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Abstract. During early phases of the development of an interactive system, fu-
ture system properties are identified (through interaction with end users in the 
brainstorming and prototyping phase of the application, or by other stakehold-
ers) imposing requirements on the final system. They can be specific to the ap-
plication under development or generic to all applications such as usability 
principles. Instances of specific properties include visibility of the aircraft alti-
tude, speed… in the cockpit and the continuous possibility of disengaging the 
autopilot in whatever state the aircraft is. Instances of generic properties include 
availability of undo (for undoable functions) and availability of a progression 
bar for functions lasting more than four seconds. While behavioral models of 
interactive systems using formal description techniques provide complete and 
unambiguous descriptions of states and state changes, it does not provide expli-
cit representation of the absence or presence of properties. Assessing that the 
system that has been built is the right system remains a challenge usually met 
through extensive use and acceptance tests. By the explicit representation of 
properties and the availability of tools to support checking these properties, it 
becomes possible to provide developers with means for systematic exploration 
of the behavioral models and assessment of the presence or absence of these 
properties. This paper proposes the synergistic use two tools for checking both 
generic and specific properties of interactive applications: Petshop and Java 
PathFinder. Petshop is dedicated to the description of interactive system beha-
vior. Java PathFinder is dedicated to the runtime verification of Java applica-
tions and as an extension dedicated to User Interfaces. This approach is  
exemplified on a safety critical application in the area of interactive cockpits for 
large civil aircrafts. 

1 Introduction 

Nowadays interactive applications are more and more required to handle the complex-
ity of command and control systems for safety critical applications. Formalisms, 
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processes and tools are then required to bring together several properties such as  
reliability, dependability and operability. In addition to standard properties of com-
puter systems (such as safety or liveness), interaction properties have been identified. 
Properties related to the usage of an interactive system are called external properties 
[2] [9] and characterize the capacity of the system to provide support for its users to 
accomplish their tasks and goals, potentially in several ways, and prevent or help to 
recover from errors. Although all types of properties are not always completely inde-
pendent one from each other, external properties are related to the user’s point of view 
and usability factor, whereas internal properties are related to the design and devel-
opment process of the system itself (modifiability, run time efficiency). Interactive 
systems have to support both types of properties and dedicated techniques and ap-
proaches have been studied for this purpose, amongst them are formal methods.  
Formal languages have proven their value in several domains and are a necessary 
condition to understand, design and develop systems and check their properties. 

Formal methods are studied since several years in the field of HCI as a mean to 
analyze in a complete and unambiguous way interactions between a user and a sys-
tem. Several types of approaches have been developed [8], which encompass contri-
butions about formal description of an interactive system and/or formal verification of 
its properties. Amongst these approaches, ICO description technique and associated 
Petshop CASE tool, provide augmented support for describing the conceptual model 
of the system but also for analysis and validation at earlier stage in the process [10]. 
This kind of approaches provide support for describing exhaustively interactive sys-
tems and their behavior, as well as prototyping, testing and verifying synchronously 
certain types of properties. However, as existing notations to produce executable 
models are quite expressive, models cannot be verified until they have been translated 
into more abstract models in order to perform properties verification. This paper pro-
poses to associate Petshop to JPF, a framework for runtime verification of Java pro-
grams. This association provides support for complete and non-ambiguous description 
of an interactive application (with Petshop) as well as formal verification of the ICO 
specification based interactive application (with JPF). Next section is dedicated to the 
presentation of the tool suite. Third section illustrates the use of this tool suite for the 
example of the Weather Radar aircraft cockpit application. Fourth section is dedicated 
to related work. 

2 A Tool Suite for the Validation and Verification of Interactive 
Systems 

This tool suite is composed of two software tools: Petshop and JavaPathFinder. Pet-
shop [3] is dedicated to the description of interactive system behavior. JavaPathFinder 
[4] is dedicated to the runtime verification of Java applications and as an extension 
dedicated to User Interfaces.  
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2.1 Petshop 

The CASE tool Petshop1 is Java based and provides support for editing ICO models. 
Interactive Cooperative Object (ICO) [16] is an object-oriented formal notation dedi-
cated to interactive systems. It provides support for describing: the events to which 
the application can react, the set of functions it can perform and the implicit set of 
states in which the system can be. This formalism encompasses both the "input" as-
pects of the interaction (i.e. how user actions impact on the inner state of the applica-
tion, and which actions are enabled at any given time) and its "output" aspects (i.e. 
when and how the application displays information relevant to the user). ICO notation 
is based on Petri nets and Petshop tool then allows classical manipulations on the 
Petri nets add/remove/modify (Petri net items, marking, code within transitions, etc.) 
and offers classical editing services (copy/cut/paste, undo/redo, navigation amongst 
the models, etc.). Petshop also enables to execute simultaneously the interactive ap-
plication as well as its underlying models. Furthermore, it is possible to modify the 
models while the modeled interactive application is running. This list of features 
enables to formally specify, test and validate an interactive application in early stages 
of the development process, using Petshop as a high-fidelity prototyping tool [19]. 
However, properties verification activities require transformation of the high-fidelity 
prototype. Fig. 1 represents diagrammatically the current existing process for verify-
ing properties of interactive applications running in the Petshop environment. 
 

 

Fig. 1. Existing process for verifying properties of Petshop running interactive applications 

The analysis performed at runtime within Petshop environment is executed on 
translated version of ICO models. The translated models are low-level Petri nets and 
the Petshop analysis module performs an invariant Analysis (P/T invariants) of the 
underlying Petri net. Previous work has shown that it is also possible to perform for-
mal manual analysis of interactive system properties [17] as well as ergonomic rules 

                                                           
1 http://www.irit.fr/recherches/ICS/softwares/petshop/ 
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[18], both using ACTL notation for expressing properties. However, as previously 
described, ICO notation is quite expressive and ICO models cannot be verified until 
they have been translated into more abstract models in order to perform properties 
verification. 

2.2 JPF 

Java PathFinder2 (JPF) [4, 23] is a framework for the runtime verification of Java 
programs. It can be used as an explicit-state model checker that works directly on 
Java bytecode. JPF specializes in finding deadlocks, verifying assertions, and check-
ing temporal logic specifications through the use of listeners, which monitors the  
exploration of all possible paths in a Java program and continuously check that the 
specifications are met. JPF explores all possible interleavings in multi-threaded pro-
grams as well as all possible choice points (both in terms of control logic and data 
values) corresponding to a specific environment.  

JPF has many extensions, which can be used to process various languages (e.g., 
UML-style Statecharts, Scala), the use of specific Java libraries (e.g., network com-
munciations, java.awt or javax.swing), or, to switch from model checking to a less 
exhaustive form of verification (e.g., symbolic execution, concolic execution or run-
time analysis). In our case, we are using mostly jpf-awt, which provides convenient 
abstractions of user interface libraries (awt or swing) and means to model interacting 
users through scripts [24]. 

Complex functional properties, corresponding to LTL [21] safety properties, can be 
expressed and checked using JPF listeners. Listeners are Java programs that run in 
parallel with the execution done by JPF, monitor the states of the application under 
test at every step, and check them against the specified formal property. JPF listeners 
are commonly referred to as observers in the model checking community. So, using 
listeners does not require any modification of the original application code; it does 
require knowledge of that code though. Listeners can easily encode LTL safety prop-
erties such as the Property P described above. However, they cannot express liveness 
properties (in layman’s terms, asserting that something good eventually happens), 
e.g., stating that a value is eventually displayed. Liveness properties can be checked 
by JPF only using the jpf-ltl extension, which has not been tested extensively. This 
capability can be useful to check properties such as checking that a progression bar 
keeps moving or that a button eventually gets reset. 

2.3 Process for Formal Description and Verification of Interactive 
Applications 

Fig. 2 summarizes the proposed process. Functional as well as non-functional needs 
and requirements are identified at the beginning of the process (top left part in Fig. 2).  
 

                                                           
2 http://babelfish.arc.nasa.gov/trac/jpf/ 
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Interactive application is then formally described using Petshop tool. In parallel, 
properties that have to be verified by the application are represented using temporal 
logic notations. JPF is then used to verify properties directly on the running interac-
tive application. 

 

 

Fig. 2. Proposed verification process integrating Petshop and JPF 

Following section provides an example of applying the tool suite for the implemen-
tation and verification of a civil aircraft cockpit interactive application. 

3 Illustrative Example: WXR Application 

Weather Radar application (also named WXR) has been modeled taking into account 
ARINC 661 [1] standard, which aims at defining software interfaces to the Cockpit 
Display System (CDS) used in all types of aircraft installations. 

3.1 Weather Radar Presentation 

Weather radar is an application currently deployed in many cockpits of commercial 
aircrafts. It provides support to pilot’s activities by increasing their awareness of me-
teorological phenomena during the flight journey, allowing them to determine if they 
may have to request for a trajectory change, in order to avoid storms or precipitations 
for example. Fig. 3A shows screenshots of weather radar displays. Fig. 3B presents a 
screenshot of the weather radar control panel. This panel provides two functionalities 
to the crew members. The first one is dedicated to the mode selection of weather radar 
and provides information about status of the radar, in order to ensure that the weather 
radar can be set up correctly. The second functionality, available in the lower part of 
the window, is dedicated to the adjustment of the weather radar orientation (Tilt an-
gle). This can be done in an automatic way or manually. Additionally, a stabilization 
function aims at keeping the radar beam stable even in case of turbulences. It shall not 
be possible to manually edit the Tilt angle if the application is in automatic mode or if 
the stabilization functionality is on. 
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Fig. 3. A - Screenshot of weather radar displays, B - Screenshot of the weather radar control 
panel 

3.2 Formal Specification of WXR Application with Petshop 

Fig. 4 presents a diagrammatic overview of the WXR application running in the Pet-
shop environment. The following parts of the application are represented distinctive-
ly: the presentation part of the application (User Interface), the behavioral part of the 
application (Cooperative Objects models) and the functions that bind the presentation 
part to the behavioral part: activation and rendering functions. 

 

 

Fig. 4. Overview of the WXR application running in the Petshop environment 

The weather radar control panel application is composed of the presentation part 
(shown in Fig. 3B), the Cooperative Object (CO) model (shown in Fig. 5), and the 
activation and rendering functions. Activation and rendering functions are not  
presented in this article and the interested reader can find example in [16]. The Coop-
erative Object shown in Fig. 5 is the formal description of the WXR application’s 
behavior. This formal description is used as part of the specification for developing 
the final application running on the targeted system. JPF tool is then used to verify 
properties against the final application as described in the following paragraphs. 
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Fig. 5. Cooperative Object (CO) model of the weather radar control panel 

3.3 Formal Verification of WXR Application with JPF 

Our goal is to demonstrate that we can automate the exhaustive verification of formal 
properties on interactive systems using the WRX application. For that we use the JPF 
model checker, and more precisely jpf-awt, a JPF extension for model checking ap-
plications making use of the java.awt and java.swing libraries [24]. This extension 
provides means of modeling user inputs (e.g., pressing buttons, entering text, select-
ing items) and understanding awt (or swing) method calls through abstractions. 

The first step in using JPF to model-checked interactive applications consists of 
identifying user input scenarios of interest and capturing them using scripts that are 
passed to jpf-awt. This allows us to “close the system” (in model checking jargon), 
which in this case means that the verification can be done without human interaction. 
The scripts use a simple scripting language to describe input sequences of interest; in 
some ways, they describe ranges of possible interactions with the application. In the 
case of WRX, we can define a range of scenarios starting with some mode selection 
and then allowing a user to play freely with tilt selection, then stabilization and finally 
setting a range of tilt angle. This corresponds to the following script, in which the 
ANY keyword indicates a random choice between different options: 

 
ANY {$MODE_SELECTION.select()} 

ANY {NONE | $MANUAL.doClick() | $AUTO.doClick()} 

ANY {NONE | $ON.doClick() | OFF.doClick()} 

$TILT_ANLGE:input.setText(“whatever”) 
 

The second step consists of capturing a formal property representing functional  
or non-functional requirements. Non-functional, systemic, requirements such as  
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requiring the absence of deadlocks or other “Java language issues” are checked auto-
matically by JPF. Functional requirements can be expressed, and thus checked, by 
various means. Assertions are simple instructions, which can be inserted at any point 
in the user interface code. They simply monitor the value of complex conditions over 
the values or states of any user interface object. For example, the property, say P, 
stating that “it shall not be possible to manually edit the Tilt angle if the application is 
in automatic mode or if the stabilization functionality is on” can be checked by plac-
ing the assertion based on the following condition 

 
(lbl_Selection.getText()!=“AUTO”) && (lbl_Stabilization.getText()!=“ON) 

 
in the method that displays a new tilt angle. If P can be violated by some of sequence 
allowed by the input script, then JPF reports the violation and demonstrates it by dis-
playing a trace expressed in terms of the elements described in the script. Assertions 
are also very useful to check that an entered numerical value is within a specific 
range, e.g., checking that a title angle value is indeed between 0o and 360o. Assertions 
are also convenient for expressing some simple safety (in layman’s term, asserting 
that nothing bad happens) properties. However using assertions requires instrument-
ing the code of the application, which is not always desirable. 

The third step consists of running JPF and waiting for its report. If the property is 
verified, JPF returns some statistics about the analysis time and the number of states 
and threads explored by the analysis. If the property can be violated by the applica-
tion, JPF returns a counter-example showing a possible violation sequence. This 
counter-example is produced as a trace of events corresponding to the events used in 
the script, thus facilitating the understanding of the counter-example by the developer; 
displaying a trace as a full Java execution trace would be overwhelming to the devel-
oper and would be hard to relate to the application. 

4 Related Work 

Paterno and Santoro [20] proposed an approach based on formal model-checking 
(with CADP3 toolset) of LOTOS specifications of dialogue between the user and the 
system. Another set of approaches are based on the formal verification of state charts. 
Campos and Harrison [5] proposed an approach based on SMV [15] model-checking 
of Interactor specifications. Kamel and Ait Ameur [13] also propose an approach to 
verify properties for multimodal interactions with SMV model checker. Combéfis et 
al. [7] propose to translate state chart models into Java programs which can then be 
verified using Java PathFinder model checker. All of these approaches based on state 
chart models of interactive application behavior do not provide support for complete 
and non-ambiguous description of concurrent events driven applications (such as 
multimodal interactive systems). Furthermore, they do not provide support for simul-
taneous execution of the application prototype from the models, as actually provided 

                                                           
3 http://cadp.inria.fr/ 
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by Petshop. Approaches based on the executability of models provide augmented 
support for describing the conceptual model of the system and for analysis and verifi-
cation at earlier stage in the process [10]. This kind of approaches provides support 
for describing exhaustively interactive systems and their behavior, as well as proto-
typing, testing and verifying synchronously certain types of properties. APEX-CPN 
Tools [22] is a framework based on colored Petri nets [22], which provides support 
for rapid prototyping of ubiquitous environments and a predefined set of algorithms 
for properties verification. However the underlying notation of this framework is less 
expressive than the ICO one. 

5 Conclusion and Future Work 

We presented an approach for supporting validation and verification of interactive 
applications throughout the whole development process. This approach relies on the 
synergistic use of Petshop tool for producing formal specification of the application 
and of JPF tool for formal verification of the developed application. This framework 
provides support for validation and verification of internal and external properties of 
an interactive application. Petshop tool is used to produce formal specifications of 
complex interactive critical applications. JPF tool is then used to verify that the final 
application built from the specification meets the properties requirements.  

The presented work will be followed by an investigation on how to verify proper-
ties on ICO models. As they are the formal specification of the interactive application 
and they are also used as the source code of the application prototype, they could be 
used as the deployed interactive application itself. Future work is to investigate to 
which extent JPF tool can be used to directly perform model-checking on ICO  
running models. 
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