Skip to main content

Deterministic Polynomial Approach in the Plane

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Abstract

Two mobile agents with range of vision 1 start at arbitrary points in the plane and have to accomplish the task of approach, which consists in getting at distance at most one from each other, i.e., in getting within each other’s range of vision. An adversary chooses the initial positions of the agents, their possibly different starting times, and assigns a different positive integer label and a possibly different speed to each of them. Each agent is equipped with a compass showing the cardinal directions, with a measure of length and a clock. Each agent knows its label and speed but not those of the other agent and it does not know the initial position of the other agent relative to its own. Agents do not have any global system of coordinates and they cannot communicate. Our main result is a deterministic algorithm to accomplish the task of approach, working in time polynomial in the unknown initial distance between the agents, in the length of the smaller label and in the inverse of the larger speed. The distance travelled by each agent until approach is polynomial in the first two parameters and does not depend on the third. The problem of approach in the plane reduces to a network problem: that of rendezvous in an infinite grid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Research Logistics 49, 256–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher (2002)

    Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  7. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38, 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. Distributed Computing 25, 165–178 (2012)

    Article  MATH  Google Scholar 

  13. J. Czyzowicz, A. Labourel, A. Pelc, How to meet asynchronously (almost) everywhere. ACM Transactions on Algorithms 8, article 37 (2012)

    Google Scholar 

  14. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. In: Proc. 24rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 737–747 (2013)

    Google Scholar 

  17. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. In: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 527–540 (2012)

    Google Scholar 

  18. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. In: Proc. 32nd Annual ACM Symposium on Principles of Distributed Computing, PODC 2013 (to appear, 2013)

    Google Scholar 

  19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. In: Proc. 22nd Ann. ACM Symposium on Parallel Algorithms and Architectures (SPAA 2010), pp. 224–232 (2010)

    Google Scholar 

  22. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 421–434. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer Science 411, 3235–3246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390, 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kowalski, D., Malinowski, A.: How to meet in anonymous network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Kranakis, E., Krizanc, D., Morin, P.: Randomized rendez-vous with limited memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599. IEEE (2003)

    Google Scholar 

  28. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitzenmacher, M., Upfal, E.: Probability and computing: randomized algorithms and probabilistic analysis. Cambridge University Press (2005)

    Google Scholar 

  30. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Networks 59, 331–347 (2012)

    Article  MathSciNet  Google Scholar 

  31. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA ), pp. 599–608 (2007)

    Google Scholar 

  32. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dieudonné, Y., Pelc, A. (2013). Deterministic Polynomial Approach in the Plane. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics