

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 290–299, 2013.
© Springer-Verlag Berlin Heidelberg 2013

V&V of Lexical, Syntactic and Semantic Properties for
Interactive Systems through Model Checking of Formal

Description of Dialog

Guillaume Brat1, Célia Martinie2, and Philippe Palanque2

1 NASA Ames Research Center, MS-269-1 Moffett Field, California, USA
guillaume.p.brat@nasa.gov

2 IRIT, Université Paul Sabatier, 118, route de Narbonne
31062 Toulouse Cedex 9, France

{martinie,palanque}@irit.fr

Abstract. During early phases of the development of an interactive system, fu-
ture system properties are identified (through interaction with end users in the
brainstorming and prototyping phase of the application, or by other stakehold-
ers) imposing requirements on the final system. They can be specific to the ap-
plication under development or generic to all applications such as usability
principles. Instances of specific properties include visibility of the aircraft alti-
tude, speed… in the cockpit and the continuous possibility of disengaging the
autopilot in whatever state the aircraft is. Instances of generic properties include
availability of undo (for undoable functions) and availability of a progression
bar for functions lasting more than four seconds. While behavioral models of
interactive systems using formal description techniques provide complete and
unambiguous descriptions of states and state changes, it does not provide expli-
cit representation of the absence or presence of properties. Assessing that the
system that has been built is the right system remains a challenge usually met
through extensive use and acceptance tests. By the explicit representation of
properties and the availability of tools to support checking these properties, it
becomes possible to provide developers with means for systematic exploration
of the behavioral models and assessment of the presence or absence of these
properties. This paper proposes the synergistic use two tools for checking both
generic and specific properties of interactive applications: Petshop and Java
PathFinder. Petshop is dedicated to the description of interactive system beha-
vior. Java PathFinder is dedicated to the runtime verification of Java applica-
tions and as an extension dedicated to User Interfaces. This approach is
exemplified on a safety critical application in the area of interactive cockpits for
large civil aircrafts.

1 Introduction

Nowadays interactive applications are more and more required to handle the complex-
ity of command and control systems for safety critical applications. Formalisms,

 V&V of Lexical, Syntactic and Semantic Properties for Interactive Systems 291

processes and tools are then required to bring together several properties such as
reliability, dependability and operability. In addition to standard properties of com-
puter systems (such as safety or liveness), interaction properties have been identified.
Properties related to the usage of an interactive system are called external properties
[2] [9] and characterize the capacity of the system to provide support for its users to
accomplish their tasks and goals, potentially in several ways, and prevent or help to
recover from errors. Although all types of properties are not always completely inde-
pendent one from each other, external properties are related to the user’s point of view
and usability factor, whereas internal properties are related to the design and devel-
opment process of the system itself (modifiability, run time efficiency). Interactive
systems have to support both types of properties and dedicated techniques and ap-
proaches have been studied for this purpose, amongst them are formal methods.
Formal languages have proven their value in several domains and are a necessary
condition to understand, design and develop systems and check their properties.

Formal methods are studied since several years in the field of HCI as a mean to
analyze in a complete and unambiguous way interactions between a user and a sys-
tem. Several types of approaches have been developed [8], which encompass contri-
butions about formal description of an interactive system and/or formal verification of
its properties. Amongst these approaches, ICO description technique and associated
Petshop CASE tool, provide augmented support for describing the conceptual model
of the system but also for analysis and validation at earlier stage in the process [10].
This kind of approaches provide support for describing exhaustively interactive sys-
tems and their behavior, as well as prototyping, testing and verifying synchronously
certain types of properties. However, as existing notations to produce executable
models are quite expressive, models cannot be verified until they have been translated
into more abstract models in order to perform properties verification. This paper pro-
poses to associate Petshop to JPF, a framework for runtime verification of Java pro-
grams. This association provides support for complete and non-ambiguous description
of an interactive application (with Petshop) as well as formal verification of the ICO
specification based interactive application (with JPF). Next section is dedicated to the
presentation of the tool suite. Third section illustrates the use of this tool suite for the
example of the Weather Radar aircraft cockpit application. Fourth section is dedicated
to related work.

2 A Tool Suite for the Validation and Verification of Interactive
Systems

This tool suite is composed of two software tools: Petshop and JavaPathFinder. Pet-
shop [3] is dedicated to the description of interactive system behavior. JavaPathFinder
[4] is dedicated to the runtime verification of Java applications and as an extension
dedicated to User Interfaces.

292 G. Brat, C. Martinie, and P. Palanque

2.1 Petshop

The CASE tool Petshop1 is Java based and provides support for editing ICO models.
Interactive Cooperative Object (ICO) [16] is an object-oriented formal notation dedi-
cated to interactive systems. It provides support for describing: the events to which
the application can react, the set of functions it can perform and the implicit set of
states in which the system can be. This formalism encompasses both the "input" as-
pects of the interaction (i.e. how user actions impact on the inner state of the applica-
tion, and which actions are enabled at any given time) and its "output" aspects (i.e.
when and how the application displays information relevant to the user). ICO notation
is based on Petri nets and Petshop tool then allows classical manipulations on the
Petri nets add/remove/modify (Petri net items, marking, code within transitions, etc.)
and offers classical editing services (copy/cut/paste, undo/redo, navigation amongst
the models, etc.). Petshop also enables to execute simultaneously the interactive ap-
plication as well as its underlying models. Furthermore, it is possible to modify the
models while the modeled interactive application is running. This list of features
enables to formally specify, test and validate an interactive application in early stages
of the development process, using Petshop as a high-fidelity prototyping tool [19].
However, properties verification activities require transformation of the high-fidelity
prototype. Fig. 1 represents diagrammatically the current existing process for verify-
ing properties of interactive applications running in the Petshop environment.

Fig. 1. Existing process for verifying properties of Petshop running interactive applications

The analysis performed at runtime within Petshop environment is executed on
translated version of ICO models. The translated models are low-level Petri nets and
the Petshop analysis module performs an invariant Analysis (P/T invariants) of the
underlying Petri net. Previous work has shown that it is also possible to perform for-
mal manual analysis of interactive system properties [17] as well as ergonomic rules

1 http://www.irit.fr/recherches/ICS/softwares/petshop/

 V&V of Lexical, Syntactic and Semantic Properties for Interactive Systems 293

[18], both using ACTL notation for expressing properties. However, as previously
described, ICO notation is quite expressive and ICO models cannot be verified until
they have been translated into more abstract models in order to perform properties
verification.

2.2 JPF

Java PathFinder2 (JPF) [4, 23] is a framework for the runtime verification of Java
programs. It can be used as an explicit-state model checker that works directly on
Java bytecode. JPF specializes in finding deadlocks, verifying assertions, and check-
ing temporal logic specifications through the use of listeners, which monitors the
exploration of all possible paths in a Java program and continuously check that the
specifications are met. JPF explores all possible interleavings in multi-threaded pro-
grams as well as all possible choice points (both in terms of control logic and data
values) corresponding to a specific environment.

JPF has many extensions, which can be used to process various languages (e.g.,
UML-style Statecharts, Scala), the use of specific Java libraries (e.g., network com-
munciations, java.awt or javax.swing), or, to switch from model checking to a less
exhaustive form of verification (e.g., symbolic execution, concolic execution or run-
time analysis). In our case, we are using mostly jpf-awt, which provides convenient
abstractions of user interface libraries (awt or swing) and means to model interacting
users through scripts [24].

Complex functional properties, corresponding to LTL [21] safety properties, can be
expressed and checked using JPF listeners. Listeners are Java programs that run in
parallel with the execution done by JPF, monitor the states of the application under
test at every step, and check them against the specified formal property. JPF listeners
are commonly referred to as observers in the model checking community. So, using
listeners does not require any modification of the original application code; it does
require knowledge of that code though. Listeners can easily encode LTL safety prop-
erties such as the Property P described above. However, they cannot express liveness
properties (in layman’s terms, asserting that something good eventually happens),
e.g., stating that a value is eventually displayed. Liveness properties can be checked
by JPF only using the jpf-ltl extension, which has not been tested extensively. This
capability can be useful to check properties such as checking that a progression bar
keeps moving or that a button eventually gets reset.

2.3 Process for Formal Description and Verification of Interactive
Applications

Fig. 2 summarizes the proposed process. Functional as well as non-functional needs
and requirements are identified at the beginning of the process (top left part in Fig. 2).

2 http://babelfish.arc.nasa.gov/trac/jpf/

294 G. Brat, C. Martinie, and P. Palanque

Interactive application is then formally described using Petshop tool. In parallel,
properties that have to be verified by the application are represented using temporal
logic notations. JPF is then used to verify properties directly on the running interac-
tive application.

Fig. 2. Proposed verification process integrating Petshop and JPF

Following section provides an example of applying the tool suite for the implemen-
tation and verification of a civil aircraft cockpit interactive application.

3 Illustrative Example: WXR Application

Weather Radar application (also named WXR) has been modeled taking into account
ARINC 661 [1] standard, which aims at defining software interfaces to the Cockpit
Display System (CDS) used in all types of aircraft installations.

3.1 Weather Radar Presentation

Weather radar is an application currently deployed in many cockpits of commercial
aircrafts. It provides support to pilot’s activities by increasing their awareness of me-
teorological phenomena during the flight journey, allowing them to determine if they
may have to request for a trajectory change, in order to avoid storms or precipitations
for example. Fig. 3A shows screenshots of weather radar displays. Fig. 3B presents a
screenshot of the weather radar control panel. This panel provides two functionalities
to the crew members. The first one is dedicated to the mode selection of weather radar
and provides information about status of the radar, in order to ensure that the weather
radar can be set up correctly. The second functionality, available in the lower part of
the window, is dedicated to the adjustment of the weather radar orientation (Tilt an-
gle). This can be done in an automatic way or manually. Additionally, a stabilization
function aims at keeping the radar beam stable even in case of turbulences. It shall not
be possible to manually edit the Tilt angle if the application is in automatic mode or if
the stabilization functionality is on.

 V&V of Lexical, Syntactic and Semantic Properties for Interactive Systems 295

Fig. 3. A - Screenshot of weather radar displays, B - Screenshot of the weather radar control
panel

3.2 Formal Specification of WXR Application with Petshop

Fig. 4 presents a diagrammatic overview of the WXR application running in the Pet-
shop environment. The following parts of the application are represented distinctive-
ly: the presentation part of the application (User Interface), the behavioral part of the
application (Cooperative Objects models) and the functions that bind the presentation
part to the behavioral part: activation and rendering functions.

Fig. 4. Overview of the WXR application running in the Petshop environment

The weather radar control panel application is composed of the presentation part
(shown in Fig. 3B), the Cooperative Object (CO) model (shown in Fig. 5), and the
activation and rendering functions. Activation and rendering functions are not
presented in this article and the interested reader can find example in [16]. The Coop-
erative Object shown in Fig. 5 is the formal description of the WXR application’s
behavior. This formal description is used as part of the specification for developing
the final application running on the targeted system. JPF tool is then used to verify
properties against the final application as described in the following paragraphs.

296 G. Brat, C. Martinie, and P. Palanque

Fig. 5. Cooperative Object (CO) model of the weather radar control panel

3.3 Formal Verification of WXR Application with JPF

Our goal is to demonstrate that we can automate the exhaustive verification of formal
properties on interactive systems using the WRX application. For that we use the JPF
model checker, and more precisely jpf-awt, a JPF extension for model checking ap-
plications making use of the java.awt and java.swing libraries [24]. This extension
provides means of modeling user inputs (e.g., pressing buttons, entering text, select-
ing items) and understanding awt (or swing) method calls through abstractions.

The first step in using JPF to model-checked interactive applications consists of
identifying user input scenarios of interest and capturing them using scripts that are
passed to jpf-awt. This allows us to “close the system” (in model checking jargon),
which in this case means that the verification can be done without human interaction.
The scripts use a simple scripting language to describe input sequences of interest; in
some ways, they describe ranges of possible interactions with the application. In the
case of WRX, we can define a range of scenarios starting with some mode selection
and then allowing a user to play freely with tilt selection, then stabilization and finally
setting a range of tilt angle. This corresponds to the following script, in which the
ANY keyword indicates a random choice between different options:

ANY {$MODE_SELECTION.select()}

ANY {NONE | $MANUAL.doClick() | $AUTO.doClick()}

ANY {NONE | $ON.doClick() | OFF.doClick()}

$TILT_ANLGE:input.setText(“whatever”)

The second step consists of capturing a formal property representing functional
or non-functional requirements. Non-functional, systemic, requirements such as

 V&V of Lexical, Syntactic and Semantic Properties for Interactive Systems 297

requiring the absence of deadlocks or other “Java language issues” are checked auto-
matically by JPF. Functional requirements can be expressed, and thus checked, by
various means. Assertions are simple instructions, which can be inserted at any point
in the user interface code. They simply monitor the value of complex conditions over
the values or states of any user interface object. For example, the property, say P,
stating that “it shall not be possible to manually edit the Tilt angle if the application is
in automatic mode or if the stabilization functionality is on” can be checked by plac-
ing the assertion based on the following condition

(lbl_Selection.getText()!=“AUTO”) && (lbl_Stabilization.getText()!=“ON)

in the method that displays a new tilt angle. If P can be violated by some of sequence
allowed by the input script, then JPF reports the violation and demonstrates it by dis-
playing a trace expressed in terms of the elements described in the script. Assertions
are also very useful to check that an entered numerical value is within a specific
range, e.g., checking that a title angle value is indeed between 0o and 360o. Assertions
are also convenient for expressing some simple safety (in layman’s term, asserting
that nothing bad happens) properties. However using assertions requires instrument-
ing the code of the application, which is not always desirable.

The third step consists of running JPF and waiting for its report. If the property is
verified, JPF returns some statistics about the analysis time and the number of states
and threads explored by the analysis. If the property can be violated by the applica-
tion, JPF returns a counter-example showing a possible violation sequence. This
counter-example is produced as a trace of events corresponding to the events used in
the script, thus facilitating the understanding of the counter-example by the developer;
displaying a trace as a full Java execution trace would be overwhelming to the devel-
oper and would be hard to relate to the application.

4 Related Work

Paterno and Santoro [20] proposed an approach based on formal model-checking
(with CADP3 toolset) of LOTOS specifications of dialogue between the user and the
system. Another set of approaches are based on the formal verification of state charts.
Campos and Harrison [5] proposed an approach based on SMV [15] model-checking
of Interactor specifications. Kamel and Ait Ameur [13] also propose an approach to
verify properties for multimodal interactions with SMV model checker. Combéfis et
al. [7] propose to translate state chart models into Java programs which can then be
verified using Java PathFinder model checker. All of these approaches based on state
chart models of interactive application behavior do not provide support for complete
and non-ambiguous description of concurrent events driven applications (such as
multimodal interactive systems). Furthermore, they do not provide support for simul-
taneous execution of the application prototype from the models, as actually provided

3 http://cadp.inria.fr/

298 G. Brat, C. Martinie, and P. Palanque

by Petshop. Approaches based on the executability of models provide augmented
support for describing the conceptual model of the system and for analysis and verifi-
cation at earlier stage in the process [10]. This kind of approaches provides support
for describing exhaustively interactive systems and their behavior, as well as proto-
typing, testing and verifying synchronously certain types of properties. APEX-CPN
Tools [22] is a framework based on colored Petri nets [22], which provides support
for rapid prototyping of ubiquitous environments and a predefined set of algorithms
for properties verification. However the underlying notation of this framework is less
expressive than the ICO one.

5 Conclusion and Future Work

We presented an approach for supporting validation and verification of interactive
applications throughout the whole development process. This approach relies on the
synergistic use of Petshop tool for producing formal specification of the application
and of JPF tool for formal verification of the developed application. This framework
provides support for validation and verification of internal and external properties of
an interactive application. Petshop tool is used to produce formal specifications of
complex interactive critical applications. JPF tool is then used to verify that the final
application built from the specification meets the properties requirements.

The presented work will be followed by an investigation on how to verify proper-
ties on ICO models. As they are the formal specification of the interactive application
and they are also used as the source code of the application prototype, they could be
used as the deployed interactive application itself. Future work is to investigate to
which extent JPF tool can be used to directly perform model-checking on ICO
running models.

References

1. ARINC 661 specification: Cockpit Display System Interfaces to User Systems, Prepared
by AEEC. Published by Aeronautical Radio, Inc. (April 22, 2002)

2. Bass, L., John, B., Juristo Juzgado, N., Sánchez Segura, M.I.: Usability-Supporting Archi-
tectural Patterns. In: ICSE 2004, pp. 716–717 (2004)

3. Bastide, R., Navarre, D., Palanque, P.: A Tool-Supported Design Framework for Safety
Critical Interactive Systems. Interacting with Computers 15(3), 309–328 (2003)

4. Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry, M.,
Pasareanu, C., Venet, A., Washington, R., Visser, W.: Experimental Evaluation of Verifi-
cation and Validation Tools on Martian Rover Software. Journal on Formal Methods in
Systems Design 25(2-3) (September 2004)

5. Campos, J.C., Harrison, M.D.: Model Checking Interactor Specifications. Journal of Au-
tomated Software Engineering 8(3-4), 275–310 (2001)

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Lan-
guages and Systems 8(2), 244–263 (1986)

 V&V of Lexical, Syntactic and Semantic Properties for Interactive Systems 299

7. Combéfis, S., Giannakopoulou, D., Pecheur, C., Feary, M.: A Formal Framework for De-
sign and Analysis of Human-Machine Interaction. In: Proceedings of IEEE System, Man
and Cybernetics (SMC), Anchorage, USA, pp. 1801–1808 (2011)

8. Dix, A.: Upside down As and algorithms – computational formalisms and theory. In: Car-
roll, J. (ed.) HCI Models Theories and Frameworks: Toward a Multidisciplinary Science,
ch. 14, pp. 381–429. Morgan Kaufmann, San Francisco (2003)

9. Gram, C., Cockton, G.: Design principles for Interactive Software. Chapman & Hall, Lon-
don (1996)

10. Fuchs, N.E.: Specifications are (preferably) executable. Journal on Software Engineer-
ing 7(5), 323–334 (1992)

11. Hewelt, M., Wagner, T., Cabac, L.: Integrating verification into the PAOSE approach. In:
Proceedings of the Petri Nets and Software Engineering. International Workshop PNSE
2011, Newcastle upon Tyne, UK, pp. 124–135 (June 2011)

12. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for modelling
and validation of concurrent systems. International Journal on Software Tools for Tech-
nology Transfer 9(3-4), 213–254 (2007)

13. Kamel, N., Ait Ameur, Y.: A Formal Model for CARE Usability Properties Verification in
Multimodal HCI. In: Proceeding of IEEE International Conference on Pervasive Services,
Istanbul, Turkey, July 15-20, pp. 341–348 (2007)

14. Mascheroni, M., Wagner, T., Wüstenberg, L.: Verifying reference nets by means of hyper-
nets: A plugin for Renew. In: Proceedings of the International Workshop on Petri Nets and
Software Engineering, PNSE 2010, Braga, Portugal, pp. 39–54 (2010)

15. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
16. Navarre, D., Palanque, P., Ladry, J.-F., Barboni, E.: ICOs: a Model-Based User Interface

Description Technique dedicated to Interactive Systems Addressing Usability, Reliability
and Scalability. Transactions on Computer-Human Interaction, ACM SIGCHI 16(4), 1–56
(2009)

17. Palanque, P., Bastide, R.: Verification of an Interactive Software by analysis of its formal
specification. In: Proceedings of the IFIP TC13 Interact 1995 Conference, Lillehammer,
Norway, June 27-29, pp. 191–197 (1995)

18. Palanque, P., Farenc, C.: Embedding Ergonomic Rules as Generic Requirements in a For-
mal Development Process of Interactive Software. In: Proceedings of IFIP TC 13 Interact
1999 Conference, Edinburg, Scotland, September 1-4 (1999)

19. Palanque, P., Ladry, J.-F., Navarre, D., Barboni, E.: High-Fidelity Prototyping of Interac-
tive Systems Can Be Formal Too. In: Jacko, J.A. (ed.) HCI International 2009, Part I.
LNCS, vol. 5610, pp. 667–676. Springer, Heidelberg (2009)

20. Paternó, F., Santoro, C.: Integrating model checking and HCI tools to help designers verify
user interface properties. In: Paternó, F. (ed.) DSV-IS 2000. LNCS, vol. 1946, pp. 135–
150. Springer, Heidelberg (2001)

21. Pnueli: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on
Foundation of Computer Science, pp. 46–57 (1977)

22. Silva, J.L., Campos, J.C., Harrison, M.D.: Formal Analysis of Ubiquitous Computing En-
vironments through the APEX Framework. In: EICS 2012: Proceedings of the 4th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 131–140 (2012)

23. Visser, W., Havelund, K., Brat, G., Park, S.: Model Checking Programs. In: Proceedings
of the 15th IEEE International Conference on Automated Software Engineering (ASE
2000). IEEE Computer Society, Washington, DC (2000)

24. Mehlitz, P.C., Tkachuk, O., Ujma, M.: JPF-AWT: Model checking GUI applications.
In: ASE 2011, pp. 584–587 (2011)

	V&V of Lexical, Syntactic and Semantic Properties for Interactive Systems through Model Checking of Formal
Description of Dialog
	1 Introduction
	2 A Tool Suite for the Validation and Verification of Interactive Systems
	2.1 Petshop
	2.2 JPF
	2.3 Process for Formal Description and Verification of Interactive Applications

	3 Illustrative Example: WXR Application
	3.1 Weather Radar Presentation
	3.2 Formal Specification of WXR Application with Petshop
	3.3 Formal Verification of WXR Application with JPF

	4 Related Work
	5 Conclusion and Future Work
	References

