Skip to main content

Physarum Can Compute Shortest Paths: Convergence Proofs and Complexity Bounds

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Included in the following conference series:

Abstract

Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model for the slime’s behavior in the form of a coupled system of differential equations was proposed by Tero, Kobayashi and Nakagaki [TKN07]. We prove that a discretization of the model (Euler integration) computes a (1 + ε)-approximation of the shortest path in O( m L (logn + logL)/ε 3) iterations, with arithmetic on numbers of O(log(nL/ε)) bits; here, n and m are the number of nodes and edges of the graph, respectively, and L is the largest length of an edge. We also obtain two results for a directed Physarum model proposed by Ito et al. [IJNT11]: convergence in the general, nonuniform case and convergence and complexity bounds for the discretization of the uniform case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldauf, S.L., Doolittle, W.F.: Origin and evolution of the slime molds (Mycetozoa). Proc. Natl. Acad. Sci. USA 94, 12007–12012 (1997)

    Article  Google Scholar 

  2. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. Journal of Theoretical Biology 309, 121–133 (2012); A preliminary version of this paper appeared at SODA 2012, pp. 233–240

    Article  MathSciNet  Google Scholar 

  3. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  4. Bonifaci, V.: Physarum can compute shortest paths: A short proof. Information Processing Letters 113(1-2), 4–7 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ito, K., Johansson, A., Nakagaki, T., Tero, A.: Convergence properties for the Physarum solver. arXiv:1101.5249v1 (January 2011)

    Google Scholar 

  6. Kirby, B.J.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  7. LaSalle, J.B.: The Stability of Dynamical Systems. SIAM (1976)

    Google Scholar 

  8. Miyaji, T., Ohnishi, I.: Mathematical analysis to an adaptive network of the Plasmodium system. Hokkaido Mathematical Journal 36(2), 445–465 (2007)

    MathSciNet  Google Scholar 

  9. Miyaji, T., Ohnishi, I.: Physarum can solve the shortest path problem on Riemannian surface mathematically rigourously. International Journal of Pure and Applied Mathematics 47(3), 353–369 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Physical Review Letters 99(068104), 1–4 (2007)

    Google Scholar 

  11. Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  12. Süli, E., Mayers, D.: Introduction to Numerical Analysis. Cambridge University Press (2003)

    Google Scholar 

  13. Steele, J.: The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press (2004)

    Google Scholar 

  14. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology 244, 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  15. http://www.youtube.com/watch?v=czk4xgdhdY4

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becchetti, L., Bonifaci, V., Dirnberger, M., Karrenbauer, A., Mehlhorn, K. (2013). Physarum Can Compute Shortest Paths: Convergence Proofs and Complexity Bounds. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics