
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 441–450, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Visual Interfaces Design Simplification
through Components Reuse

Javier Rodeiro-Iglesias and Pedro M. Teixeira-Faria

School of Informatics Engineering, University of Vigo, Spain
jrodeiro@uvigo.es

School of Technology and Management - Polytechnic Institute of Viana do Castelo, Portugal
pfaria@estg.ipvc.pt

Abstract. One way to simplify a visual interface creating process is to give to
the interface designer the ability of reusing pre-built visual components repre-
sentations. In order to avoid premature commitment to specific presentations,
and leaves open the prospect of alternative visual presentations for different en-
vironments, abstract interaction objects (AIOs) can be used. One of these AIOs
is the complex component, which is a component representation having similari-
ty properties with the object-oriented paradigm. This type of component em-
braces the reuse concept at semantic and functional levels, which contributes to
reduce the complexity in the graphical user interface design process. Further
advantages of using complex components are the possibility of visual and
functional customization of these components, which greatly improves the
versatility of them when compared with a widget.

Keywords: Abstract Interaction Objects, Complex Components, Visual User
Interface Components Reuse.

1 Introduction

Most of the visual interfaces are created for the user to interact with them, using
interactive visual components. Much work in the field of interactive graphics involves
describing an interface in terms of a collection of abstract interaction objects (AIOs)
[3][6][12]. An AIO represents a data structure of a user interface object without any
graphical representation and independent of any implementation environment. The
use of AIOs avoids premature commitment to specific presentations, and leaves open
the prospect of alternative visual presentations for different environments. Therefore,
in the interface designing process the selection of appropriate AIOs becomes
necessary. In the study here described an AIO was selected: the complex component
(CC). The criteria considered to select it were by the fact that his representation
supports visual appearance, topological composition and interaction [15]. It is also
indicated that there exists a generic similarity between (CC) and object-oriented
paradigm (OOP) which means that a relation between visual interface components
(the complex components) and objects in OOP could be established. Knowing that
OOP supports objects reusing (e.g. by association, aggregation or inheritance) [5] and

442 J. Rodeiro-Iglesias and P.M. Teixeira-Faria

taking into account the comparable relation that exists between objects (in OOP) and
(CCs), the possibility of reusing (CCs) will be verified. The approach here proposed
indicates the existence of a generic similarity between (CCs) and OOP [13] which
means that a relation between these visual interface components and objects in OOP
can be established (encapsulation, inheritance, polymorphism). For example, a (CC)
has features that can be related with the aggregation concept existent in OOP, which
differs from ordinary object composition in that it does not imply ownership. Thus, by
eliminating one of the containers will not imply to eliminate the objects it contains
(the same happens with CCs). Each container can be identified as a class, which keep
a list of their child components, and allow adding, removing, or retrieving
components amongst their children. In order to achieve this objective, we analyze the
properties of component reuse at semantic and functional levels, based in one game
visual interface prototype previously created [11].

1.1 Study Motivation

It is possible to establish the main scope of the study presented here. It is focused on
the representation of self-contained visual interfaces based on the direct manipulation
interaction style [10], supporting user freedom design features. The user interface
designer can establish the shape, size, color, position, among other properties for each
interface visual element. Thus, the user interface designer has the possibility to create
a visual interface prototype based on visual components. Specifically, the contribution
of this study is focused in verifying complexity reduction (simplification) in the visual
interfaces design process, by using reuse features provided by (CCs) usage. The
possibility of reusing (CCs) is of great importance since that contributes to simplify
the interface design, which can be freely established by the interface designer. The
visual elements to be used are independent of any platform or programming
environment.

1.2 Defined Problem

In a previous study [15] the bases for characterizing a new AIO were established: this
new AIO is called (CC). Using this concept, an example of a game interface
implementation was designed. And, after the interface has been designed, the idea of
verifying the (CC) reuse features has emerged. It was decided to verify their reuse
potential at both the semantic and functional levels. We understand the semantic level
as the possibility to change (CCs) visual appearance, maintaining his functionality.
And thus, allowing to use components on different platforms (e.g. to be possible to
change the graphics of a game, while maintaining its functionality). The components
reuse at functional level implies more profound changes in (CCs), related with his
functionality (e.g. more or less visual states and transitions between them). The
problem that emerges is concerned with the validity of using these both reuse
concepts. Thus, in order to verify that possibility, a relation with the OOP reuse
concepts will be established, since it is a clearly stated and validated paradigm.
Therefore, from an interface prototype designed using (CCs), and assuming the

 Visual Interfaces Design Simplification through Components Reuse 443

existence of a particular (CC) (with a specific visual appearance and behavior) which
the designer wants to reuse in another interface, it will be verified if it can be done
under considering two perspectives. The first one is semantic, by keeping the
component behavior and changing the visual appearance. The other perspective
implies to change the component behavior while keeping (or not) the original visual
appearance. Considering these two perspectives, an analysis will be made in order to
validate them focusing in the OOP reuse concepts.

2 Components Specifications

Usually, the term reusability is related with OOP technology and most of the times
specifically related to reusing code [1]. Other related term is inheritance reuse which
refers to using the inheritance concept in an application, in order to take advantage of
the behavior implemented in existing classes. Other term is component reuse which
refers to the use of prebuilt, fully encapsulated components, usually called widgets
(WIndows gaDGETS). They are typically self-sufficient and encapsulate only one
concept. Usually, the component reuse concept differs from code reuse in that we
don’t have access to the source code and it differs from inheritance reuse in that it
doesn’t use subclassing (new classes based in existing ones). Common examples of
reusable software components are Java Beans and ActiveX components. There are
several advantages in component reuse. First, it offers a greater scope of reusability
than either code or inheritance reuse because components are self-sufficient
(typically, we plug them in and they work). The main disadvantage of component
reuse is that because components are small and encapsulate only one concept, we may
need a large library of them to create an application (although when a component
encapsulates one concept, it is a cohesive component).

2.1 User Interface Description Languages (XML-UIDL)

During the last decade, new user interface specification tools have emerged, with
special focus on User Interface Description Languages Based on XML (XML-UIDL).

To specify user interfaces using XML [17] is considered to be one solution for the
standardization and interoperability between applications [9][14] and is the main
reason for the constant emergence of new XML-UIDLs. It is possible to observe
(Figure 1) the release year of XML–Compliant languages first versions (drafts in
some cases). Each of them comes up with a specific purpose and application. For
example, one of those description languages is the XForms [16]. It separates the
presentation from the data, keeping the principle of separation of concepts, allowing
component reuse and device independence. However, despite XML supports reuse,
and some of the (XML-UIDL) allow visual presentation reusing, these languages are
not designed to support functional reuse. Thus, this type of interface specifications is
not considered in our analysis related with components reuse, and thus another
approach was taken.

444 J. Rodeiro-Iglesias and P.M. Teixeira-Faria

Fig. 1. XML-UIDL Evolution

2.2 Abstract Interaction Objects (AIOs)

A Concrete Interaction Object (CIO) represents any visible and manipulable user
interface object that can be used to input/output information related to user’s
interactive task, and sometimes called widgets. These objects include some
restrictions [2]:

─ Lack of uniformity and standardization: concrete interaction objects induces a ge-
neralization problem as soon as a same object can be found in different physical
environments with different names, different graphical presentations, but still with
the same behavior;

─ Absence of abstract representation: without such a representation, developers are
submitted to specificities of several physical environments, designers are forced to
not ignore low level details, and human factors experts are mainly focused on pres-
entation aspects rather than behavioral aspects;

─ Lack of compatibility with OO programming: in this programming paradigm most
object classes’ libraries encapsulate logically related classes with respect to inherit-
ance relationship. Basic classes currently provide foundation classes, widget
classes and graphical object classes. Any abstraction that is not compatible with
OO dedicated mechanisms will be limited and useless;

─ Difficulty of reusability: the reuse of existing objects leads to the acceptation of
existing CIO’s constraints which can be considered as insufficient under given cir-
cumstances. Creating new AIO from existing AIOs will be less hazardous as ab-
stract properties (e.g., attributes) can be reused from one AIO to another.

─ These shortcomings clearly motivate the need for an abstract interaction object
AIO. Considering that, four AIOs have been analyzed: interactor [6][8][15], ab-
stract data view (ADV) [4][15], virtual interaction object [12] and complex compo-
nent [15]. The AIOs analysis considered here is focused in his visual appearance
and interaction properties (Table 1). Concerning visual appearance, we verified
that two of the AIOs don’t support visual presentation and one of them doesn’t
consider visual states (interactor has states, but are not visual and are algebraically
represented). Interaction refers to the bi-directional interaction from or to an inter-
action object. In general, three elements may interact with an interaction object: the

 Visual Interfaces Design Simplification through Components Reuse 445

user, another interaction object and the application. After the four AIOs have been
analyzed, considering several characteristics (Table 1) we decided to choose the
(CC) to analyze its reuse properties. This choice took into consideration the (CC)
be the AIO which agglutinated more features supported in part by the other AIOs.
Basically, a (CC) is a component composed of other components (simple or/and
complex) which interact with each other through its self and delegate
events/actions working toward a common goal (e.g. a toolbar allows a user to se-
lect a specific tool to perform some task at a given time) [15]. The components fol-
low a hierarchical topological structure and so each one can be contained within
others. Thus, an analysis on semantic and functionality perspectives of (CCs) reuse
is presented.

Table 1. AIOs comparison

 interactor
abstract data

view (ADV)

virtual

interaction object

complex

component

Visual Presentation  

Visual States   

Input from User    

Output to User    

Input from the Application  

Output to the Application  

Input from Other Components   

Output to Other Components   

3 Semantic Perspective of Components Reuse

The visual interface of a game was designed and when the user looks at the interface
he has at his disposal two perfectly distinct groups of visual elements (which
correspond to three balls and three sport fields). The interface functionality was
implemented using (CCs) at two abstraction levels: in one of them, 6 (CCs) were used
(each one corresponding to one ball or one field) and in the other abstraction level, 2
(CCs) were used (one corresponding to a group of balls and the other corresponding
to a group of fields). As previously mentioned, a characteristic resulting from using
(CCs) to represent an user interface is related to the ease of components reuse. In a
first perspective to that, the interface designer can create a new user interface
maintaining its functionality. A new visual interface is immediately obtainable, due to
the fact that (CC) concept to consider components reusability in his characteristics. If
the interface designer wants to reuse a (CC) in another interface, keeping the
functionality but with a different visual appearance, he can do it. This perspective is
focused in drawing a new game interface by simply changing the component visual
states, while still maintaining its functionality. Instead of the user (in this case a child)

446 J. Rodeiro-Iglesias and P.M. Teixeira-Faria

has to relate balls with sport fields, he could for e.g. to relate objects with colors or
sport shoes with balls. In this semantic (CCs) reuse perspective, the designer only has
to be care with changing visual presentation attributes.

4 Functionality Perspective of Components Reuse

Another perspective of components reuse can be analyzed considering changes in the
functionality of the (CCs) used. In a first approach, the changes in the components
functionality are related with the number of components contained inside a (CC)
(number of visual elements to be used) (e.g. instead of using three balls and three
fields, a reduction or an increase in the number of available components could be
tested, maintaining the components functionality). With respect to this approach it
will be important to verify and to assess the changes occurring in parameters
associated with the new visual interface (events, states, visual transitions) according
to the reduction or to the increase in the number of used components.

In OOP a class is defined as a base structure used to create instances of it (objects).
We can identify a (CC) as an interface component (with visual appearance,
composition properties and supporting user interaction) which can be compared to an
OOP class. A general comparison was previously made [15]. However, this part of
the study will be focused on verifying (CCs) reuse features comparing them with the
OOP reuse provided by the concepts of association, aggregation and inheritance [7].

4.1 Components Creation by Association and Aggregation Approach

An association represents a relationship between classes, and gives the common
semantics and structure for many types of “connections” between objects.
Associations are the mechanism that allows objects to communicate to each other
through messages. Analogously, the communication between (CCs) associated with
each other is performed by using delegate events/actions.

Class Association. Each ball (CC) used to design the game previously referred can be
compared with a class with 3 possible visual states (normal, selected and correct) and
3 methods responsible for changing those states (visual transitions). Also each field
(CC) can be identified as having features like a class with 2 visual states (normal and
correct) and one method (visual transition). The structure of a ball and a field is
represented on Figure 2.

On Figure 2 we verify that each ball may receive 2 user events and triggers 1
delegate event (on other component). It is also verifiable that there are internal
transitions between the states of the (CC) limited by restrictions. In the case of the
field, it receives 1 user event and triggers 1 delegate event. It has an internal transition
between the 2 states whose trigger is dependent on a restriction. Relating the (CC)
concept with the class concept, 3 CC_Ball class instances and 3 CC_Field class
instances need to be created to implement the referred game. The relation between
these balls and fields classes can be established by the OOP association, which

 Visual Interfaces Design Simplification through Components Reuse 447

defines a relationship between classes of objects that allows one object instance to
cause another to perform an action on its behalf. In this case we verify the similitude
with OOP method invocation, by the action performed by a delegate event triggered
from a (CC).

Fig. 2. Structure of a ball (left) and a field (right) used in the game interface

Class Aggregation. Aggregations are a special type of associations in which the par-
ticipating classes don’t have an equal status, but make a “whole-part” relationship. A
(CC) also has features that can be related with the aggregation concept existent in
OOP. The CC_Balls and the CC_Fields act as containers of 3 balls and 3 fields,
respectively (Figure 3).

Fig. 3. Structure of the CC_Balls and CC_Fields containers used in the game interface

However, aggregation differs from ordinary composition in the perspective that it
does not imply ownership. Thus, by eliminating one of the containers will not imply
to eliminate the objects it contains. Each container could be identified as a class,
which keep a list of their child components, and allow adding, removing, or retrieving
components amongst their children.

CC_Field_1

CC_Field_2

CC_Field_3

user
event 1

user
event 2

CC_Fields

user
event 3

delegate
event 1

delegate
event 2

delegate
event 3

CC_Ball_1

CC_Ball_2

CC_Ball_3

user
event 1

user
event 2

internal
transition

internal
transition

restriction

CC_Balls

restriction

user
event 3

internal
transition

restriction

448 J. Rodeiro-Iglesias and P.M. Teixeira-Faria

4.2 Components Creation by Inheritance Approach

After analyzing (CCs) reuse approach by using the components, maintaining his
original states and visual transitions, it seems to be adequate to analyze components
reuse through another perspective, in which a (CC) is modified in order to contain
more states and visual transitions. Thus, the relation of (CCs) design with the
inheritance concept OOP will be verified.

Complex Component Application Domain Change. In order to expand and to veri-
fy the level of usage of a (CC) it was decided to change the application domain. Thus,
CC_Balls has been chosen to be reused as a toolbar visual component. As previously
mentioned, it is possible to reuse a (CC) by simply changing its visual appearance and
hence his semantic. However, beyond the domain change it is intended to change the
number of states and visual transitions of the (CCs) that compose the chosen container
CC_Balls (CC). In this way, the following changes were decided to perform:

─ Increase the number of visual states: it is intended that each (CC) inside CC_Balls
has one more visual state (e.g. each ball has three visual states and it is intended
that each tool in the toolbar has four visual states);

─ Increase the number of transitions between visual states: each CC_Ball (CC) inside
CC_Balls contains three possible visual transitions between the three visual states.
It is intended that each tool in the toolbar has five possible visual transitions
between the four visual states.

Fig. 4. The 3 icons (3 equal instances on the left) and the toolbar (on the right) represented as
complex components

On Figure 4 are indicated the structures of each of the 3 tools (CC_Icon_1,
CC_Icon_2, CC_Icon_3) which are inside (CC_Toolbar). Keeping in mind the
possibility of reusing (CCs), comparing it with reuse in OOP, we verify the similitude
with the inheritance concept. Basically, considering a CC_Balls (CC) (which contains

CC_Icon_1

CC_Icon_2

CC_Icon_3

user
event 1

user
event 2

internal
transition

internal
transition

restriction

CC_Toolbar

restriction

user
event 3

internal
transition

restriction

State 1

State 2

State 3

user
event 1

user
event 2

internal
transition

internal
transition

restriction

delegate
event 1

CC_Icon_1 / CC_Icon_2 / CC_Icon_3

restriction

State 4

user
event 3

internal
transition

restriction

user
event 4

 Visual Interfaces Design Simplification through Components Reuse 449

3 balls) represented as a class, we may reuse it as a toolbar (with 3 tools) through the
creation of a class by inheritance and extending it to support a new visual state and to
redefine the existent transitions (by keeping some, eliminating and creating other).
We verify a close relation between (CCs) and OOP. One of the important advantages
of OOP is that it promotes reuse. Therefore, if we use (CCs) to design visual
interfaces, similarly we can do component reuse of those components.

5 Conclusions

It is possible to design visual interfaces through various existent component
specifications. One way to optimize the design process is through the reuse of
components. During the last decade there has been a huge growth in the number of
user interface description languages which uses XML as support language (XML-
UIDL). However, those specifications need to be connected with high-level
components provided by toolkits and usually referred as widgets. The use of those
widgets limits the customization options available and because of that it limits the
potential of reuse of this type of visual components. Additionally, even in spite of an
increasing number of XML-UIDL enabling visual presentation reuse, such XML–
Compliant Languages do not allow components functional reuse. Thus, we decided to
increase the level of abstraction in the components specification by using AIOs. From
those which were verified, the one which best supports features related with visual
presentation, topological composition and component interaction is the (CC). Thus,
we sought to determine whether this type of component supports reuse. It was
possible to verify the existence of a similitude between (CCs) features and OOP
characteristics, considering in particular the reuse. This reuse characteristic can be
applied by a (CC) under a semantic or a functional perspective. It contributes to
reduce the complexity in a graphical user interface design process by reducing the
number of components created and used. However, two envisaged limitations
concerned with (CCs) reuse are:

─ Identification of the issues that is necessary to change in (CCs) characterization in
order to enable reusability;

─ Classify/distinguish a new (CC) created by reusability.

In spite of those limitations, this advantage of being possible to reuse components
simplifies the interface specification process also by being possible to specify
(individually) each component and then, at the global interface level, only be
necessary to specify the part that is not done yet with the (CCs). Therefore, the
obtained results confirm the hypothesis of being possible to simplify a graphical user
interface design through the use of (CCs) which supports reusability. Thus, further
advantages of using (CCs) are the possibility of visual and functional customization
of these components, which greatly improves the versatility of a (CC), when
compared with a widget.

450 J. Rodeiro-Iglesias and P.M. Teixeira-Faria

Acknowledgments. This work was supported by:

1. Grant SFRH/PROTEC/49496/2009 of MCTES – Ministério da Ciência, Tecnolo-
gia e Ensino Superior (Portugal).

2. Project TIN2009-14103-C03-03 of Ministerio de Ciencia e Innovación (Spain)
3. Project 10DPI305002PR of Xunta de Galicia (Spain).

References

1. Ambler, S.: A realistic look at object-oriented reuse. Software Development 6(1), 30–38
(1998)

2. Bodart, F., Vanderdonckt, J.: Widget Standardization through Abstract Interaction Objects.
In: Proceedings of 1st International Conference on Applied Ergonomics, pp. 300–305.
Springer, Istanbul (1996)

3. Carr, D.: Specification of Interface Interaction Objects. In: CHI 1994 – ACM Conference
on Human Factors in Computer Systems, pp. 372–378 (1994)

4. Cowan, D., Lucena, C.: Abstract Data Views: An Interface Specification Concept to En-
hance Design for Reuse. IEEE Transactions on Software Engineering 21, 229–243 (1995)

5. De Champeaux, D.: Object-Oriented Analysis and Top-Down Software Development. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 360–376. Springer, Heidelberg (1991)

6. Duke, D., Harrison, M.: Abstract interaction objects. Computer Graphics Forum 12(3),
25–36 (1993)

7. Eck, D.: Introduction to Programming Using Java, 6th edn. (2011)
8. Faconti, G., Paternó, F.: An approach to the formal specification of the components of an

interaction. In: Vandoni, C., Duce, D. (eds.) Eurographics 1990, pp. 481–494. North-
Holland (1990)

9. Guerrero-Garcia, J., González-Calleros, J., Vanderdonckt, J., Muñoz-Arteaga, J.: A Theo-
retical Survey of User Interface Description Languages: Preliminary Results. In: Latin
American Web Congress, pp. 36–43 (2009), doi:10.1109/LA-WEB.2009.40

10. Hutchins, E., Hollan, J., Norman, D.: Direct Manipulation Interfaces, vol. 1, pp. 311–338.
Lawrence Erlbaum Associates, Inc. (1985)

11. Rodeiro-Iglesias, J., Teixeira-Faria, P.M.: User Interface Representation Using Simple
Components. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS,
vol. 6761, pp. 278–287. Springer, Heidelberg (2011)

12. Savidis, A.: Supporting Virtual Interaction Objects with Polymorphic Platform Bindings in
a User Interface Programming Language. In: Guelfi, N. (ed.) RISE 2004. LNCS,
vol. 3475, pp. 11–22. Springer, Heidelberg (2005)

13. Schlungbaum, E., Elwert, T.: Dialogue Graphs - A Formal and Visual Specification Tech-
nique for Dialogue Modelling. In: BCS-FACS Workshop on Formal Aspects of the Human
Computer Interface. Sheffield Hallam University, Springer (1996)

14. Souchon, N., Vanderdonckt, J.: A Review of XML-compliant User Interface Description
Languages. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003.
LNCS, vol. 2844, pp. 377–391. Springer, Heidelberg (2003)

15. Teixeira-Faria, P.M., Rodeiro-Iglesias, J.: Complex Components Abstraction in Graphical
User Interfaces. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011.
LNCS, vol. 6761, pp. 309–318. Springer, Heidelberg (2011)

16. W3C, XForms 1.0: The neXt generation of web FORMS, W3C Recommendation (October
14, 2003), http://www.w3.org/TR/2003/REC-xforms-20031014/

17. W3C Recommendation: XML, XML 1.0 (2008),
http://www.w3.org/TR/REC-xml/

	Visual Interfaces Design Simplification
through Components Reuse
	1 Introduction
	1.1 Study Motivation
	1.2 Defined Problem

	2 Components Specifications
	2.1 User Interface Description Languages (XML-UIDL)
	2.2 Abstract Interaction Objects (AIOs)

	3 Semantic Perspective of Components Reuse
	4 Functionality Perspective of Components Reuse
	4.1 Components Creation by Association and Aggregation Approach
	4.2 Components Creation by Inheritance Approach

	5 Conclusions
	References

