case in which all Ai+1, Bj+1, Ai or Bj (if they exist) are short, which also can be
established in O(1) time. It might be that this test is failed (again, some of the words Ai+1, Bj , Bj+1
may not exist), too see this we need to make some look-ahead tests, but this can be done in O(N)
time (we do not treat those look-aheads as tests, so there is not recursion here).

Otherwise, if the first letter of Ai and Bj are tested against each other and Ai = Bj and Ai+1 = Bj+1
then the test is aligned (clearly this can be established in O(1) time using look-aheads). Otherwise,
if Ai+1 6= Ai or Bj+1 6= Bj then it is misaligned (again, O(1) time for look-aheads). In the remaining
case Ai+1 = Ai and Bj+1 = Bj , so this is a periodical test. �

4.5.2. Failed tests. We show that in total there are O(logn) failed tests. This follows from the fact
that there are O(1) substitutions tested per phase and there are O(logn) phases.

Lemma 28. The number of all failed tests is O(logn) over the whole run of OneVarWordEq.

Proof. As noticed, there are O(1) substitutions tested per phase. Suppose that the mismatch is for the
letter from Ai and a letter from XBj (the case of XAi and Bj is symmetrical). Then the failed tests
include at least one letter from XAi−1XAi or XBj−1XBjX, assuming they come from a short word.
There are at most 4N failed tests that include a letter from Ai−1, Ai, Bj−1, Bj (as the test is failed
then in particular this explicit word is short). Concerning the tests including the short occurrences of
X in-between them, observe that by Lemma 25 each such X can have tests with at most one short
word, so this gives additional 5N tests. Since N = O(1), we conclude that there are O(1) failed tests
per phase and so O(logn) failed tests in total, as there are O(logn) phases, see Lemma 10. �

4.5.3. Protected tests. As already claimed, the total number of protected tests is linear in terms of
length of long words: to show this it is enough to charge the cost of the protected test to the appropriate
long word and see that a long word A can be charged only |A| such tests for test including letters
from A and O(1) letters from neighbouring short words, which yields O(|A|) tests. As the length of
the long words drops by a constant factor, summing this up over all phases in which this explicit word
is long yields O(n) tests in total.

Lemma 29. In one phase the total number of protected tests is proportional to the length of the long
words. In particular, there are O(n) such test during the whole run of OneVarWordEq.

Proof. As observed in Lemma 26 we can consider only tests in which at least one letter comes from
an explicit word. Suppose that a letter from Ai takes part in the protected test (the argument for a
letter from Bj is similar, it is given later on) and it is tested against a letter from XBj , then one of
Ai, Ai+1, Bj , Bj+1 is long, we charge the cost according to this order, i.e. we charge it to Ai if it is
long, if Ai is not but Ai+1 is long, we charge it to Ai+1, if not then to Bj if it is long and otherwise
to Bj+1. The analysis and charging for a test of a letter from Bj is done in a symmetrical way (note
that when the test includes two explicit letters, we charge it twice, but this is not a problem).
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Now, fix some long word Ai, we estimate, how many protected tests can be charged to it. It can be
charged with cost of tests that include its own letters, so |Ai| tests. When Ai−1 is short, it can also
charge tests in which its letters take part. As it is short, it is at most O(N) = O(1) such tests.

Also some B words can charge the cost of tests to Ai, we can count only the test in which letters
from Ai do not take part. This can happen in two situations: letters tested against XAi and letters
tested against XAi−1 (in which case we additionally assume that Ai−1 is short). We have already
accounted the tests made against Ai−1 and Ai and by Lemma 25 for each occurrence of X there is
at most one explicit short word whose letters are tested against this occurrence of X. So there are
additionally at most 2N tests of this form.

So in total Ai is charged only O(|Ai|) in a phase. From Lemma 10 the sum of lengths of long words
drops by a constant factor in each phase, and as in the input it is at most n, the total sum of number
of protected tests is O(n). �

4.5.4. Misaligned tests. On the high level, in this section we want to show that if there is a misaligned
test then the tested solution is small and use this fact for accounting the cost of such tests. However,
this statement is trivial, as we test only solutions of the form ak for some k, which are always small.
To make this statement more meaningful, we generalise the notion of a misaligned test for arbitrary
substitutions, not only the tested one. In this way two explicit words Ai and Bj can be misaligned
for a substitution S. We show three properties of this notion:
M1 If there is a misaligned test for a substitution S for a letter from Ai against letter in XBj or a

letter from Bj against letter from XAi then Ai and Bj are misaligned for S. This is shown in
Lemma 30.

M2 If there are misaligned words Ai and Bj for a solution S then S is small, as shown in Lemma 31.
M3 If Ai and Bj are misaligned for S in a phase ` then S is reported in phase ` or the corresponding

words A′i and B′j in phase `+ 1 are also misaligned for the corresponding S′, see Lemma 32.
Those properties are enough to improve the testing procedure so that one A i-word (or B j-word)

takes part in only O(1) misaligned tests: suppose that Ai becomes small in phase `. Then all solutions,
for which it is misaligned with some Bj , are small by (M1). Hence, by Theorem 2, all of those solutions
are reported (in particular: tested) within the next c phases, for some constant c. Thus, if Ai takes
part in a misaligned test (for S) in phase `′ > `+ c then S is not a solution: by (M3) also in phase `
the Ai and Bj were misaligned (for the corresponding solution S′), and solution S′ was reported before
phase `′. Hence we can immediately terminate the test; therefore Ai can take part in misaligned tests
in phases `, `+ 1, . . . , `+ c, i.e. O(1) ones. This plan is elaborated in this section, in particular, some
technical details (omitted in the above description) are given.

We say that Ai and Bj that are blocks from two sides of one equations A` = B` are misaligned for
a substitution S if

• a mismatch for S is not found till the end of Ai+1 or Bj+1;
• all Ai+1, Ai, Bj+1 and Bj are short;
• either Ai 6= Ai+1 or Bj 6= Bj+1
• it does not hold that Ai = Bj and Ai+1 = Bj+1 and the first letter of Ai is at the same position
as the first letter of Bj under substitution S;
• the position of the first letter of Ai in S(A`) is among the position of S(XBj) in S(B`) or,
symmetrically, the position of the first letter of Bj in S(B`) is among the position of S(XAi)
in S(A`)

We show (M1), which shows that the definitions of misaligned blocks and misaligned tests are
reformulations of each other.

Lemma 30. If a letter from Ai is tested (for S) against a letter from XBj and this test is misaligned
then Ai and Bj are misaligned for S; similar statement holds for letters from Bj.

Proof. This is just a reformulation of a definition (we consider only the case of letters from Ai, the
argument for letters from Bj is symmetrical):

• Since this is not a failed test, there is no mismatch till the end of Ai+1 and Bj+1.
• As this is not a protected test, all Ai, Ai+1, Bj and Bj+1 are short.
• As this is a misaligned test, either Ai 6= Ai+1 or Bj 6= Bj+1.
• As this is not an aligned test, either Ai 6= Bj or Ai+1 6= Bj+1 or the first letter of Ai is not at
the same position as the first letter of Bj (both under S).
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X

Figure 6. A letter from Bj is arranged against the letter from Ai. The period of
S(X) is in grey.

X X XAi+1Ai

X X XBj+1

x− pp a p− a b x− p+ a− b

Bj

Figure 7. The letters of Ai, Ai+1, Bj and Bj+1 are arranged against the letters from
S(X). The lengths of fragments of text are beneath the figure, between dashed lines.
Comparing the positions of the first and second S(X) yields that p is a period of S(X),
second and third that x−p+a while the third and fourth that p−a+b is. The borders
of S(X) corresponding to the first and third one are marked in grey.

• By the choice of Bj , the first position of Ai under S is among the positions of XBj (under
S). �

We move to showing (M2). It follows by considering S(XAiXAi+1X) and S(XBjXBj+1X). The
large amount of S(X) in it allow to show the periodicity of fragments of S(X) and in the end, that S
is small.

Lemma 31. When the Ai and Bj are misaligned for a solution S then S is small.

Proof. Suppose that Ai and Bj are from an equation A` = B`. In the proof we consider only one of
the symmetric cases, in which Ai is begins not later than Bj (i.e. the first letter of Ai is arranged
against the letter from XBj).

There are two main cases: either some of Ai, Ai+1, Bj and Bj+1 has some of its letters arranged
against an explicit word or all those words are arranged against (some occurrences) of X.

One of the words has some of its letters arranged against an explicit word. We claim that in this case
S has a period of length at most N , in particular, it is small. First of all observe that it is not possible
that each of Ai, Ai+1, Bj and Bj+1 has all of its letters arranged against letters of an explicit word:
since Ai is arranged against XBj this would imply that Ai is arranged against Bj (in particular, their
first letters are at corresponding positions) and (as no mismatch is found till end of Ai and Bj) so
Ai = Bj . Similarly, Ai+1 = Bj+1. This contradicts the assumption that Ai and Bj are misaligned.

Thus, there is a word among Ai, Ai+1, Bj and Bj+1, say Bj , that is partially arranged against an
explicit word and partially against X (note that this explicit word does not have to be among Ai,
Ai+1, Bj and Bj+1), see Figure 6. As each explicit words is proceeded and succeeded by X, it follows
that S(X) has a period at most N .

All words have all their letters arranged against occurrences of X. In the following we assume that
letters from Ai, Ai+1, Bj and Bj+1 are arranged against the letters from S(X). Observe that due
to Lemma 25 this means that whole Ai is arranged against S(X) preceding Bj , the Bj against S(X)
preceding Ai+1, whole Ai+1 against S(X) preceding Bj+1 and whole Bj+1 against S(X) succeeding
Ai+1.

Let a = |Ai|, b = |Bj | and x = |S(X)|, as in Fig. 7. There are three cases: a > b, a < b and a = b,
we consider them separately.

Consider first the case in which a > b, see Fig. 7. Let p denote the offset between the S(X)
preceding Ai and the one proceeding Bj ; then S(X) has a period p. Similarly, when we consider the
S(X) succeeding Ai and the one succeeding Bj we obtain that the offset between them is p − a + b,
which is also a period of S(X). Those offsets correspond to borders (of S(X)) of lengths x − p and
x− p+ a− b, see Fig. 7. Then the shorter border (of length x− p) is also a border of the longer one
(of length x − p + a − b), hence the border of length x − p + a − b has a period a − b, so it is of the
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form wku, where |w| = a − b and |u| < a − b. Now, the prefix of S(X) of length x − p + a is of the
form wku′, for some u′ of length less than a (as this is a prefix of length x− p+ a− b extended by the
following b letters). When we compare the positions of S(X) preceding Bj and the one succeeding Ai

we obtain that S(X) has a period x− p+ a so the whole S(X) is of the form (wku′)`w′, where w′ is
a prefix of wku′, hence S is small: w and u are of length at most N , as w′ is a prefix of wku, either it
is a prefix of wk, so it is of the form wk′

w′′ where w′′ is a prefix of w, or it includes the whole wk, so
it is of the form wku′′, where u′′ is a prefix of u.

Consider the symmetric case, in which b > a and again use Fig. 7. The same argument as before
shows that p and p− a+ b are periods of S(X) and the corresponding borders are of length x− p and
x − p + a − b. Now, the shorter of them (of length x − p + a − b) is a border of longer of them (of
length x− p), so the prefix of length x− p of S(X) has a period b− a, so it is of the form wku, where
|w| = b − a and |u| < b − a. Hence the prefix of length x − p + a is of the form wku′ for some u′ of
length less than b. As in the previous case, S(X) has a period x− p+ a and so the whole S(X) is of
the form (wku′)`w′, where w′ is a prefix of wku′, hence S is small.

Consider now the last case, in which |Ai| = |Bj |. If |Ai+1| 6= |Ai| then |Bj | 6= |Ai+1| and we can
repeat the same argument as above, with Bj and Ai+1 taking the roles of Ai and Bj , which shows
that S is small. So consider the case in which |Ai+1| = |Ai|. If |Bj | 6= |Bj+1| then again, repeating
the argument as above for Ai+1 and Bj+1 yields that S is small. So we are left with the case in which
|Ai+1| = |Ai| = |Bj | = |Bj+1|. Then Ai+1 is arranged against the same letters in S(X) as Ai and
Bj+1 is arranged against the same letters in S(X) as Bj . As there is no mismatch till the end of Ai+1
and Bj+1, we conclude that Ai+1 = Ai and Bj+1 = Bj contradicting the assumption that Ai and Bj

are misaligned, so this case is non-existing. �

We now show that if Ai and Bj are misaligned for S then they were (for a corresponding solution)
in the previous phase (assuming that all involved words were short). This is an easy consequence of
the way explicit words are modified (we prepend and append the same letters and compress all explicit
words in the same way).

Lemma 32. Suppose that Ai and Bj are misaligned for a solution S. If at the previous phase all
A′i+1, A′i, B′j+1 and B′j were short then A′i and B′j were misaligned for the corresponding solution S′.

Proof. We verify the conditions on misaligned words point by point:
• Since S′ is a solution, there is no mismatch.
• By the assumption, all A′i+1, A′i, B′j+1 and B′j are short.
• We know that either Ai 6= Ai+1 or Bj 6= Bj+1 and so by Lemma 19 either A′i 6= A′i+1 or
B′j 6= B′j+1 (observe that none of them is the last nor first, as they are all short).
• Suppose that A′i = B′j , A′i+1 = B′j+1 and under S′ the first letters of A′i and B′j are arranged
against each other. By Lemma 19 it follows that Ai = Bj , Ai+1 = Bj+1. Observe that left-
popping and right popping preserves the fact that the first letters of A i-word and B j-word
are arranged against each other for S′ (as S(A) and S′(A′) are the same words).(as S(A)
and S′(A′) are the same words) As S′ is a solution, the same applies to pair compression
and block compression. Hence, the first letters of Ai and Bj are arranged against each other,
contradiction with the assumption that Ai and Bj are misaligned.
• Suppose that the first letter of Ai is arranged against a letter from S(XBj). Consider, how A′i
and XB′j under S′ are transformed to Ai and XBj under S. As in the above item, popping
letters does not influence whether the first letter of A i-word is arranged against letter from
S(X) and B j-word (as S(A) and S′(A′) are the same words). Since S′ is a solution, the same
applies also to pair and block compression. So the position of the first letter of Ai is among
the position of S(XBj) if and only if the first letter of A′i is arranged against a letter from
S′(XB′j).

The case in which the position of the first letter of Bj is among the position of S(XAi) is
shown in a symmetrical way. �

Now we are ready to give the improved procedure for testing and estimate the number of the
misaligned tests in it.

Lemma 33. There are O(n) misaligned tests during the whole run of OneVarWordEq.
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Proof. Consider a tested solution S and a misaligned test for a letter from Ai against a letter from
XBj (the case of test of letters from Bj tested against XAi the argument is the same). Let ` be the
number of the first phase, in which all A i-word, A i+ 1-word, B j-word and B j + 1-word are short.
We claim that this misaligned test happens between `-th and `+c phase, where c is the O(1) constant
from Theorem 2.

Let A′i and B′j be the corresponding words in the phase `. Using induction on Lemma 32 it follows
that A′i and B′j are misaligned for S′. Thus by Lemma 31 the S′ is small and thus by Theorem 2 it is
reported till phase `+ c. So it can be tested only between phases ` and `+ c, as claimed.

This allows an improvement to the testing algorithm: whenever (say in phase `) a letter from Ai

has a misaligned test against a letter from S(XBj) we can check (in O(1) time), in which turn `′

the last among A i-word, A i+ 1− word, B j-word and B j + 1 word became small (it is enough to
store for each explicit word the number of phase in which it became small). If `′ + c < ` then we can
terminate the test, as we know already that S is not a solution. Otherwise, we continue.

Concerning the estimation of the cost of the misaligned tests (in the setting as above), there are
two cases:

The misaligned tests that lead to the rejection of S: This can happen once per tested so-
lution and there are O(logn) tested solution in total (O(1) per phase and there are O(logn)
phases).

Other misaligned tests: The cost of the test (of a letter from Ai tested against S(XBj)) is
charged to the last one among A i-word, A i+ 1-word, B j-word and B j + 1-word that became
short. By the argument above, this means that this word became short within the last c phases.

Let us calculate, for a fixed A i word (the argument for B j-word is symmetrical) how many
aligned tests of this kind can be charged to this word. They can be charged only within c phases
after this word become short. In a fixed phase we test only a constant (i.e. 5) substitutions.
For a fixed substitution, Ai can be charged the cost of tests in which letters from Ai or Ai−1
are involved (providing that Ai/Ai−1 is short), which is at most 2N . They can be charged
also the tests from letters from Bj that is aligned against X proceeding Ai−1 or X proceeding
Ai (providing that Bj as well as Ai−1 are short). Note that there is only one Bj whose letter
are aligned against X proceeding Ai−1 and one for X proceeding Ai, see Lemma 25, so when
they are short this gives additional 2N tests.

This yields that one A i word is charged O(N) = O(1) tests in total. Summing over all
words in the instance yields the claim of the lemma. �

4.5.5. Aligned tests. Suppose that we make an aligned test, without loss of generality consider the
first such test in a sequence of aligned tests. Let it be between the first letter of Ai and the first letter
in Bj (both of those words are short). For this Ai and Bj we want to perform the whole sequence
of successive aligned tests at once, which corresponds of jumping to Ai+k and Bj+k within the same
equation such that

• Ai+` = Bi+` for 0 ≤ ` < k;
• Ai+k 6= Bj+k or one of them is long or Ai+kX or Bj+kX ends one side of the equation.

Note that this corresponds to a syntactical equality of fragments of the equation, which, by Lemma 19
is equivalent to a syntactical equality of fragments of the original equation. We preprocess (in O(n)
time) the input equation (building a suffix array equipped with a structure answering general lcp
queries) so that in O(1) we can return such k as well as the links to Ai+k and Bj+k. In this way we
perform all equality tests for AiXAi+1X . . . Ai+k−1X = BjXBj+1X . . .XBj+k−1X in O(1) time.

To simplify the considerations, when AiX (BjX) ends one side of the equation, we say that this
Ai (Bj , respectively) is almost last word. Observe that in a given equation exactly one side has a last
word and one an almost last word.

Lemma 34. In O(n) we can build a data structure which given equal Ai and Bj in O(1) time returns
the smallest k ≥ 1 and links to Ai+k and Bj+k such that Ai+k 6= Bj+k or one of Ai+k, Bj+k is a last
word or one of Ai+k, Bj+k is an almost last word.

Note that it might be that some of the equal words Ai+` = Bi+` are long, and so their tests should
be protected (also, the tests for some neighbouring words). So in this way we also make some free
protected tests, but this is not a problem. Furthermore, the returned Ai+k and Bj+k are guaranteed
to be in the same equation.
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Proof. First of all observe that for Ai and Bj it is easy to find the last word in their equation as well
as the almost last word of the equation: when we begin to read a particular equation, we have the link
to both the last word and the almost last word of this equation and we can keep them for the testing
of this equation. We also know the numbers of those words so we can also calculate the respective
candidate for k. So it is left to calculate the minimal k such that Ai+k 6= Aj+k.

Let A′i, B′j etc. denote the corresponding original words of the input equation. Observe that by
Lemma 19 it holds that A′i+` = B′j+` if and only if Ai+` = Bj+` as long as none of them is last or first
word. Hence, it is enough to be able to answer such queries for the input equation: if the returned
word is in another equation then we should return the last or almost last word instead.

To this end we build a suffix array [9] for the input equation, i.e. forA′1XA′2X . . . A′nAXB
′
1XB

′
2X . . . B′nB$.

Now, the lcp query for suffixes A′i . . . $ and B′j . . . $ returns the length of the longest common prefix.
We want to know what is the number of explicit words in the common prefix, which corresponds to
the number of Xs in this common prefix. This information can be easily preprocessed and stored in
the suffix array: for each position ` in A′1XA′2X . . . A′nAXB

′
1XB

′
2X . . . B′nB$ we store, how many Xs

are before it in the string and store this in the table prefX. Then when for a suffixes beginning at
positions p and p′ we get that their common prefix is of length `, the prefX[p + `] − prefX[p] is the
number of Xs in the common prefix in such a case. If none of Ai, Ai+1, . . . , Ai+k nor Bj , Bj+1, . . . ,
Bj+k is the last word nor it ends the equation (i.e. they are all still in one equation) by Lemma 19
the k is the answer to our query (as Ai = Bj , Ai+1 = Bj+1,. . . and Ai+k 6= Bj+k and none of them
is a last word, nor none of them ends the equation). To get the actual links to those words, at the
beginning of the computation we make a table, which for each i return the pointer to A i-word and B
i-word has the link to this word. As we know i, j and k we can obtain the appropriate links in O(1)
time. So it is left to compare the value of k with the value calculated for the last word and almost
last word and choose the one with smaller k and the corresponding pointers. �

Using this data structure we perform the aligned tests is in the following way: whenever we make
an aligned test (for the first letter of Ai and the first letter of Bj), we use this structure, obtain k and
jump to the test of the first letter of Ai+k with the first letter of Bj+k and we proceed with testing
from this place on. Concerning the cost, by easy case analysis it can be shown that the test right
before the first of sequence of aligned tests (so the test for the last letters of Ai−1 and Bj−1) is either
protected or misaligned. There are only O(n) such tests (over the whole run of OneVarWordEq), so
the time spend on aligned tests is O(n) as well.

Lemma 35. The total cost aligned test as well as the usage of the needed data structure is O(n).

Proof. We formalise the discussion above. In O(1) we get to know that this is an aligned test, see
Lemma 27. Then in O(1), see Lemma 34, we get the smallest k such that Ai+k 6= Bj+k or one of them
is an almost last word for this equation or the last word for this equation. We then jump straight to
the test for the first letter of Ai+k and Bj+k.

Consider Ai−1 and Bj−1 we show that the test for their last letters (so the test immediately before
the first aligned one) is protected or misaligned. By Lemma 27 it is enough to show that it is not
aligned, nor periodic, nor failed.

• If it were failed then also the test for the first letters of Ai and Bj would be failed.
• It cannot be aligned, as we chose Ai and Bj as the first in a series of aligned tests.
• If it were periodic, then Ai−1 = Ai and Bj−1 = Bj while by assumption Ai = Bj , which
implies that this test is in fact aligned, which was already excluded.

Hence we can associate the O(1) cost of whole sequence of aligned test to the previous test, which
is misaligned or protected. Clearly, one misaligned or protected test can be charged with only one
sequence of aligned tests (as it is the immediate previous test). By Lemma 29 and 33 in total there
are O(n) misaligned and protected tests. Thus in total all misaligned tests take O(n) time. �

4.5.6. Periodical tests. The general approach in case of periodical tests is similar as for the aligned
tests: we would like to perform all consecutive periodical tests in O(N) time and show that the test
right before this sequence of periodic tests is either protected or misaligned. As in case of aligned
tests, the crucial part is the identification of a sequence of consecutive periodical tests. To identify
them quickly, we keep for each short Ai the value k such that Ai+k is the first word that is different
from Ai or is the last word or the almost last word (in the sense as in the previous section: Ai+k

is almost last if Ai+kX ends the side of the equation), as well as the link to this Ai+k. Those are
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XA XA XA

XB XB XB XB

a+ x a+ x

b+ x b+ x b+ x b+ x

Figure 8. The case of a > b. The part of S((XAi)2) that has a period a+x and b+x
is in grey.

easy to calculate at the beginning of each phase. Now when we perform a periodical test for a letter
from Ai, we test letters from S((AX)k) against the letters from (suffix of) S(X(BX)`). If |A| = |B|
then both strings are periodic with period |S(AX)| and their equality can be tested in O(|A|). If
|A| 6= |B| then we retrieve the values kA and kB which tell us what is repetition of AX and BX. If
one of them is smaller than 3 we make the test naively, in time O(|A| + |B|). If not, we exploit the
fact that S(BX)` has a period |S(BX)| while S((AX)k) has a period |S(AX)| and so their common
fragment (if they are indeed equal) has a period ||S(AX)| − |S(BX)|| = ||A| − |B||. Hence we check,
whether S(AX) and S(BX) have this period and check the common fragment of this length, which
can be done in O(|A|+ |B|) time. The converse implication holds as well: if S(AX) and S(BX) have
period ||A| − |B|| and the first ||A| − |B|| tests are successful then all of them are. Concerning the
overall running time, as in the case of aligned test, the test right before the first periodic test is either
protected or misaligned, so as in the previous section it can be shown that the time spent on periodical
tests is O(n) during the whole OneVarWordEq.

Lemma 36. Performing all periodical tests and the required preprocessing takes in total O(n) time.

Proof. Similarly as in the case of aligned tests, see Lemma 34, we can easily keep the value k and the
link to Ai+k such that Ai+k is the last or almost last word in this equation, the same applies for Bj+k.
Hence it is left to show how to calculate for each short Ai (and Bj) the k such that Ai+k is the first
word that is different from Ai.

At the end of the phase we list all words Ai that become short in this phase, ordered from the left
to the right (this is done anyway, when we identify the new short words). Note that this takes at
most the time proportional to the length of all long words from the beginning of the phase, so O(n)
in total. Consider any Ai on this list (the argument for Bj is identical), note that

• if Ai+1 6= Ai then Ai should store k = 1 and a pointer to this Ai+1;
• if Ai = Ai+1 then Ai+1 also became short in this phase and so it is on the list and consequently
Ai should store 1 more than Ai+1 and the same pointer as Ai+1.

So we read the list from the right to the left, let Ai be an element on this list. Using the above
condition, we can establish in constant time the value and pointer stored by Ai. This operation is
performed once per block, so in total takes O(n) time.

Consider a periodic test, without loss of generality suppose that a letter from Ai is tested against
a letter from XBj (in particular, Ai begins earlier than Bj), let the kA and kB be stored by Ai

and Bj ; as this is a periodical test, both kA and kB are greater than 1. Among Ai+kA
and Bj+kB

consider the one which begins earlier under substitution S: this can be determined in O(1) by simply
comparing the lengths, the length on the A-side of the equation is kA(|Ai| + |S(X)|) while B-side is
kB(|Bj |+ |S(X)|) + `, where ` is the remainder of S(X) that is compared with Ai. Note that the test
for the first letter of this word is not periodic, so when we jump to it we skip the whole sequence of
periodic tests. We show that in O(1) time we can perform the tests for all letters before this word
and that the test right before the first test for Ai is protected or misaligned.

Let a = |Ai|, b = |Bj | and x = |S(X)|. First consider the simpler case in which a = b. Let
k = min(kA, kB). Then the tests for Ai+1, . . . , Ai+k−1 are identical as for Ai, and so it is enough to
perform just the test for Ai and Bj and then jump right to Ai+k.

So let us now consider the case in which a > b. Observe that when the whole S((BjX)`) is within
S((AiX)3) then this can be tested in constant time in a naive way: the length of S((AiX)3) is 3(a+x)
while the length of S(BjX)` is `(b + x). Hence 3(a + x) ≥ `(b + x) and so ` ≤ 3(a + x)/(b + x) ≤
3 max(a/b, x/x) ≤ 3N , because a/b is at most N . Thus all tests for S((AiX)3) and S((BjX)`) can be
done in O(N) = O(1) time.
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X

Bj

Ai

XBj−1

Ai−1

Figure 9. The test right before the first among the sequence of periodic tests. Since
Ai begins not later than Bj , Bj−1 ends not earlier than Ai−1.

So consider the remaining case, see Fig. 8 for an illustration, when k > 3. We claim that the tests
for common part of S(AiX · · ·XAi+k−1X) and S(BjX · · ·XBj+k−1X) are successful if and only if

• S(AiX) and S(BjX) have period gcd(a+ x, b+ x) and
• the first gcd(a+ x, b+ x) tests for S(AiX · · ·XAi+k−1X) and S(BjX · · ·XBj+k−1X) are suc-
cessful.

⇒© First S(XAiXAi) has period x + a. However, it is covered with S((BjX)`), so it also has period
x+ b. Since x+a+x+ b < 2x+ 2a, it follows that also the gcd(x+a, x+ b) is a period of S(XAiXAi)
and so also of S(AiX) and thus also S(BjX). The second item is obvious.
⇐© Since S(AiX) and S(BjX) have period gcd(a+x, b+x) also S(AiX · · ·XAi+k−1X) and S(BjX · · ·XBj+k−1X)
have this period. As the first gcd(a+x, b+x) tests for S(AiX · · ·XAi+k−1X) and S(BjX · · ·XBj+k−1X)
are successful, it follows that all the tests for their common part are.

So, to perform the test for the common part of S(AiX · · ·XAi+kA−1X) and S(BjX · · ·XBj+kB−1X)
it is enough to: calculate p = gcd(a + x, b + x), test whether S(AiX), S(BjX) have period p and
then perform the first p tests for S(AiX · · ·XAi+kA−1X) and S(BjX · · ·XBj+kB−1X). All of this
can be done in O(1), since p ≤ a − b ≤ N (note also that calculating p can be done in O(1), as
gcd(x+ a, x+ b) = gcd(a− b, x+ b) and a− b ≤ N).

The case with b > a is similar: in the special subcase we consider whether S((AiX)`) is within
S(X(BjX)3). If so then the tests can be done in O(N) time. If not, then we observe that the
S(XBj+1XBj+2) is covered by S((AiX)`). So it the tests are successful, it has period both x + b as
well as x+ a, so it has period gcd(x+ a, x+ b). The rest of the argument is identical.

For the accounting, we would like to show that the test right before the first among the considered
periodic tests is not periodic. Observe, that as Ai begins not later (under S) than Bj it means that
the last letter of Bj−1 is not earlier than the last letter of Ai−1, see Figure 9. So the previous test
includes the last letter of Bj−1. It is enough to show that this test is not failed, periodic, nor aligned.

failed: If it is failed then also the test for the letters in Ai are failed.
periodic: If it is periodic then this contradicts our choice that the test for the first letter of Ai

is the first in the sequence periodic tests.
aligned: Since the first letter of Ai is arranged against XBj , in this case the last letter of Bj−1

needs to be arranged against the last letter of Ai−1. Then by the definition of the aligned
test, Bj = Ai and their first letters are at the same position. As by the assumption about the
periodic tests we know that Ai+1 = Ai and Bj+1 = Bj we conclude that the test for the first
letter of Ai is in fact aligned, contradiction.

Hence, by Lemma 27, the test for the last letter of Bj−1 is either protected or misaligned. Using
the same accounting as in Lemma 35 we conclude that we spent at most O(n) time on all periodic
tests. �

Proof of Lemma 26. It is left to show that indeed we do not need to take into the account the time
spent on comparing S(X) with S(X) on the other side of the equation.

proof of Lemma 26. Recall that we only test solutions of the form S(X) = ak. Since we make the
comparisons from left to the right in both S(A`) and S(B`) then when we begin comparing letters
from one S(X) with the other S(X), we in fact compare some suffix a` of ak with ak. Then we can
skip those a` letters in O(1) time. Consider the previous test, which needs to include at least one
explicit letter. Whatever type of test it was or whatever group of tests it was in, some operations were
performed and this took Ω(1) time. So we associate the cost of comparing S(X) with S(X) to the
previous test, increasing the running time by at most a multiplicative constant. �
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Open problems. Is it possible to remove the usage of range minimum queries from the algorithm
without increasing the running time? Can the recompression approach be used to speed up the
algorithms for the two variable word equations? Can one use recompression approach also to better
upper bound the number of solutions of an equation with a single variable?
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