
Algorithmica (2019) 81:1–25
https://doi.org/10.1007/s00453-018-0428-3

New Online Algorithms for Story Scheduling
in Web Advertising

Susanne Albers1 · Achim Passen2

Received: 13 December 2016 / Accepted: 15 March 2018 / Published online: 22 March 2018
© The Author(s) 2018

Abstract We study storyboarding where advertisers wish to present sequences of
ads (stories) uninterruptedly on a major ad position of a web page. These jobs/stories
arrive online and are triggered by the browsing history of a user who at any time
continues surfing with probability β. The goal of an ad server is to construct a
schedule maximizing the expected reward. The problem was introduced by Das-
gupta, Ghosh, Nazerzadeh and Raghavan (SODA’09) who presented a 7-competitive
online algorithm. They also showed that no deterministic online strategy can achieve
a competitiveness smaller than 2, for general β. We present improved algorithms for
storyboarding. First we give a simple online strategy that achieves a competitive ratio
of 4/(2−β), which is upper bounded by 4 for any β. The algorithm is also 1/(1−β)-
competitive, which gives better bounds for small β. As the main result of this paper
we devise a refined algorithm that attains a competitive ratio of c = 1 + φ, where
φ = (1 + √

5)/2 is the Golden Ratio. This performance guarantee of c ≈ 2.618 is
close to the lower bound of 2. Additionally, we study for the first time a problem

A preliminary version of this paper has appeared in Proc. 40th International Colloquium on Automata,
Languages, and Programming (ICALP), 2013.

S. Albers was supported in part by the European Research Council, Grant Agreement No. 691672.

B Susanne Albers
albers@in.tum.de

Achim Passen
passen@informatik.hu-berlin.de

1 Department of Computer Science, Technische Universität München, Boltzmannstr. 3,
85748 Garching, Germany

2 Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6,
10099 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0428-3&domain=pdf

2 Algorithmica (2019) 81:1–25

extension where stories may be presented simultaneously on several ad positions of a
web page. For this parallel setting we provide an algorithm whose competitive ratio
is upper bounded by 1/(3 − 2

√
2) ≈ 5.828, for any β. All our algorithms work in

phases and have to make scheduling decisions only every once in a while.

Keywords Storyboarding · Competitive analysis · One ad position · Multiple ad
positions

1 Introduction

Online advertising has grown steadily over the last years. The worldwide online ad
spending is expected to reach $160 billion by the end of 2016 [1]. In the US the expen-
diture for online ads has surpassed that for print ads during the past years and is likely
to exceed that for TV ads in 2017 [2]. In this paper we study an algorithmic problem
in advertising introduced by Dasgupta et al. [3]. The problem is motivated by story-
boarding, an advanced online ad format that was first launched by New York Times
Digital. It is also referred to as surround sessions [4] and active on many websites
these days. In storyboarding, while a user surfs the web and visits a particular website,
a single advertiser controls a major ad position for a certain continuous period of time.
The advertiser can use these time slots to showcase a range of products and build a lin-
ear story line. Typically several advertisers compete for the ad position, depending on
the user’s browsing history and current actions. The goal of an ad server is to allocate
advertisers to the time slots of a user’s browsing session so as tomaximize the total rev-
enue. Storyboarding is an interesting form of display advertising whose market share
is not as high as that of search ads. Nonetheless it has the advantage of strenghtening
an advertiser’s message. Scientifically it leads to challenging optimization problems.

Dasgupta et al. [3] formulated storyboarding as an online job scheduling problem.
Consider a user that starts a web session at time t = 0. Time is slotted. At any time
t the user continues surfing with probability β, where 0 < β ≤ 1, and stops surfing
with probability 1 − β. Hence the surfing time is a geometrically distributed random
variable. Over time jobs (advertisers) arrive online. These jobs arise based on the user’s
browsing history and accesses to web content. Each job i is specified by an arrival
time ai , a length li and a per-unit value vi . Here li is the length of the ad sequence the
advertiser would like to present and vi is the reward obtained by the server in showing
one unit of job i . This reward has to be discounted by the time when the job unit is
shown, as specified in the next paragraph. Considering all incoming jobs, we obtain
a problem instance I = (ai , vi , li)Ni=1, where N ∈ N ∪ {∞}. We allow N = ∞ to
model potentially infinitely long browsing sessions and associated job arrivals.

A schedule S for I specifies which job to process at any time t ≥ 0. The schedule
does not have to contain all jobs; it is allowed to leave out (unattractive) jobs. Schedule
S is feasible if every scheduled job i is processed at times t ≥ ai for up to li time units.
Moreover, it is required that each scheduled job is processed continuously without
interruption so that an advertiser can build a story. Preemption of jobs is allowed,
i.e., a job i may be processed for less than li time units. In this case no value can be
attained for the preempted unscheduled portion of a job. Given a schedule S, its value

123

Algorithmica (2019) 81:1–25 3

is defined as the expected value
∑∞

t=0 β tv(t), where v(t) is the per-unit value of the
job scheduled at time t . The goal is to maximize this reward. Let ALG be an online
algorithm that, given any input I, constructs a schedule of value ALG(I). LetOPT(I)

be the value of an optimal offline schedule for I. Algorithm ALG is c-competitive if
there exists a constant α such that c · ALG(I) + α ≥ OPT(I) holds for all I, cf. [5].

We remark that the online scenario is the setting relevant in practice. As a user
visits a website and accesses content, it becomes attractive to several advertisers who
then wish to show ad sequences/jobs. In fact, if all jobs (advertisers) were available at
time 0, the scheduling problem would be trivial: Simply sequence the jobs in order of
non-increasing per-unit value.

1.1 Previous Work

Algorithmic problems in online advertising have received considerable research inter-
est lately, see e.g. [6–14] and references therein. To the best of our knowledge
storyboarding, from an algorithmic perspective, has only been studied so far by Das-
gupta et al. [3]. A first observation is that if β = 1, then the scheduling problem is
again simple to solve. Every schedule that never preempts jobs and sequences them in
an arbitrary order, subject to arrival constraints, achieves an optimal value. Therefore
we concentrate on the case that the discount factor β satisfies 0 < β < 1.

Dasgupta et al. [3] showed that no deterministic online algorithm can achieve a
competitive ratio smaller than β+β2. This ratio can be arbitrarily close to 2 as β → 1.
Hence, for general β, no deterministic online strategy can achieve a competitiveness
smaller than 2. As a main result Dasgupta et al. devised a greedy algorithm that is
7-competitive. At any time the algorithm checks if it is worthwhile to preempt the
job i currently being executed. To this end the strategy compares the reward obtained
in scheduling another unit of job i to the loss incurred in delaying jobs of per-unit
value higher than vi for one time unit.

Furthermore, Dasgupta et al. addressed a problem extension where jobs have
increasing rather than constant per-unit values. They focused on the case that value is
obtained only when a job is completely finished. The authors showed that no algorithm
can achieve a constant competitive ratio and gave a strategywith a logarithmic compet-
itiveness. Finally Dasgupta et al. studied an extension where a job must be scheduled
immediately upon arrival; otherwise it is lost. Here they proved a logarithmic lower
bound on the performance of any randomized online strategy.

1.2 Our Contribution

We present new and improved online algorithms for storyboarding. All strategies
follow the paradigm of processing a given job sequence I in phases, where a phase
consists of k consecutive time steps in the scheduling horizon, for some k ∈ N. At
the beginning of each phase an algorithm computes a schedule for the phase, ignoring
jobs that may arrive during the phase. Hence the strategies have to make scheduling
decisions only every once in a while.

123

4 Algorithmica (2019) 81:1–25

First in Sect. 2 we give a simple algorithm that computes an optimal schedule for
each phase and preempts jobs that are not finished at the end of the respective phase.
We prove that the competitive ratio of this strategy is exactly 1/(βk−1(1 − βk)), for
all k ∈ N and all β. The best choice of k gives a competitiveness of 4/(2− β), which
is upper bounded by 4 for any β. If k is set to 1, the resulting algorithm is 1/(1− β)-
competitive. This gives further improved bounds for small β, i.e., when β < 2/3.

In Sect. 3, as our main contribution, we devise a refined algorithm that prefers
not to preempt jobs sequenced last in a phase but rather tries to continue them in the
following phase. The competitive ratio of this strategy is upper bounded by 1/βk−1 ·
max{1/βk−1, 1/(1 − β2k), 1 + β3k/(1 − βk)}. Using the best choice of k, we obtain
a competitive factor of c = 1+φ, where φ = (1+√

5)/2 is the Golden Ratio. Hence
c ≈ 2.618 and this performance guarantee is close to the lower bound of 2 presented
by Dasgupta et al. [3] for general β.

In Sect. 4 we consider for the first time a problem extension where a web page
features not only one but several ad positions where stories can be presented simul-
taneously. This is a natural extension because many web pages do contain a (small)
number of ad positions. Again a job sequence I = (ai , vi , li)Ni=1 is triggered by the
browsing history of a user. We assume that an ad server may assign these jobs to a
general number m of ad positions. Following the scheduling terminology we refer to
these ad positions as machines. In a feasible schedule each job must be processed con-
tinuously without interruption on one machine. A migration of jobs among machines
is not allowed. The value of a schedule is

∑∞
t=0

∑m
j=1 β tv(t, j), where v(t, j) is

the per-unit value of the job scheduled on machine j at time t . We extend our first
algorithm to this parallel setting and derive a strategy that achieves a competitive
ratio of (1 + 1/(1 − β(2 − √

2))/(2 − √
2). For small β, this ratio can be as low as

2/(2−√
2) ≈ 3.414. For any β, the ratio is upper bounded by 1/(3− 2

√
2) ≈ 5.828.

Technically, in the analyses of the algorithms,we consider quantized inputs inwhich
job arrival times are integer multiples of k. For the setting where one ad position is
available (Sects. 2, 3), we are able to prove an interesting property given any quantized
input: In an online schedule or a slight modification thereof, no job starts later than in
an optimal offline schedule. This property has the important consequence that, for its
scheduled job portions, an online algorithm achieves a total value that is at least as high
as that of an optimal schedule. Hence the competitive analyses reduce to bounding
the loss incurred by an online strategy in preempting jobs. For the refined algorithm
this loss analysis is quite involved and in order to prove a small competitive ratio we
have to amortize the loss of a preempted job over several phases. In the setting were
multiple ad positions are available (Sect. 4), such a property on job starting times does
not hold. Therefore we construct a specific optimal schedule S� that allows us tomatch
job units sequenced in S� to job units sequenced online. Using this matching we can
upper bound the additional value achieved by an optimal solution.

2 A 4-Competitive Algorithm

Asmentioned before, all algorithms thatwepresent in this paper process a job sequence
in phases. Let k ≥ 1 be an integer. A k-phase consists of k consecutive time steps in the

123

Algorithmica (2019) 81:1–25 5

Algorithm ALG1 k: Each phase Pn is processed as follows.
Schedule the jobs of Qn in order of non-increasing per-unit value in Pn. Preempt the last job
assigned to Pn if it does not complete by the end of the phase. Execute this schedule for Pn,
ignoring jobs that arrive during the phase.

Fig. 1 The algorithm ALG1k

scheduling horizon. More specifically, the n-th k-phase Pn is the subsequence of time
steps (n−1)k, . . . , nk−1, for any n ≥ 1.We remark that Pn = (n−1)k, . . . , nk−1 is
a sequence of steps. Our first algorithm, called ALG1k , computes an optimal schedule
for any phase, given the jobs that are available at the beginning of the phase. Such
an optimal schedule is obtained by simply sequencing the available jobs in order of
non-increasing per-unit value. Jobs that arrive during the phase are deferred until the
beginning of the next phase.

Formally, ALG1k works as follow. We say that a job i is available at time t if
the job has arrived by time t , i.e. ai ≤ t , and has not been scheduled so far at any
time t ′ < t . Consider an arbitrary phase Pn and let Qn be the set of jobs that are
available at the beginning of Pn . We note that Qn includes the jobs that arrive at
time (n − 1)k. ALG1k constructs a schedule for Pn by first sorting the jobs of Qn in
order of non-increasing per-unit value. Jobs having the same per-unit value are sorted
in order of increasing arrival times; ties may be broken arbitrarily. Given this sorted
sequence, ALG1k then assigns the jobs one by one to Pn until the k time steps are
scheduled or the job sequence ends. In the former case, the last job assigned to Pn is
preempted at the end of the phase unless the job completes by the end of Pn . ALG1k
executes this schedule for Pn , ignoring jobs that may arrive during the phase at times
t = (n − 1)k + 1, . . . , nk − 1. A summary of ALG1k is given in Fig. 1.

We first evaluate the performance of ALG1k , for general k. Then we will determine
the best choice of k.

Theorem 1 For all k ∈ N and all probabilities β, ALG1k is 1/(βk−1(1 − βk))-
competitive.

In the following we prove the above theorem. Let I = (ai , vi , li)Ni=1 be an arbitrary
input. In processing I, ALG1k defers jobs arriving after the beginning of a phase until
the start of the next phase. Consider a k-quantized input Ik in which the arrival time
of any job is set to the next integer multiple of k, i.e. Ik = (a′

i , vi , li)
N
i=1, where

a′
i = k�ai/k�. If ai is a multiple of k and hence coincides with the beginning of a
k-phase, the job is not delayed. Otherwise the job is delayed until the beginning of the
next phase. The schedule generated by ALG1k for Ik is identical to that computed by
ALG1k for I. Thus ALG1k(Ik) = ALG1k(I). In order to prove Theorem 1 it will be
convenient to compareALG1k(Ik) toOPT(Ik). The next lemma ensures thatOPT (Ik)
and the true optimum OPT(I) differ by a factor of at most 1/βk−1.

Lemma 1 For all k ∈ N and all probabilities β, inequality 1/βk−1 · OPT(Ik) ≥
OPT(I) holds.

Proof Consider an optimal schedule for I and shift the entire schedule by k − 1 time
units to the right, i.e., the starting time of any job is delayed by exactly k − 1 time

123

6 Algorithmica (2019) 81:1–25

units. The modified schedule is feasible for Ik because, for any job i , its arrival time
a′
i in Ik is at most k − 1 time units later than its arrival ai in I. The modified schedule
has a value of βk−1OPT(I), and an optimal schedule for Ik achieves a value at least
that high.
�

In order to estimate OPT(Ik) we consider a stronger optimal offline algorithm
that was also proposed by Dasgupta et al. [3]. This algorithm is allowed to resume
interrupted jobs at a later point in time. We call this offline strategy CHOP. For any
input, at any time t CHOP schedules a job having the highest per-unit value among
the unfinished jobs that have arrived until time t . Obviously, CHOP(Ik) ≥ OPT(Ik).
Let S be the schedule computed by ALG1k for Ik and let S� be the schedule generated
by CHOP for Ik . We assume w.l.o.g. that in S� all jobs having a certain per-unit value
v are processed in the same order as in S. More specifically, all jobs having per-unit
value v are processed in order of increasing arrival times. Jobs of per-unit value v

arriving at the same time are processed in the same order as in S. Schedule S� can
be easily modified so that this property is satisfied. For any job i , let tS(i) denote its
starting time in S and let tS� (i) be its starting time in S�. If job i is never processed in
S (or S�), then we set tS(i) = ∞ (or tS� (i) = ∞). The following lemma states that
ALG1k starts each job at least as early as CHOP.

Lemma 2 For any job i , tS(i) ≤ tS� (i).

Proof The desired inequality obviously holds for jobs never scheduled by CHOP.
Suppose that the lemma does not hold for every job and let i be the one occuring
earliest in S� with tS� (i) < tS(i). Let t� = tS� (i) and Pn be the phase containing
t�. Moreover, let job j be the one scheduled by ALG1k at time t�. In Ik jobs arrive
only at the beginning of a phase when ALG1k makes scheduling decisions. Hence at
the beginning of Pn job i has arrived and can be scheduled by ALG1k . Since ALG1k
sequences available jobs in order of non-increasing per-unit value and does not start
job i at or before time t�, there holds v j ≥ vi .

We next argue that at time t� CHOP has already finished job j . This clearly holds if
v j > vi because CHOP always schedules an unfinished job with the highest per-unit
value. If v j = vi , then again CHOP must have completed job j because in S� jobs of
per-unit value v = v j = vi occur in the same order as in S and job j precedes job i
in S.

Since CHOP has finished job j , it started this job at or before time t� − l j . On the
other handALG1k did not start job j before time t�−l j +1 because it is still processing
this job. We conclude tS� (j) < tS(j) ≤ tS� (i), which contradicts the assumption that
job i is the first one in S� violating the desired inequality.
�

The next lemma relates the value of ALG1k to that of OPT , attained for input Ik .
Lemma 3 For all k ∈ N and all probabilities β, inequality 1/(1−βk) ·ALG1k(Ik) ≥
OPT(Ik) holds.
Proof For any n ≥ 1, let In be the set of jobs scheduled byALG1k in phase Pn , i.e., for-
mally
In = {i | (n − 1)k ≤ tS(i) ≤ nk − 1}. Let ALG1k(Pn) be the value achieved by

123

Algorithmica (2019) 81:1–25 7

ALG1k in scheduling the jobs of In , and let CHOP(Pn) be the value achieved by
CHOP in processing these jobs. There holds ALG1k(Ik) = ∑

n ALG1k(Pn). A con-
sequence of Lemma 2 is that all jobs that are ever scheduled by CHOP also occur
in ALG1k’s schedule. Hence CHOP(Ik) = ∑

n CHOP(Pn). We will show that,
for every n ∈ N, inequality CHOP(Pn)/ALG1k(Pn) ≤ 1/(1 − βk) holds. This
implies CHOP(Ik)/ALG1k(Ik) ≤ 1/(1 − βk) and the lemma then follows because
CHOP(Ik) ≥ OPT(Ik).

Consider any k-phase Pn . In the schedule S let j be the last job started in Pn and let
λ j be the number of time units for which j is sequenced in Pn and thus in the entire
schedule S. By Lemma 2, for any job i , there holds tS(i) ≤ tS� (i). Hence the total
value achieved by CHOP in scheduling the jobs i ∈ In with i �= j as well as the first
λ j time units of job j cannot be higher than ALG1k(Pn).

If job j is preempted in S at the end of Pn , then CHOP can achieve an additional
value in scheduling units λ j + 1, . . . , l j of job j in S�. Again, since tS(j) ≤ tS� (j),
these units cannot be sequenced before the beginning of phase Pn+1, i.e., at time nk.
Thus the additional value achievable for units λ j + 1, . . . , l j is upper bounded by∑∞

t=nk β tv j = βnk/(1 − β) · v j , which is obtained if a job of per-unit value v j and
infinite length is sequenced starting at time nk.

ThusCHOP(Pn) ≤ ALG1k(Pn)+βnk/(1−β)·v j . In each phaseALG1k sequences
jobs in order of non-increasing per-unit value. Hence each job of In has a per-unit value
of at least v j . We conclude ALG1k(Pn) ≥ ∑nk−1

t=(n−1)k β tv j = (β(n−1)k − βnk)/(1 −
β) · v j and CHOP(Pn)/ALG1k(Pn) ≤ 1 + βnk/(β(n−1)k − βnk) = 1/(1 − βk).
�

We are ready to prove Theorem 1.

Proof of Theorem 1 Combining Lemmas 1 and 3 we obtain that, for all k ∈ N and
all probabilities β, inequality 1/(βk−1(1 − βk))ALG1k(Ik) ≥ OPT(I) holds for any
input I. Since ALG1k(I) = ALG1k(Ik) the theorem follows.
�
We determine the best value of k.

Corollary 1 For k = �− logβ 2�, the resulting algorithm ALG1k is 4/(2 − β)-
competitive.

Proof The function f (x) = βx−1(1−βx) is maximized for x� := − logβ 2. Choosing
k = �− logβ 2� gives x� ≤ k ≤ x� + 1 and f (x�) ≥ f (k) ≥ (2 − β)/4 = f (x� + 1)
because f (x) is strictly decreasing for x > x�. Since ALG1k’s competitiveness is
1/ f (k), the corollary follows.
�

The next theorem shows that our analysis of ALG1k is tight.

Theorem 2 For all k ∈ N and all probabilities β, the competitive ratio of ALG1k is
not smaller than 1/(βk−1(1 − βk)).

Proof Suppose that ALG1k achieved a competitive ratio c < 1/(βk−1(1−βk)). Then
there exists a constant α such that c · ALG1k(I) + α ≥ OPT(I) holds for all inputs
I. Consider the specific input I consisting of a single job that arrives at time 1, has a
value of v = α/(β(1 − cβk−1(1 − βk)), and infinite length. ALG1k starts this job at

123

8 Algorithmica (2019) 81:1–25

time k and processes it for k time units so that ALG1k(I) = βk(1 − βk)/(1 − β) · v.
On the other hand OPT(I) = β/(1 − β) · v. Hence

c · ALG1k(I) + α = c · ALG1k(I) + (α/v)v = c · ALG1k(I) + β(1 − cβk−1(1 − βk))v

< c · ALG1k(I) + β
1−β

(1 − cβk−1(1 − βk))v = β
1−β

· v = OPT(I),

where the inequality holds because 1 − β < 1. We obtain a contradiction.
�
Finally in this section we consider the algorithm ALG11 in which the phase length

k is set to 1. This algorithm at any time schedules a job having the highest per-unit
value among the available jobs. This job is processed for one time unit.

Corollary 2 For all probabilities β, the competitive ratio of ALG11 is exactly
1/(1 − β).

Proof Theorem 1 implies that ALG11 is 1/(1 − β)-competitive. By Theorem 2 the
competitive ratio is not smaller than this value.
�

We finally combine Corollaries 1 and 2 to obtain the following result.

Corollary 3 Setting k = 1 if β ≤ 2/3 and k = �− logβ 2� otherwise, we obtain an
algorithm ALG1k that achieves a competitive ratio of min{1/(1 − β), 4/(2 − β)}.
Proof We observe that 1/(1 − β) ≤ 4/(2 − β) holds true if and only if β ≤ 2/3.
Suppose that β ≤ 2/3. In this case the resulting algorithm ALG11 achieves a compet-
itive ratio of 1/(1 − β) ≤ min{1/(1 − β), 4/(2 − β)}, cf. Corollary 2. On the other
hand assume that β > 2/3. By Corollary 1, algorithm ALG1k with k = �− logβ 2�
achieves a competitiveness of 4/(2 − β) < min{1/(1 − β), 4/(2 − β)}.
�

3 A Refined Algorithm

We present a second algorithm that, compared to ALG1k , reduces loss incurred in
preempting jobs. The algorithm also operates in k-phases. Its crucial property is that
it continues processing a job scheduled last in a phase if this job is among the highest-
valued jobs available at the beginning of the next phase.

The refined algorithm, called ALG2k , works in two steps. Again, let Pn be any k-
phase. Step (1) is defined as follows. If n > 1, then let in be the job that was scheduled
last in Pn−1 and can potentially be continued in Pn . If this job has been scheduled
for less than lin time units in the prior schedule, until the end of Pn−1, then define
a residual job irn by (ain , vin , l

r
in

). Here lrin is the remaining length of job in , i.e., lrin
further units have to be processed to complete the job. Let Qn be the set consisting of
job irn and the jobs available at the beginning of Pn . ALG2k schedules the jobs of Qn

in order of non-increasing per-unit values in Pn . Again, jobs having the same per-unit
value are scheduled in order of increasing arrival times, where ties may be broken
arbitrarily. Among jobs having a per-unit value of v = vin , job irn is scheduled first.
Let S′(Pn) denote the schedule obtained for Pn at this point.

We next describe Step (2). If S′(Pn) does not contain job irn , then S′(Pn) is equal
to the final schedule S(Pn) for the phase. If S′(Pn) contains job irn and this job is

123

Algorithmica (2019) 81:1–25 9

Algorithm ALG2 k: Each phase Pn is handled as follows.
(1) If n > 1, let in be the job scheduled last in Pn−1. If job in has been scheduled for less than
lin time units so far, define job irn by (ain , vin , lrin) and add it to Qn. Let S (Pn) be the schedule
obtained by sequencing the jobs of Qn in order of non-increasing per-unit value in Pn.
(2) If S (Pn) processes job irn for srn time units staring at time trn, then schedule job in for srn time
units at the beginning of Pn. Jobs originally processed from time (n − 1)k to trn − 1 are delayed
by srn time units. Execute this schedule S(Pn) for Pn, ignoring jobs that arrive during the phase.

Fig. 2 The algorithm ALG2k

scheduled for srn time units starting at time trn in Pn , then ALG2k modifies S′(Pn) so
as to obtain a feasible schedule. Loosely speaking, job irn is shifted to the beginning of
Pn . More precisely, the original job in is scheduled for srn time units at the beginning
of Pn . The start of all jobs scheduled from time (n − 1)k to time trn − 1 in S′(Pn) is
delayed by srn time units. Between time trn + srn and the end of Pn , no modification
is required. The resulting schedule is the final output S(Pn). While this schedule is
executed, newly arriving jobs are deferred until the beginning of the next phase.

A pseudo-code description of ALG2k is given in Fig. 2. We remark that a long job
i may be executed over several phases, provided that its per-unit value is sufficiently
high. In this case the corresponding residual job, defined for a phase Pn , occupies the
entire schedule S′(Pn).

Theorem 3 For all k ∈ N and all probabilities β, algorithm ALG2k achieves a com-
petitive ratio of 1/βk−1 · max{1/βk−1, 1/(1 − β2k), 1 + β3k/(1 − βk)}.
We proceed to prove the above theorem. Compared to the proof of Theorem 1 the
analysis is more involved because we have to take care of the delays incurred by
ALG2k in Step (2) when scheduling a portion of job in at the beginning of phase Pn
and thereby postponing the start of jobs with higher per-unit values. Furthermore, in
order to achieve a small competitive ratio we have to charge the loss of a job preempted
in a phase to several adjacent phases.

Again, for any input I = (ai , vi , li)Ni=1, we consider the k-quantized input Ik =
(a′

i , vi , li)
N
i=1, where the arrival time of any job i is set to a′

i = k�ai/k�. There holds
ALG2k(Ik) = ALG2k(I) and, as shown in Lemma 1, 1/βk−1OPT(Ik) ≥ OPT(I).
We will compare ALG2k(Ik) to CHOP(Ik), where CHOP is the stronger optimal
offline algorithm described in Sect. 2. Again let S denote the schedule computed by
ALG2k for Ik and let S� be CHOP’s schedule for Ik . As in Sect. 2 we assume w.l.o.g.
that in S� jobs having a certain per-unit value v are processed in the same order as in
S.

In order to evaluate ALG2k(Ik), we define a schedule S′ that allows us to prove
a statement analogous to Lemma 2 and, moreover, to compare the per-unit values of
jobs scheduled in S′ and S�. For any phase Pn , consider the schedule S′(Pn) computed
in Step (1) of ALG2k . If n > 1 and the residual job irn is scheduled for srn time units
starting at time trn in Pn , then modify S′(Pn) by scheduling the original job in for
srn time units starting at time trn . By slightly overloading notation, we refer to this
modified schedule as S′(Pn). Schedule S′ is the concatenation of the S′(Pn), for all
n ≥ 1.

123

10 Algorithmica (2019) 81:1–25

In S′(Pn) jobs are sequenced in order of non-increasing per-unit value. Among jobs
of per-unit value v = vin , job in is processed first. Schedule S

′(Pn) differs from S(Pn)
only in that job in is sequenced after the jobs having a strictly higher per-unit value
than vin . Each such job starts and finishes in Pn . The shift of the job portion of in does
not affect the relative order of jobs having the same per-unit value. Hence in S′ and
S, and thus in S′ and S�, jobs of a certain per-unit value v occur in the same relative
order. We note that schedule S′ is infeasible in that a job in may be interrupted at the
end of phase Pn−1 and resumed later in Pn .

For any job i , let tS′(i) be its starting time in S′, i.e., the earliest time when a portion
of job i is processed. As usual tS(i) and tS� (i) denote the starting time of job i in S and
S�, respectively. Jobs that never appear in a schedule have a starting time of infinity. In
Lemma 5 below we will prove a statement corresponding to that of Lemma 2: For any
job i , there holds tS′(i) ≤ tS� (i). For the proof of this lemma we need the following
auxiliary lemma which implies, in particular, that each job is interrupted at most once
in S′. The lemma will also be essential in the proof of Lemma 6.

Lemma 4 If a job is interrupted in S′, then this interruption occurs at the end of a
phase Pn−1 and the job is equal to in processed last in S(Pn−1) and S′(Pn−1). The
job is scheduled again only in Pn and experiences no further interruption in S′.

Proof Consider the schedule S and successively replace S(Pn) by S′(Pn), for increas-
ing phase number n. We identify the interruptions introduced by these replacements.
As mentioned above S′(Pn) is equal to S(Pn) except that job in , if it occurs in S(Pn),
is sequenced after the jobs having a higher per-unit value than vin . All of these jobs
start and finish in S(Pn) and thus are not interrupted in S′(Pn). Hence when replacing
S(Pn) by S′(Pn) only job in can get interrupted and in this case job in is scheduled
last in S(Pn−1) and S′(Pn−1). If job in is indeed interrupted at the end of S′(Pn−1)

and later continued in S(Pn), then it is not processed throughout the entire phase Pn .
Hence in S(Pn) job in is not processed until the end of Pn and cannot be processed
further in any subsequent phase. Since S′ and S sequence the same set of jobs within
each phase, the lemma follows.
�
Lemma 5 For any job i , tS′(i) ≤ tS� (i).

Proof The proof of the lemma is similar to that of Lemma 2. However, here we have
to distinguish cases depending on whether or not job i is interrupted in S′.

For jobs that are never scheduled by CHOP there is nothing to show. Suppose that
the desired inequality does not hold for all jobs and let job i be the one occuring earliest
in S� with tS′(i) > tS� (i). Set t� = tS� (i) and let Pn be the phase containing time t�.
Let job j be the one processed in S′ at time t�. There holds v j ≥ vi because job i has
arrived by time (n − 1)t , the beginning of Pn , and in S′ jobs are scheduled in order of
non-increasing per-unit value within each phase. We next argue that CHOP finishes
job j before time t�. This obviously holds if v j > vi because CHOP always processes
an unfinished job with the highest per-unit value. If v j = vi , then again CHOP must
have finished job j because in S′ job j occurs before job i and jobs having the same
per-unit value are processed in the same order in S′ and S�.

We next distinguish two cases. If job j has not been interrupted in S′ before time t�,
we have tS′(j) ≥ t� − l j + 1. On the other hand, tS� (j) ≤ t� − l j because CHOP has

123

Algorithmica (2019) 81:1–25 11

finished job j before time t�. We obtain tS� (j) < tS′(j) ≤ t�, which is a contradiction
to the assumption that job i is the first one in S� violating the desired inequality.

If job j has been interrupted in S′ before time t�, then by Lemma 4 it is equal
to job in processed at the end of Pn−1. Let I be the set of jobs that are scheduled
between the beginning of Pn and t� in S′ and are not equal to job j . All of these
jobs start and finish in Pn and have a strictly higher per-unit value than job j . Let l
be the total length of the jobs in I . By Lemma 4, job j was interrupted only once
and hence tS′(j) ≥ t� − l j − l + 1. Since all jobs of I have a higher per-unit value
than v j and v j ≥ vi , CHOP must have finished all of them before time t�. Therefore
tS� (j) ≤ t� − l j − l because, by assumption, tS′(i ′) ≤ tS� (i ′) holds for all i ′ ∈ I .
We conclude again tS� (j) < tS′(j) ≤ t� and obtain a contradiction to our initial
assumption.
�

A main goal of the subsequent analysis is to bound the loss incurred by ALG2k in
preempting jobs. The following Lemma 7 will be crucial as it specifies the earliest
time when a job preempted in S can occur again in S�. The proof relies on Lemma 6
below that compares per-unit values of jobs scheduled in S and S′. At any time t , let
vS� (t) be the per-unit value of the job scheduled in S� and let vS′(t) be the per-unit
value of the job scheduled in S′. If at time t no job is scheduled in S′ or S�, then the
corresponding value vS′(t) or vS� (t) is zero.

Lemma 6 For any time t, vS� (t) ≥ vS′(t).

Proof Consider any time t . If no job is scheduled at time t in S′, there is nothing to
show. Otherwise let job i be the one scheduled in S′ at time t . By Lemma 5 there holds
tS′(i) ≤ tS� (i). If job i is not interrupted in S′, then tS′(i) ≥ t − li + 1 and hence
tS� (i) ≥ t − li + 1. Thus CHOP does not finish job i before time t and processes a job
of per-unit value at least vi at time t in S�. If job i is interrupted in S′, then let Pn be the
phase containing t . By Lemma 4, job i is equal to job in processed last in S′(Pn−1).
Let I be the set of jobs j �= i processed between the beginning of Pn and time t in
S′. All these jobs start in S′(Pn). Let l be the total length of the jobs in I . Since job i
is interrupted only once, see again Lemma 4, tS′(i) ≥ t − li − l + 1. Using Lemma 5
we obtain tS� (i) ≥ t − li − l + 1 and tS′(j) ≤ tS� (j), for all j ∈ I . This implies
that CHOP cannot finish all jobs of I ∪ {i} before time t . By the definition of S′, jobs
are processed in non-increasing order of per-unit value in each phase. Among jobs of
value vin job in is processed first. Thus all jobs of I have a per-unit-value higher than
vi . We conclude that at time time t CHOP processes a job of per-unit value at least
vi .
�
Lemma 7 If job i is preempted in S(Pn) and the following phase schedules
S(Pn+1), . . . , S(Pn′) only process jobs of per-unit value higher than vi , then S� does
not schedule job i in phases Pn+1, . . . , Pn′ .

Proof For any phase Pl , schedules S(Pl) and S′(Pl) process the same set of jobs;
of course some jobs might be processed only partially in those schedules. Hence
S′(Pn+1), . . . , S′(Pn′) only process jobs having a per-unit value higher than vi . By
Lemma 6, at any time schedule S� processes a job whose per-unit value is at least as
high as that of the job scheduled in S′. Hence in phases Pn+1, . . . , Pn′ schedule S�

only processes jobs having a per-unit-value higher than vi .
�

123

12 Algorithmica (2019) 81:1–25

In the remainder of the analysis we first classify phases and then compose segments
of up to three consecutive phases. For these segments we will upper bound the loss
incurred by ALG2k in preempting jobs.

3.1 Phase Classification

Weclassify phases, considering the original schedule S. Aphase Pn is calledpreempted
if a job is preempted in S(Pn). Phase Pn is called continued if the job scheduled last
in S(Pn) is also scheduled at the beginning of S(Pn+1). Phase Pn is complete if all
jobs scheduled in S(Pn) are finished by the end of Pn .

Wemention and verify some properties of these phases in the schedule S. (a) In each
phase Pn at most one job is preempted in S(Pn). (b) If Pn is a continued or complete
phase, no job is preempted in S(Pn). (c) If Pn is a preempted phase, then the job
preempted is one having the smallest per-unit value among jobs scheduled in S(Pn).
These properties can be verified as follows. Let Pn be an arbitrary phase.WhenALG2k
constructs a schedule for Pn , it firsts sorts the jobs of Qn in order of non-increasing
per-unit value. In this sorted sequence only the last job, say job i , assigned to Pn might
not be scheduled completely in the phase and hence is a candidate for preemption.
Job i is one having the smallest per-unit value among jobs scheduled in the phase.
This shows properties (a) and (c). If job i is not moved to the beginning of the phase
in Step (2) of ALG2k and continued at the beginning of the next phase, then Pn is a
continued phase and no job is preempted in S(Pn). By definition, no job is preempted
in a complete phase. This shows property (b). We observe that in the schedule S each
phase is either preempted, continued or complete.

3.2 Schedule Segments

For the further analysis we partition the schedule S into segments where a segment
consists of up to three consecutive phases. The purpose of these segments is to combine
“expensive” preempted phases with other phases so as to amortize preemption loss.
First we build segments consisting of three phases. Phases Pn, Pn+1, Pn+2 form a
segment if Pn is a preempted phase that is not preceded by a continued phase, Pn+1 is
a continued phase and Pn+2 is a preempted phase. Among the remaining phases we
build segments consisting of two phases. Phases Pn, Pn+1 form a segment if (a) Pn is
a preempted phase that is not preceded by a continued phase and Pn+1 is a continued
or complete phase or (b) Pn is a continued phase followed by a preempted phase Pn+1.
Each remaining phase forms a separate segment.

We argue that the above segmentation is well defined. First consider the 3-phase
segments built initially. No two such segments σ and σ ′ can overlap: The first phase
P ′
n of σ ′ is a preempted phase that is not preceded by a continued phase. Phase P ′

n
cannot be equal to the second phase of σ because the latter one is continued phase.
Furthermore, P ′

n cannot be equal to the third phase of σ because that one is a preempted
phase that is preceded by a continued phase. Next consider any two 2-phase segments
σ and σ ′ built up. Again no overlap can occur. Suppose that the first phase P ′

n of σ ′ is
a preempted phase that is not preceded by a continued phase. P ′

n cannot be identical

123

Algorithmica (2019) 81:1–25 13

to the second phase of σ because the latter is a continued phase, a complete phase
or a preempted phase that is preceded by a continued phase. Next assume that P ′

n is
a continued phase that is followed by a preempted phase. If P ′

n coincided with the
second phase of σ , then the three phases of σ and σ ′ would form a 3-phase segment
built initially because the first phase of σ is a preempted phase that is not preceded by
a continued phase.

We next state two properties of a preempted phase Pn that forms a separate 1-phase
segment. Firstly, such a phase cannot be preceded by a continued phase: If Pn was
preceded by a continued phase Pn−1, then Pn−1 could be the second phase of a 2-phase
segement or a separate 1-phase segement. In the former case the 2-phase segment and
Pn would form a 3-phase segment built initially. In the latter case Pn−1 and Pn would
form a 2-phase segement as described in property (b) above. A second property is that
Pn is followed by a preempted phase. If it was followed by a continued phase Pn+1,
then Pn+1 could be the beginning of a 2-phase segment desribed in property (a) above
or a separate 1-phase segment. In the former case Pn and the 2-phase segment would
combine to a 3-phase segement because Pn is not preceded by a continued phase. In
the latter case Pn and Pn+1 would form a 2-phase segment as desribed in property (a).
In summary, a preempted phase that forms a separate 1-phase segment is not preceded
by a continued phase and is followed by a preempted phase.

For a segment σ , let ALG2k(σ) be the value achieved by ALG2k on σ . More
specifically, let I be the set of jobs scheduled by ALG2k in the phases of σ . Set I also
includes those jobs that are only partially processed in σ and might also be scheduled
in phases before or after σ . Suppose that job i ∈ I is processed for δi time units
starting at time ti is σ . Then

ALG2k(σ) =
∑

i∈I
β ti (1 − βδi)/(1 − β) · vi .

Let CHOP(σ) denote the value achieved by CHOP in processing the jobs and job
portions scheduled by ALG2k in σ . More specifically, suppose that in S job i ∈ I has
been processed for λi time units before the beginning of σ . ThenCHOP(σ) represents
the value achieved by CHOP in processing the units λi + 1, . . . , λi + δi of job i in S�.
If job i is preempted in the segment σ of S, then CHOP(σ) additionally represents
the value achieved by processing units u > λi + δi in S�. There holds

CHOP(σ) ≤
∑

i∈I
β tS� (i)+λi (1 − βδi)/(1 − β) · vi + vp(σ),

where vp(σ) denotes the additional value achieved by CHOP for jobs preempted
by ALG2k in σ . There holds ALG2k(Ik) = ∑

σ ALG2k(σ) and CHOP(Ik) =∑
σ CHOP(σ) because, by Lemma 5, every job scheduled byCHOP is also scheduled

by ALG2k .

123

14 Algorithmica (2019) 81:1–25

3.3 Segement Analysis

Weprove three lemmas (Lemmas 8, 9 and 10) that upper boundCHOP(σ)/ALG2k(σ),
for the various segments. Together they will imply Theorem 3. In the proofs of the
lemmasweuse the following notation. For any phase Pn let In denote the set of jobs that
are partially or completely processed in S(Pn). For any i ∈ In , let δi,n be the number of
time units for which job i is processed in S(Pn). If job i only scheduled in phase Pn of
S, then we simply set δi = δi,n . Furthermore, let i1n be the first job scheduled in S(Pn).
Suppose that Pn is preceded by a continued phase. When constructing S(Pn), ALG2k
might have delayed the starting times of some jobs of In in Step (2) in order to move
job i1n to the beginning of the phase. Let I ′

n ⊂ In be the set of these delayed jobs. If
Pn is not preceded by a continued phase, there are no delayed jobs and we set I ′

n = ∅.
We observe that tS(i) = tS′(i), for all i ∈ In \ I ′

n ∪ {i1n}, and tS(i) = tS′(i) + δi1n ,n , for
all i ∈ I ′

n .
For ease of exposition, letw(t, δ, v) = β t (1−βδ)/(1−β) ·v be the value achieved

in processing a job of per-unit value v for δ time units starting at time t . We allow
δ = ∞, meaning that a job of infinite length is scheduled starting at time t .

Lemma 8 For any σ consisting of one phase, CHOP(σ)/ALG2k(σ) ≤ max{1/βk−1,

1 + β3k/(1 − βk)}.
Proof We first study the case that the phase Pn of σ is a continued or complete phase,
i.e., no job is preempted in S(Pn). Let i1 = i1n be the first job scheduled in S(Pn).
There holds

ALG2k(σ) = w((n − 1)k, δi1,n, vi1) +
∑

i∈I ′
n

w(tS′(i) + δi1,n, δi,n, vi)

+
∑

i∈In\(I ′
n∪{i1})

w(tS′(i), δi,n, vi)

≥ βk−1

⎛

⎝w((n − 1)k, δi1,n, vi1) +
∑

i∈In\{i1}
w(tS′(i), δi,n, vi)

⎞

⎠ .

The last inequality holds because any job i ∈ I ′
n is delayed by atmost k−1 time units

and hence, for any i ∈ I ′
n , we havew(tS′(i)+δi1,n, δi , vi) = βδi1,nw(tS′(i), δi,n, vi) ≥

βk−1w(tS′(i), δi,n, vi). Every job i ∈ In , except for possibly i1, is started in S(Pn).
If job i1 is started in S(Pn′), where n′ < n, then the job is scheduled at the end of
S(Pn′). Hence when ALG2k constructed S(Pn′), the job was not delayed in Step (2)
of the algorithm in order to move another job to the beginning of the phase. Thus
tS(i1) = tS′(i1) ≤ tS� (i1). Suppose that before Pn job i1 was processed for λi1 time
units in S. Since tS(i1) ≤ tS� (i1), the units λi1 + 1, . . . , λi1 + δi1,n of job i1 cannot
be started before the beginning of Pn in S�. For all jobs i ∈ In \ {i1}, there holds
tS′(i) ≤ tS� (i). Hence

CHOP(σ) ≤ w((n − 1)k, δi1,n, vi1) +
∑

i∈In\{i1}
w(tS′(i), δi,n, vi).

123

Algorithmica (2019) 81:1–25 15

We obtain CHOP(σ)/ALG2k(σ) ≤ 1/βk−1.
We next study the case that Pn is a preempted phase. The preceding phase Pn−1

is not a continued phase while the following phase Pn+1 is also a preempted phase.
Since Pn is not preceded by a continued phase all jobs of In are started in S(Pn) and
tS(i) = tS′(i), for all i ∈ In . We obtain

ALG2k(σ) =
∑

i∈In
w(tS′(i), δi , vi).

Let i p ∈ In be the job preempted in S(Pn). The job is preempted at the end of
S(Pn). Moreover, its per-unit value is strictly smaller than the per-unit value of any
job scheduled in S(Pn+1), the schedule of the following phase, since otherwise ALG2k
would have scheduled job i p in S(Pn+1). Phase Pn+1 is also a preempted phase and the
job preempted in S(Pn+1) is scheduled at the end of S(Pn+1). Thus the job preempted
in S(Pn+1) has a strictly smaller per-unit value than any job scheduled in S(Pn+2).
It follows that job i p has a strictly smaller per-unit value than any job scheduled in
S(Pn+1) and S(Pn+2). Lemma 7 ensures that CHOP does not schedule i p in phases
Pn+1 and Pn+2. Thus the value achieved by CHOP for the preempted portion of i p is
upper bounded by w((n + 2)k,∞, vi p) and

CHOP(σ) ≤
∑

i∈In
w(tS′(i), δi , vi) + w((n + 2)k,∞, vi p)

= ALG2k(σ) + w((n + 2)k,∞, vi p).

Recall that job i p is one having the smallest per-unit value among jobs sched-
uled in S(Pn). Thus ALG2k(σ) ≥ w((n − 1)k, k, vi p) = β(n−1)k(1 − βk)/(1 −
β) · vi p . Furthermore w((n + 2)k,∞, vi p) = β(n+2)k/(1 − β)vi p . We conclude
CHOP(σ)/ALG2k(σ) ≤ 1 + β3k/(1 − βk).
�
Lemma 9 Let σ be a segment consisting of at least two phases. If σ consists of two
phases, assume that the first one is a preempted phase. If σ consists of three phases,
assume that the per-unit value of the job preempted in the first phase is at least as high
as that of the job preempted in the third phase. There holds CHOP(σ)/ALG2k(σ) ≤
max{1/βk−1, 1/(1 − β2k)}.
Proof We first study the case that σ consists of exactly two phases Pn and Pn+1. Since
Pn is a preempted phase, by construction of 2-phase segments, Pn is not preceded by
a continued phase. Since neither Pn nor Pn+1 are preceded by a continued phase, all
job of In and In+1 are started in S(Pn) and S(Pn+1), respectively, and the sets I ′

n and
I ′
n+1 are empty. Thus tS(i) = tS′(i), for all i ∈ In ∪ In+1. We obtain

ALG2k(σ) =
∑

i∈In
w(tS′(i), δi,n, vi) +

∑

i∈In+1

w(tS′(i), δi,n+1, vi). (1)

Since tS(i) = tS′(i) ≤ tS� (i), for all i ∈ In ∪ In+1, CHOP cannot achieve a higher
value for the jobs and job portions scheduled by ALG2k in σ . It can only attain an
additional value for the job portion that is preempted in S(Pn). Let i p be the preempted

123

16 Algorithmica (2019) 81:1–25

job. This job is scheduled last in S(Pn). It is one having the smallest per-unit value
among the jobs scheduled in S(Pn). Moreover, it has a strictly smaller per-unit value
than any job scheduled in S(Pn+1) because otherwise ALG2k would have included
job i p in the schedule S(Pn+1). By Lemma 7 CHOP does not schedule job i p in phase
Pn+1. Since tS′(i p) ≤ tS� (i p), CHOP can schedule at most δi p,n time units of job
i p before the end of Pn . Hence CHOP’s additional value obtained in processing the
preempted portion of i p is at most w((n + 1)k,∞, vi p). Thus

CHOP(σ) ≤ ALG2k(σ) + w((n + 1)k,∞, vi p). (2)

In S(Pn) and S(Pn+1) all jobs have a per-unit value of at least vi p . Hence
ALG2k(σ) ≥ β(n−1)k(1 − β2k)/(1 − β) · vi p . Taking into account that w((n +
1)k,∞, vi p) = β(n+1)k/(1 − β)vi p we conclude that CHOP(σ)/ALG2k(σ) ≤
1 + β2k/(1 − β2k) = 1/(1 − β2k).

We next consider the case that σ consists of three phases Pn, Pn+1, Pn+2 and that
the job preempted in the first phase has a per-unit value that is at least as high as that
of the job preempted in the third phase. By the definition of a 3-phase segment, Pn is
a preempted phase that is not preceded by a continued phase and Pn+1 is a continued
phase. This combination of phases was analyzed above. Let σ1 be the subsegment of
phases Pn and Pn+1. Using (1) and (2), we obtain

ALG2k(σ1) =
∑

i∈In
w(tS′(i), δi,nvi) +

∑

i∈In+1

w(tS′(i), δi,n+1vi)

and
CHOP(σ1) ≤ ALG2k(σ1) + w((n + 1)k,∞, vi p), (3)

where i p is again the job preempted in S(Pn).
Let σ2 be the subsegment consisting of the third phase Pn+2 and let i1 = i1n+2 be

the job scheduled at the beginning of Pn+2. Then

ALG2k(σ2) = w((n + 1)k, δi1,n+2, vi1) +
∑

i∈I ′
n+2

w(tS′(i) + δi1,n+2, δi , vi)

+
∑

i∈In+2\(I ′
n+2∪{i1})

w(tS′(i), δi , vi)

≥ βk−1

⎛

⎝w((n + 1)k, δi1,n+2, vi1) +
∑

i∈In+2\{i1}
w(tS′(i), δi , vi)

⎞

⎠ .

The inequality holds because any i ∈ I ′
n+2 is delayed by at most k − 1

time units and hence w(tS′(i) + δi1,n+2, δi , vi) = βδi1,n+2w(tS′(i), δi,n+2, vi) ≥
βk−1w(tS′(i), δi,n+2, vi), for any i ∈ I ′

n+2.
Let i ′p be the job preempted in S(Pn+2). By assumption this job has a per-unit value

that is upper bounded by the per-unit value of i p. The additional value achieved by

123

Algorithmica (2019) 81:1–25 17

CHOP in scheduling the preempted portions of both i p and i ′p is upper bounded by the
term w((n + 1)k,∞, vi p) in (3), which is again the value of scheduling an infinitely
long job of per-unit value vi p starting at time (n + 1)k. By slightly abusing notation
let

CHOP(σ2) = w((n + 1)k, δi1,n, vi1) +
∑

i∈In+2\{i1}
w(tS′(i), δi,n, vi)

be the value achievable by CHOP in processing the jobs and job portions of S(Pn+2).
There holds ALG2k(σ) = ALG2k(σ1) + ALG2k(σ2) and CHOP(σ) ≤ CHOP(σ1) +
CHOP(σ2). Hence CHOP(σ)/ALG2k(σ) ≤ max{CHOP(σ1)/ALG2k(σ1),CHOP
(σ2)/ALG2k(σ2), }. As shown above the first ratio is upper bounded by 1/(1 − β2k).
The second ratio is at most 1/βk−1.
�
Lemma 10 Let σ be a segment consisting of at least two phases. If σ consists of two
phases, assume that the first one is a continued phase. If σ consists of three phases,
assume that the per-unit value of the job preempted in the first phase is smaller than
that of the job preempted in the third phase. There holds CHOP(σ)/ALG2k(σ) ≤
max{1/βk−1, 1/(1 − β2k)}.
Proof The techniques used to prove Lemma 10 are similar to those of the proof of
Lemma 9. Here the analysis becomes slightly more involved because in case of a
2-phase segment both phases Pn and Pn+1 may initially process jobs i1n and i1n+1
that were already scheduled in the preceding phases. We will show that a worst case
occurs if the per-unit values of i1n and i1n+1 are roughly equal to those in I ′

n and I ′
n+1,

respectively.
Formally, we first investigate a segment σ consisting of two phases Pn and Pn+1.

By assumption, the first one is a continued phase. Let i1 = i1n and i2 = i1n+1 be the
jobs scheduled first in S(Pn) and S(Pn+1), respectively. There holds

ALG2k(σ) = w((n − 1)k, δi1,n, vi1) +
∑

i∈I ′
n

w(tS′(i) + δi1,n, δi,n, vi) (4)

+
∑

i∈In\(I ′
n∪{i1})

w(tS′(i), δi,n, vi)

+w(nk, δi2,n+1, vi2) +
∑

i∈I ′
n+1

w(tS′(i) + δi2,n+1, δi,n+1, vi) (5)

+
∑

i∈In+1\(I ′
n+1∪{i2})

w(tS′(i), δi,n+1, vi).

We next analyze the value that CHOP can achieve for the jobs and job portions
scheduled in S(Pn) and S(Pn+1). If in S the job i1 is started before the beginning
of Pn , then i1 is started at the end of an earlier phase Pn′ , with n′ < n, and when
ALG2k constructed S(Pn′) it did not delay the starting time of job i1 in Step (2).
Since tS′(i1) ≤ tS� (i1), CHOP cannot schedule the δi1,n units of job i1 processed by
ALG2k in S(Pn) before the start of Pn . For any other job i ∈ In , i �= i1, there holds

123

18 Algorithmica (2019) 81:1–25

tS′(i) ≤ tS� (i). Thus CHOP cannot not start the jobs and job portions scheduled in
S(Pn) before the beginning of Pn . The highest value is achieved by sequencing the
jobs and job portions in non-decreasing order of per-unit value. This is in fact the
sequence used in S′(Pn), which first processes the jobs of I ′

n , then the δi1,n time units
of job i1 and finally the jobs of In \ I ′

n . Let 	1 = ∑
i∈I ′

n
δi,n . The value achieved by

CHOP for the jobs and job portions scheduled in S(Pn) is at most

∑

i∈I ′
n

w(tS′(i), δi,n, vi) + w((n − 1)k + 	1, δi1,n, vi1) +
∑

i∈In\(I ′
n∪{i1})

w(tS′(i), δi,n, vi).

An analogous expression holds for phase Pn+1. Let i p be the job preempted in
S(Pn+1). This job is scheduled last in S′(Pn+1) and since tS′(i p) ≤ tS� (i p) CHOP
can finish at most δi p,n+1 units of this job before the end of Pn+1. Thus the additional
value obtained by CHOP in processing the preempted portion of i p is at most w((n +
1)k,∞, vi p). We conclude

CHOP(σ) ≤
∑

i∈I ′
n

w(tS′(i), δi,n, vi) + w((n − 1)k + 	1, δi1,n, vi1) (6)

+
∑

i∈In\(I ′
n∪{i1})

w(tS′(i), δi,n, vi)

+
∑

i∈I ′
n+1

w(tS′(i), δi,n+1, vi) + w(nk + 	2, δi2,n+1, vi2) (7)

+
∑

i∈In+1\(I ′
n+1∪{i2})

w(tS′(i), δi,n+1, vi) + w((n + 1)k,∞, vi p). (8)

Here 	2 is the total length of the jobs in I ′
n+1. Define R = CHOP(σ)/ALG2k(σ). In

order to upper bound R we consider the ratios restricted to the job sets I ′
n and I ′

n+1. If
I ′
n �= ∅, let

r1 =
∑

i∈I ′
n

w(tS′(i), δi,n, vi)
/ ∑

i∈I ′
n

w(tS′(i) + δi1,n, δi,n, vi).

If I ′
n+1 �= ∅, let

r2 =
∑

i∈I ′
n+1

w(tS′(i), δi,n+1, vi)
/ ∑

i∈I ′
n+1

w(tS′(i) + δi2,n+1, δi,n+1, vi).

If I ′
n �= ∅, then r1 = 1/βδi1,n ≤ 1/βk−1. Similarly, if I ′

n+1 �= ∅, then r2 = 1/βδi2,n+1 ≤
1/βk−1.

If R is not upper bounded by 1/βk−1, then R is increasing for decreasing values of
vi , with i ∈ I ′

n ∪ I ′
n+1. Recall that each vi , with i ∈ I ′

n , is greater than vi1 ; each vi , with
i ∈ I ′

n+1, is greater than vi2 . Hence R is either upper bounded by 1/βk−1 or by the ratio

123

Algorithmica (2019) 81:1–25 19

obtained when setting vi = vi1 , for i ∈ I ′
n , and vi = vi2 , for i ∈ I ′

n+1. With this setting∑
i∈I ′

n
w(tS′(i)+ δi1,n, δi,n, vi) = w((n−1)k+ δi1,n,	1, vi1) and the right-hand side

expression of (4) becomes w((n − 1)k, δi1,n + 	1, vi1). Similarly, the expression (5)
becomes w(nk, δi2,n+1 + 	2, vi2). Analogously,

∑
i∈I ′

n
w(tS′(i), δi,n, vi) = w((n −

1)k,	1, vi1) and the right-hand side of expression (6) is w((n − 1)k, δi1,n + 	1, vi1).
Expression (7) becomesw(nk, δi2,n+1+	2, vi2). With these observations, ALG2k(σ)

simplifies to

V = w((n − 1)k, δi1,n + 	1, vi1) +
∑

i∈In\(I ′
n∪{i1})

w(tS′(i), δi,n, vi)

+w(nk, δi2,n+1 + 	2, vi2) +
∑

i∈In+1\(I ′
n+1∪{i2})

w(tS′(i), δi,n+1, vi)

and CHOP(σ) simplifies to V + w((n + 1)k,∞, vi p). If R is not upper bounded by
1/βk−1, then it is upper bounded by R′ = (V + w((n + 1)k,∞, vi p))/V . Recall that
Pn is a continued phase. The job scheduled last in S(Pn) is one having the smallest
per-unit value among jobs scheduled in S(Pn). Since the job is also scheduled in
S(Pn+1), it has a per-unit value that is at least as high as that of job i p. This preempted
job is among the jobs having the smallest per-unit value in S(Pn+1). We conclude
that all jobs scheduled in S(Pn) and S(Pn+1) have a per-unit value of at least vi p .
This implies V ≥ β(n−1)k(1− β2k)/(1− β)vi p . Furthermore w((n + 1)k,∞, vi p) =
β(n+1)k/(1 − β)vi p . We conclude that R′ ≤ 1 + β2k/(1 − β2k) = 1/(1 − β2k).

Finally suppose that σ consists of three phases. Since a 3-phase segments ends with
a continued phase followed by a preempted case we can reduce the analysis to that
developed above. Let Pn−1 be the first phase of σ . Since Pn−1 is not preceded by a
continued phase, all jobs scheduled in S(Pn−1) are also started in this phase.Moreover,
when ALG2k constructs S(Pn−1) no job is delayed in Step (2) in order to move some
job to the beginning of the phase. As tS(i) = tS′(i) ≤ tS� (i), for all i ∈ In−1, the value
achieved by CHOP in scheduling the jobs and job portions of S(Pn−1) is not higher
than the value attained by ALG2k . Let job i ′p be the one preempted in S(Pn−1). Since
the job is not scheduled in S(Pn) it has a strictly smaller per-unit value than any job
processed in S(Pn). By assumption it has a smaller per-unit value than job i p. Hence
the per-unit value of job i ′p is strictly smaller than that of any job sequenced in S(Pn)
and S(Pn+1). Lemma 7 implies that CHOP does not schedule job i ′p in Pn and Pn+1.
Thus CHOP schedules the preempted portion of job i ′p no earlier than time (n + 1)k.
It follows that the total additional value attained by CHOP for the preempted portions
of jobs i ′p and i p is at most w((n + 1)k,∞, vi p), which is the last term in (8). Since
for the jobs and job portions scheduled in S(Pn−1) CHOP does not achieve a higher
value than ALG2k , it follows that CHOP(σ)/ALG2k(σ) is upper bounded by the ratio
R analyzed above.
�

We proceed with the proof of Theorem 3.

Proof of Theorem 3 Lemma 8 addresses segments consisting of a single phase.
Lemmas 9 and 10 cover all possible cases of 2-phase and 3-phase segments.

123

20 Algorithmica (2019) 81:1–25

Together the three lemmas imply CHOP(σ)/ALG2k(σ) ≤ max{1/βk−1, 1/(1 −
β2k), 1 + β3k∗

/(1 − βk∗
)}, for any segment σ . Hence CHOP(Ik)/ALG2k(Ik) and

OPT(Ik)/ALG2k(Ik) are each upper bounded by max{1/βk−1, 1/(1 − β2k), 1 +
β3k∗

/(1 − βk∗
)}. The theorem follows because 1/βk−1OPT(Ik) ≥ OPT(I) and

ALG2k(Ik) = ALG2k(I).
�
We conclude our analysis by determining the best value for the phase length k.

Corollary 4 Let c = 1 + φ, where φ = (1 + √
5)/2 is the Golden Ratio. For k =

�− 1
2 logβ c� + 1, ALG2k achieves a competitive ratio of c ≈ 2.618.

Proof Let k∗ = �− 1
2 logβ c� + 1. We evaluate the competitive ratio defined in Theo-

rem 3. First, 1/βk∗−1 ≤ √
c and hence 1/β2(k∗−1) ≤ c. We show that 1/(1 − β2k∗

)

and β3k∗
/(1 − βk∗

) are each upper bounded by
√
c. There holds 1/(1 − β2k∗

) ≤
c/(c − 1) = c/

√
c = √

c. Furthermore, β3k∗
/(1 − βk∗

) ≤ 1/(c
√
c − c). In order

to show 1 + β3k∗
/(1 − βk∗

) ≤ √
c it suffices to verify that 1 ≤ c − √

c. The last
inequality is satisfied because c − √

c = 1.
�

4 An Algorithm for Multiple Ad Positions

We study the setting where m parallel machines (ad positions) are available. Let
I = (ai , vi , li)Ni=1 be any input. Each job may be processed on one machine only, i.e.
a migration of jobs is not allowed. We define an algorithm ALG(m)k that generalizes
ALG1k of Sect. 2. Let Pn = (n − 1)k, . . . , nk − 1 be any phase. Again let Qn be the
set of jobs i that have arrived until the beginning of Pn , i.e. ai ≤ (n − 1)k, and have
not been processed in the past phases P1, . . . , Pn−1. ALG(m)k constructs a schedule
for Pn by considering the k time steps of the phase. For t = (n − 1)k, . . . , nk − 1,
ALG(m)k determines the m jobs having the highest per-unit values among the jobs of
Qn that are unfinished at time t . Each of these jobs is scheduled for one time unit.
If a job was also scheduled at time t − 1, then it is assigned to the same machine at
time t . We specify a tie breaking rule if, among the unfinished jobs in Qn , the m-th
largest per-unit value is v and there exist several jobs having this value. In this case
preference is given to those jobs that have already been started at times t ′, with t ′ < t .
Jobs that have not been started yet are considered in increasing order of arrival time,
where ties may be broken arbitrarily. Of course, if at time t set Qn contains at most m
unfinished jobs, then each of them is scheduled at that time. We observe that a feasible
phase schedule, in which each job is processed without interruption on one machine,
can be constructed easily: If a job of Qn is among those having the m highest per-unit
values, then the job will remain in this subset until it is finished. Hence the job can be
sequenced continuously on the same machine. We also observe that on each machine
jobs are sequenced in order of non-increasing per-unit value. Let S(Pn) denote the
schedule constructed for phase Pn . While S(Pn) is executed, newly arriving jobs are
deferred until the beginning of the next phase. At the end of S(Pn) unfinished jobs are
preempted. A pseudo-code description of the algorithm is given in Fig. 3.

Theorem 4 For all k ∈ N and all probabilities β, ALG(m)k achieves a competitive
ratio of 1

βk−1 (1 + 1
1−βk).

123

Algorithmica (2019) 81:1–25 21

Algorithm ALG(m)k: Each phase Pn is processed as follows.
At any time t, (n − 1)k ≤ k ≤ nk − 1, schedule the m unfinished jobs with the highest per-unit
value in Qn for one time unit each. At the end of Pn preempt the unfinished jobs. Execute this
schedule S(Pn), ignoring jobs that arrive during the phase.

Fig. 3 The algorithm ALG(m)k

In the following we prove Theorem 4. Unfortunately, we cannot extend the analysis
of ALG1k given in Sect. 2 because Lemma 2 does not hold for schedules produced
by m-machine generalizations of CHOP. Therefore we have to resort to different
“optimal” schedules.

As always, given any input I = (ai , vi , li)Ni=1, we consider the k-quantized input
Ik = (a′

i , vi , li)
N
i=1 with a′

i = k�ai/k�. There holds ALG(m)k(I) = ALG(m)k(Ik)
and 1/βk−1OPT(Ik) ≥ OPT(I), which can be shown in the sameway as in Lemma 1.
Let S denote the schedule constructed by ALG(m)k for Ik . Furthermore, let SOPT be
an optimal schedule for Ik .

The main idea of the proof of Theorem 4 is to construct a schedule S� whose value
is at least as high as that of SOPT and that will allow us to compare the values of S
and S�. Schedule S� can be derived from SOPT and is given extra ability to process
Ik . In S� jobs may be interrupted and migrated among machines. Moreover S� may
process up to 2m jobs at any time t .

For any time t , let I ∗
t denote the set of jobs scheduled in S� at time t . Similarly, let

It be the set of jobs processed in S at time t . Set I ∗
t \ It contains those jobs that are only

scheduled in S� but not in S at that time. We will define a matching that matches some
jobs of I ∗

t with those in It . Using this matching we can upper bound the extra value
achieved by S� relative to the value of S. Schedule S� and the associated matching
satisfy a specific property. For any time t , each job i ∈ I ∗

t \ It is either matched with a
job i ′ ∈ It whose per-unit value is at least as high as that of job i , or job i is scheduled
in S at the end of an earlier phase Pn , i.e., at some time t ′ = nk − 1 where nk − 1 < t .
Each i ′ ∈ It is matched with at most one i ∈ I ∗

t . We remark that the matching is time
dependent. Over time a job scheduled in S or S� may be matched with various jobs.
However, for any fixed time t , each i ′ ∈ It is matched with at most one i ∈ I ∗

t and
vice versa. Formally, schedules S� and S, together with the sets I ∗

t and It , satisfy the
following property (P).

(P) For all times t , each job i ∈ I ∗
t \ It is either matched with an i ′ ∈ It such that

vi ′ ≥ vi or it is scheduled in S at the end of a previous phase Pn , i.e., at some time
nk − 1 where nk − 1 < t . For all times t , each i ′ ∈ It is matched with at most one
i ∈ I ∗

t .

Let OPT∗(Ik) denote the value of schedule S�.

Lemma 11 There exists a schedule S� satisfying property (P) and OPT∗(Ik) ≥
OPT(Ik).
Proof We transform SOPT into a schedule satisfying the statement of the lemma. First
consider the schedule S. Recall that ALG(m)k schedules each job of Ik in only one
phase, i.e., no job is processed in two or more phases. For any phase Pn , n ≥ 1, let

123

22 Algorithmica (2019) 81:1–25

In be the set of jobs that are sequenced in schedule S in Pn but not at the end of this
phase at time nk − 1. We observe that each job i ∈ In is scheduled completely, i.e. for
li time units, in Pn : Algorithm ALG(m)k always schedules the jobs having the highest
per-unit values among the available unfinished jobs. If a job is scheduled at time t but
not at time t + 1 and t is not the end of a phase, then the job is completely processed
because in Ik no jobs arrive during a phase. Let tS(i) be the starting time of job i in S.
Then job i ∈ In is scheduled at times tS(i), . . . , tS(i) + li − 1 is S. Let I = ∪n≥1 In .

We now modify SOPT as follows. For each job i ∈ I and each time t with tS(i) ≤
i ≤ tS(i) + li − 1, one unit of job i is scheduled at time t provided that SOPT did
not already schedule this job time t . Furthermore, units of job i sequenced in SOPT at
times t ≥ tS(i) + li are deleted. These modifications do not decrease the value of the
schedule because each job unit deleted at time t is replaced by a corresponding unit
scheduled at some time t ′ < t . Let S� be the resulting schedule. Note that in S� up to
2m jobs can be scheduled at any time.

For any time t , let 	t = I ∗
t \ It be the set of jobs that are only scheduled in S� but

not in S at time t . We partition this set into two subsets. Let 	1
t ⊆ 	t be the set of

jobs that are scheduled at times t ′ < t in S. Set 	2
t = 	t \ 	1

t contains the remaining
jobs. We first study 	1

t and argue that each i ∈ 	1
t must be scheduled in S at the end

of a phase Pn with nk − 1 < t . By the definition of 	1
t , job i is not scheduled in S at

time t but is scheduled in S at some time t ′ < t . Let Pn be the phase containing time
t ′. If job i is not scheduled in S at the end of Pn , then i ∈ In . However the schedule
modifications described in the last paragraph deleted units of job i sequenced after
tS(i)+ li −1 and hence at time t . We conclude that each i ∈ 	1

t satisfies property (P).
It remains to consider the jobs of 	2

t . None of these jobs is scheduled in S at times
t ′ with t ′ ≤ t . Since the jobs of 	2

t are available for processing at time t , schedule S
sequences exactly m jobs at time t . Recall again that ALG(m)k always processes the
available unfinished jobs with the highest per-unit values. Thus It contains |	2

t | jobs
whose per-unit values are at least as high as the per-unit value of each job in	2

t . These
jobs of It may be matched in an arbitrary way with the jobs of 	2

t . This establishes
property (P) for any i ∈ 	2

t and thus for all jobs of 	t .
�

Lemma 12 Forall k ∈ Nandall probabilitiesβ, inequality
(
1 + 1

1−βk

)
ALG(m)k(Ik)

≥ OPT∗(Ik) holds.

Proof For any phase Pn , n ≥ 1, let ALG(m)k(Pn) denote the value obtained in S
during phase Pn . Similarly, OPT∗(Pn) is the value achieved in S� during Pn . There
holds ALG(m)k(Ik) = ∑

n≥1 ALG(m)k(Pn) and OPT∗(Ik) = ∑
n≥1 OPT

∗(Pn).
In S� consider any time t . Let I ∗

t,1 ⊆ I ∗
t , be the set of jobs that are also scheduled

in S at time t or that are matched to a job in It . Set I ∗
t,2 = I ∗

t \ I ∗
t,1 consists of the

remaining jobs of I ∗
t . By the definition of I ∗

t,1 and property (P), each job of I ∗
t,2 is

scheduled in S at the end of a previous phase, i.e. at some time t ′ = nk−1 with t ′ < t .
Let OPT∗

1(t) = ∑
i∈I ∗

t,1
β tvi and OPT∗

2(t) = ∑
i∈I ∗

t,2
β tvi be the values obtained in

scheduling jobs of I ∗
t,1 and I ∗

t,2 at time t . By summing the latter quantities over all

times t of a phase Pn , we let OPT∗
1(Pn) = ∑nk−1

t=(n−1)k OPT
∗
1(t) and OPT∗

2(Pn) =
∑nk−1

t=(n−1)k OPT
∗
2(t). There holds OPT

∗(Pn) = OPT∗
1(Pn) + OPT∗

2(Pn).

123

Algorithmica (2019) 81:1–25 23

Let ALG(m)k(t) = ∑
i∈It β

tvi be the value obtained in schedule S a time t . Again

ALG(m)k(Pn) = ∑nk−1
t=(n−1)k ALG(m)k(t) is the total value for phase Pn . By the def-

inition of I ∗
t,1, each job of this set is contained in It or is matched with a i ′ ∈ It

satisfying vi ≤ vi ′ . Hence OPT∗
1(t) ≤ 2ALG(m)k(t) and, by summing is inequality

over all times of phase Pn , we obtain OPT∗
1(Pn) ≤ 2ALG(m)k(Pn). It follows

OPT∗(Ik) =
∑

n≥1

OPT∗
1(Pn) +

∑

n≥1

OPT∗
2(Pn) ≤

∑

n≥1

2ALG(m)k(Pn) +
∑

n≥1

OPT∗
2(Pn)

= 2ALG(m)k(Ik) +
∑

n≥1

OPT∗
2(Pn).

We next upper bound
∑

n≥1OPT
∗
2(Pn). For any n ≥ 1, let Ln be the set of jobs

scheduled in S at the end of Pn , i.e., at time kn− 1. For any time t , each job i ∈ I ∗
t,2 is

contained in some set Ln with nk − 1 < t . Thus
∑

n≥1 OPT
∗
2(Pn) is upper bounded

by the total value obtained in scheduling jobs of Ln in S� at times t > nk − 1, for all
n ≥ 1. The maximum possible value achievable in scheduling any job i ∈ Ln at times
t > nk − 1 is at most βnk/(1 − β) · vi , which is obtained if the job is scheduled for
an infinite duration starting at time nk. We conclude

OPT∗(Ik) ≤ 2ALG(m)k(Ik) +
∑

n≥1

βnk

1 − β

∑

i∈Ln

vi

and

OPT∗(Ik)
ALG(m)k(Ik) ≤ 2 +

⎛

⎝
∑

n≥1

βnk

1 − β

∑

i∈Ln

vi

⎞

⎠

/⎛

⎝
∑

n≥1

ALG(m)k(Pn)

⎞

⎠ .

We finally show that, for any n ≥ 1, there holds (
βnk

1−β

∑
i∈Ln

vi)/ALG(m)k(Pn) ≤
βk/(1−βk). This impliesOPT∗(Ik)/ALG(m)k(Ik) ≤ 2+βk/(1−βk) = 1+1/(1−
βk) and the lemma follows.

Consider again any phase Pn . Each i ∈ Ln is scheduled in S at the end of Pn , i.e.,
at time nk − 1. When describing ALG(m)k we argued that in each phase and on each
machine jobs are sequenced in non-increasing order of per-unit value. Hence on each
machine where a job i ∈ Ln is scheduled in S, jobs of per-unit value of at least vi
are sequenced throughout Pn . Since Pn consists of time steps (n − 1)k, . . . , nk − 1,
we obtain ALG(m)k(Pn) ≥ (β(n−1)k − βnk)/(1 − β) · ∑

i∈Ln
vi and, as desired,

(
βnk

1−β

∑
i∈Ln

vi)/ALG(m)k(Pn) ≤ βnk/(β(n−1)k − βnk) = βk/(1 − βk).
�
We are ready to prove Theorem 4.

Proof of Theorem 4 Lemmas 11 and 12 imply (1 + 1/(1 − βk))ALG(m)k(Ik) ≥
OPT∗(Ik) ≥ OPT(Ik), for any input I. Since ALG(m)k(I) = ALG(m)k(Ik) and
1/βk−1OPT(Ik) ≥ OPT(I), the theorem follows.
�

123

24 Algorithmica (2019) 81:1–25

We finally determine the best choice of k. For any β, the competitive ratio of
Corollary 5 is upper bounded by (1+1/(

√
2−1))/(2−√

2) = 1/(3−2
√
2) ≈ 5.828.

Corollary 5 For k = �logβ(2 − √
2)�, the resulting algorithm ALG(m)k achieves a

competitive ratio of (1 + 1/(1 − β(2 − √
2))/(2 − √

2).

Proof The function f (x) = 1
βx−1 (1 + 1

1−βx) is minimized for x∗ = logβ(2 − √
2).

Furthermore it is increasing for x ≥ x∗. Thus, for k = �logβ(2−√
2)�, the competitive

ratio of ALG(m)k is upper bounded by f (x∗ + 1) = (1 + 1/(1 − β(2 − √
2))/(2 −√

2).
�

5 Conclusions

In this paper we have presented new algorithms for storyboarding. As a main contri-
bution we have developed a deterministic online algorithm that achieves a competitive
factor of 1+φ, where φ = (1+√

5)/2 is the Golden Ratio. The resulting performance
guarantee of approximately 2.618 is close to the lower bound of 2 currently known
for deterministic online strategies. Furthermore, we have studied for the first time a
problem setting where stories may be shown simultaneously on several ad positions of
a web page. We have devised an algorithm whose competitiveness is upper bounded
by 1/(3 − 2

√
2) ≈ 5.828.

A natural direction for future work is to improve the above bounds. For the scenario
where a single ad position is available, it would be exciting to develop randomized
online algorithms whose competitiveness beats the deterministic lower bound. To
this end one might investigate strategies that operate again in phases but determine the
length of a phase according to a probability distribution. For the setting where multiple
ad positions are available, we do not know any good lower bounds on the performance
of online algorithms. It would be interesting to construct a lower bound that is higher
than the best upper bound currently known for a single ad position. Another open
problem is to extend the refined algorithm of Sect. 3 to this parallel setting. The
technical issue is to construct consistent schedules in which jobs scheduled last in a
phase are continued in the next phase. Furthermore, it would be interesting to explore
randomized strategies.

Acknowledgements We thank an anonymous referee for helpful comments improving the presentation of
the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Morrell, L.: Global digital ad spend to hit $285bn by 2020. MarketingTechNews (June 2016). http://
www.marketingtechnews.net/news/2016/jun/21/global-digital-ad-spend-hit-285-billion-2020/

123

http://creativecommons.org/licenses/by/4.0/
http://www.marketingtechnews.net/news/2016/jun/21/global-digital-ad-spend-hit-285-billion-2020/
http://www.marketingtechnews.net/news/2016/jun/21/global-digital-ad-spend-hit-285-billion-2020/

Algorithmica (2019) 81:1–25 25

2. Digital Ad spending to surpass TV next year. eMarketer article (March 2016). https://www.emarketer.
com/Article/Digital-Ad-Spending-Surpass-TV-Next-Year/1013671

3. Dasgupta, A., Ghosh, A., Nazerzadeh, H., Raghavan, P.: Online story scheduling in web advertising.
In: Proceedings of the 20th annual ACM-SIAM symposium on discrete algorithms, pp. 1275–1284
(2009)

4. Surround session described at marketingterms.com. http://www.marketingterms.com/dictionary/
surround_session/

5. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28,
202–208 (1985)

6. Balseiro, S.R., Feldman, J., Mirrokni, V.S., Muthukrishnan, S.: Yield optimization of display adver-
tising with ad exchange. Manag. Sci. 60(12), 2886–2907 (2014)

7. Buchbinder, N., Feldman, M., Ghosh, A., Naor, J.: Frequency capping in online advertising. J. Sched.
17(4), 385–398 (2014)

8. Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing ad-auctions revenue.
In: Proceedings of the 15th annual European symposium on algorithms (ESA), Springer LNCS, vol.
4698, pp. 253–264 (2007)

9. Feldman, J., Korula, N., Mirrokni, V.S., Muthukrishnan, S., Pál, M.: Online ad assignment with free
disposal. In: Proceedings of the 5th internationalworkshop on internet and network economics (WINE),
Springer LNCS, vol. 5929, pp. 374–385 (2009)

10. Feige, U., Immorlica, N., Mirrokni, V.S., Nazerzadeh, H.: A combinatorial allocation mechanism with
penalties for banner advertising. In: Proceedings of the 17th international conference on world wide
web, pp. 169–178 (2008)

11. Feldman, J., Mehta, A., Mirrokni, V.S., Muthukrishnan, S.: Online stochastic matching: beating 1-1/e.
In: Proceedings of the 50th annual IEEE symposium on foundations of computer science, pp. 117–126
(2009)

12. Ghosh, A., Sayedi, A.: Expressive auctions for externalities in online advertising. In: Proceedings of
the 19th international conference on world wide web, pp. 371-380 (2010)

13. Mehta, A.: Online matching and ad allocation. Found. Trends Theor. Comput. Sci. 8(4), 265–368
(2013)

14. Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: AdWords and generalized online matching. J.
ACM 54(5), 22 (2007)

123

https://www.emarketer.com/Article/Digital-Ad-Spending-Surpass-TV-Next-Year/1013671
https://www.emarketer.com/Article/Digital-Ad-Spending-Surpass-TV-Next-Year/1013671
http://www.marketingterms.com/dictionary/surround_session/
http://www.marketingterms.com/dictionary/surround_session/

	New Online Algorithms for Story Scheduling in Web Advertising
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 A 4-Competitive Algorithm
	3 A Refined Algorithm
	3.1 Phase Classification
	3.2 Schedule Segments
	3.3 Segement Analysis

	4 An Algorithm for Multiple Ad Positions
	5 Conclusions
	Acknowledgements
	References

