
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 490–499, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Interface Prototyper Supporting Free Design
Components Specification

Pedro M. Teixeira-Faria1 and Javier Rodeiro-Iglesias2

1 School of Technology and Management - Polytechnic Institute of Viana do Castelo, Portugal
pfaria@estg.ipvc.pt

2 School of Informatics Engineering, University of Vigo, Spain
jrodeiro@uvigo.es

Abstract. Complex components allow increasing the abstraction in a visual
interface specification process, with independence of any platform or program-
ming language to represent an user interface. In order to support this type of
components a XML specification was created which allows specifying compo-
nents visual appearance, composition and dialog. It provides a user interface ab-
straction to free design components (without any dependency of libraries of
predesigned user interface components – toolkits). All information containing
in the specification allows showing what will be the user interface final visual
aspect, using a handmade or a computer technique (this is the objective of this
paper). Using complex components, being incrementally more complex, simpli-
fies the user interface designing and prototyping processes. In order to demon-
strate the possibility to show the visual appearance of an interface and to
validate the specification, a prototype to visualize any user interface specified
using UIFD was created.

Keywords: User Interface Prototyper, Visual Appearance, User Interface Free
Designer.

1 Introduction

In our days, direct manipulation interfaces [5] are virtually universal. Interfaces that
use windows, icons and menus have become a standard in traditional computational
systems. The process of building that final user interfaces can be represented by mod-
els. Usually, a model is supported in some user interface specification and according
with [1][7][9] there are three elements that must be considered on a user interface
specification:

─ Interface graphic elements definition (visual presentation);
─ Component composition;
─ User interaction over the referred components (dialog).

In previous studies [10] the creation of a simple game for younger children was pro-
posed, using DGAUI (Abstract Definition of Graphical User Interface) [9]. The inter-
active visual user interface prototype was created from an abstract representation

 An Interface Prototyper Supporting Free Design Components Specification 491

containing visual elements representing sport balls and sport fields that the user
should connect with each other. After the interface has been implemented it was con-
sidered that certainly the implementation work could have been reduced if the
DGAUI system embraced the complex component concept [13]. It was questioned if
eventually could be possible to reduce the representation complexity in terms of num-
ber of states and visual transitions, through identification and grouping of visual ele-
ments which have a common logic. The complex component concept evolved from
other abstract interaction objects concepts (AIOs) [2][3][11]. Basically, is a compo-
nent composed of other components (simple or/and complex) which interact with each
other through its self and delegate events/actions working toward a common goal (e.g.
a toolbar allows a user to select a specific tool to perform some task at a given time).

The complex components creation process is based on a XML specification (UIFD
– User Interface Free Design) developed to allow representing visual components
freely designed. The specification has a structure divided in three fundamental parts:
repository, library and interface. It allows increasing the abstraction level on the
components representation process used to design the final user interface. Following,
in order to verify and validate the XML specification, a prototyper was developed. An
example of a game interface for younger children was used to verify loading compo-
nents into a memory structure, to obtain the global visual states and to represent the
visual components on the display, in order the user start interact with the interface.

1.1 Study Motivation

The term user interface is most of the times associated to what a user see and interact
with. [6] for example, gives us an interesting interface definition: “interface is where
people and bits meet”. Thus, is imperative that an user interface defining process al-
ways take in consideration the indications of user needs in order to successfully ac-
complish the tasks that he needs/wants. Since a long time, a technique to achieve that
is used and is called low-fidelity prototyping (“lo-fi” for short): the idea is building
prototypes on paper (e.g. sketches) and testing them with real users. The value of
prototyping is widely recognized [8] because it effectively educates developers to
have a concern for usability and formative evaluation, and because it maximizes the
number of times we get to refine the design before commit to code. Following, the
next step will be the translation of those sketches to user interface components, usual-
ly called widgets (windows gadgets) because most of the visual interfaces are created
for the user to interact with them, using those kinds of interactive visual components.
However, usually those visual components are not sufficient to represent a complete
user interface (regarding the visual appearance, the components composition and the
dialog) in many cases by the dependency of libraries of predesigned user interface
components (toolkits) that not allow user interface customization, as a user interface
designer would like. Thus, we would like to focus this study on the importance for an
interface designer, on having the possibility to design free visual components, to be
used to represent complete interfaces prototypes.

492 P.M. Teixeira-Faria and J. Rodeiro-Iglesias

1.2 Defined Problem

We developed a process which allows, from a XML representation, to test and to
validate how a free component (simple or complex) would appear and could be used
in a visual user interface. And, thereby, it is possible to refine the components (and
consequently the user interface) according with user needs. However, we had the need
to create a prototyper, in order to validate the specification previously created. The
main question to be solved and presented in this study is the following: it is possible
to obtain and to represent the global visual states of an user interface though grouping
the visual states of individual components, designed with a XML specification and
responding to user interaction through events over those components? The answer to
this question must be considered under our concept in which we treat global visual
user interface states as groups of visual components states. For example, a typical web
form represents a single web state, but a form has several possible states, in result of
user interaction with it. In result of this study we developed a prototyper to represent
complete visual user interfaces obtained from the UIFD specification.

2 Free Design Components

Lately, to specify user interfaces using XML (XML-UIDL) is considered to be one
solution for the standardization and interoperability between applications [4][12].
However, as previously referred, most of current approaches to interface complex
components usage, refer using pre-defined widgets, which limits the designer ability
to do components customization (at both visual appearance and dialog levels). Thus, a
specification to support free design of user interface complex components was estab-
lished (UIFD). It is a structure divided in three parts:

─ Repository: contains components nominal definition (simple and complex) to be
used on the library;

─ Library: contains complex components complete description, ready to be used on
the interface design. It is possible to use multiple instances of the same repository
component to create a library component;

─ Interface: this structure supports the interface (obtained from library components).

It is possible to verify below a XML structure (Fig. 1) of a library component. In this
case is one of the sport fields’ components (CC_Field_1).

Each one of the referred three specification parts is supported in a XML [14] file
with the correspondent DTD validation. The XML files constructing process is
triggered by the designer when he’s constructing personalized complex components
during the user interface design process.

From the referred previous study [10] we verify that knowing in advance the user
interface functionality, it is possible to obtain a visual representation of it (in a form
of a state diagram) having the states and the transitions between them, in result of user
interaction.

 An Interface Prototyper Supporting Free Design Components Specification 493

Fig. 1. Example of a complex component designed using the UIFD specification (simplified)

We verify that the visual interface representation is simplified, although increasing
the complexity of the components used to represent it. In order to measure the
simplification obtained with our specification we must look at the decreasing number
of components available as the abstraction level increases. This happens in virtue of
encapsulation property available in complex components. We are using fewer
components from lower to higher abstraction level, in result of the components being
contained inside other components at a higher level. The use of this component type,
being incrementally more complex and at the same time being at a more abstract
level, simplifies the process of designing and prototyping the user interface.

Taking as an example the game interface for younger children previously men-
tioned, on (Fig. 2) is shown a simple schema of the process to increase the simplifica-
tion on a user interface representation, while the abstraction level to represent visual

494 P.M. Teixeira-Faria and J. Rodeiro-Iglesias

components increases. At the top of the figure is possible to verify the existence of 15
simple components (on the left side) that will successively be grouped into complex
components (6 in the first abstraction level, 2 in the second and 1 complete complex
component that represents the final user interface). At the bottom of the figure two
examples of complex components (CC_Ball_1 and CC_Field_1) are shown. For each
complex component it is possible to verify the visual states it contains, the restrictions,
the internal visual transitions and the events it supports (user events, and delegate
events). Thus, we verify the amount of information that is encapsulated in each com-
plex component, and we also perceive that as complexity increases (as abstraction
increases) at the same time the components are simplified to be used representing an
user interface.

Fig. 2. Decreasing number of components as the abstraction level increases

Another important feature provided by complex components usage is their possibil-
ity of being reused (at semantic and functional levels). All components to be used
are available in the common repository and the components personalization is done
at the library level, promoting components reuse and also contributing to simplify
the interface design and behavior, which can be freely established by the interface
designer.

SCSC

SC

SC

SCSC

SC

SC

SC

SC

SC

SC

SC

SC

SC CC

CC

CC

CC

CC

CC

CC

CC

UI

State 1

State 2

user
event 1

internal
transition

restriction

delegate
event 1

CC_Field_1

State 1

State 2

State 3

user
event 1

user
event 2

internal
transition

internal
transition

restriction

delegate
event 1

CC_Ball_1

restriction

 An Interface Prototyper Supporting Free Design Components Specification 495

3 Interface Prototyper

In order to validate the XML specification previously indicated, an automatic inter-
face prototyper was created. The developed tool allows reading an interface specifica-
tion in XML and following, to represent the prototype of a concrete interface. The
prototype obtained is a functional representation of a component visual appearance
and behavior, which is also a complete user interface (complete complex component).

Fig. 3. Complex component core class architecture (simplified)

One of the major advantages of using complex components is the independence of
any platform or programming language that can be used to represent an user interface.
From several technologies available, it was decided to implement a first version of a
prototype using Adobe Flash. Some advantages of this technology are:

─ Currently, to be a technology widely distributed and able to be used by a large
number of users;

─ Supporting the visual design of graphical primitives and thereby to enable
complex components visual representation, obtained from data structures (from the
preloaded XML files). Despite being vector-based, allows bitmaps incorporation
where needed;

─ Its flexibility allows to export exactly the same content through web browsers and
platforms, without any extra code;

─ Supports video, audio, animation, and advanced interactivity, which provides
flexibility for future evolution of complex component concept.

496 P.M. Teixeira-Faria and J. Rodeiro-Iglesias

A simplified diagram of the class main architecture, respecting to the design and im-
plementation of the interface prototyper is depicted in (Fig. 3). The diagram
represents an overview of the application main classes that were used to achieve the
experimental results here presented. The resulting framework architecture is rather
flexible, enabling easy integration of new modules in the complex components con-
text. The UIFD_UI_Node class supports all user interface global visual states and the
connection between those states in result of user interaction is stored by
UIFD_UI_Arc class. The UIFD_CC class is responsible for managing the simple and
complex components. On the case of simple components, several classes are available
to support any graphical primitives (the UIFD_Visual_App_SC_Enumeration class
is one of these examples, used to represent the images employed in the game interface
for younger children previously created). On the case of complex components, the
UIFD_CC class manages his visual states in UIFD_CC_State class, which supports
the self events triggered by the interface user (UIFD_CC_State_Dialog) and the
visible and active properties of each simple component available on a complex com-
ponent (UIFD_CC_State_Status). Finally, the delegate events/actions of a complex
component are respectively managed by UIFD_CC_Trigger_DE and
UIFD_CC_Trigger_DA classes.

Fig. 4. User interface simple components arranged in a tree

Initially, the prototyper reads the .XML files, structured into a hierarchy of one
components tree (Fig. 4). As we can verify on the figure the logical data structure of
the game interface, which is composed of two complex components (CC_Balls and

 An Interface Prototyper Supporting Free Design Components Specification 497

CC_Fields) each one having three other complex components. Each ball (CC_Ball_)
has three simple components and each sport field (CC_Field_) has two simple compo-
nents. In order to simplify the global visual states generation, the following step of the
algorithm is to convert the components tree into a data structure in memory, which is
this case is a linked list (Fig. 5). Each list node (left side) represents all the complex
components connected in sequence. And, each node has a list of connected arcs,
representing the components (simple or complex) inside each one of the nodes.

CC_UI

CC_Ball_1

CC_Ball_2

CC_Ball_3

CC_Field_1

CC_Field_2

CC_Field_3

CC_Balls

CC_Fields

CC_Balls CC_Fields

CC_Ball_1 CC_Ball_2 CC_Ball_3

CC_Field_1 CC_Field_2 CC_Field_3

SC_Ball_1_CSC_Ball_1_SSC_Ball_1_N

SC_Ball_2_CSC_Ball_2_SSC_Ball_2_N

SC_Ball_3_CSC_Ball_3_SSC_Ball_3_N

SC_Field_1_N SC_Field_1_C

SC_Field_2_N SC_Field_2_C

SC_Field_3_N SC_Field_3_C

Fig. 5. Linked list obtained from components tree

After concluding the first step of uploading the components hierarchy into the
memory structures, is necessary to calculate the user interface global visual states and
relate each other according with the dialog events established to change from one
visual state to the other. The objective is to obtain a state diagram representing the
user interface functionality, with the global visual states (UIFD_UI_Node) and the
existent transitions between them (UIFD_UI_Arc).

As previously indicated, we are at this step trying to obtain user interface states as
groups of components states. Thus, an algorithm to traverse the memory structure and
to obtain the global visual states was created. Basically, the algorithm follows the
steps:

1. For each self event (SE) available in (UIFD_CC_State_Dialog) representing the
dialog produced by user interaction over a complex component state, the algorithm
will verify if any delegate action (DA) exists in (UIFD_CC_Trigger_DA), related
to that state;

498 P.M. Teixeira-Faria and J. Rodeiro-Iglesias

2. For each one of these (DA) found on the state dialog, which executes a delegate
event (DE) the algorithm will look for what is necessary to change on the other af-
fected complex component;

3. One global state will be the result of the changes caused by a (SE) on the complex
component which it belongs plus the changes caused by (DE) triggered by other
components.

Fig. 6. User interface represented by the UIFD prototyper

After running the algorithm to obtain the global visual states, the prototyper will
graphically represent the visual interface (Fig. 6), in order the user may interact with
it and test the interface prototype, which in this case is the game interface previously
referred.

4 Conclusions

In previous studies a XML structure/specification to design user interfaces was
created. That specification allows specifying simple and complex components. Based
on these components, an user interface was created and then loaded by the developed
prototyper in order to visually represent the user interface. Having a first version of a
prototyper, which allows simulating all the global visual states and all the interaction
with his components, the following study line will be to upgrade it, developing tech-
niques and integrating a no-heuristic evaluation module, in order to obtain usability
results from multiple interface users. Thus, will contribute to detect errors on interfac-
es under tests and consequently to improve user interfaces efficiency.

 An Interface Prototyper Supporting Free Design Components Specification 499

Acknowledgments. This work was supported by:

1. Grant SFRH/PROTEC/49496/2009 of MCTES – Ministério da Ciência, Tecnolo-
gia e Ensino Superior (Portugal).

2. Project TIN2009-14103-C03-03 of Ministerio de Ciencia e Innovación (Spain)
3. Project 10DPI305002PR of Xunta de Galicia (Spain).

References

1. Carr, D.: Specification of Interface Interaction Objects. In: CHI 1994 – ACM Conference
on Human Factors in Computer Systems, pp. 372–378 (1994)

2. Cowan, D., Lucena, C.: Abstract Data Views: An Interface Specification Concept to En-
hance Design for Reuse. IEEE Transactions on Software Engineering (1995)

3. Duke, D., Harrison, M.: Abstract interaction objects. Computer Graphics Forum 12(3),
25–36 (1993)

4. Guerrero-Garcia, J., González-Calleros, J., Vanderdonckt, J., Muñoz-Arteaga, J.: A Theo-
retical Survey of User Interface Description Languages: Preliminary Results. In: Latin
American Web Congress, pp. 36–43 (2009), doi:10.1109/LA-WEB.2009.40

5. Hutchins, E., Hollan, J., Norman, D.: Direct Manipulation Interfaces, vol. 1, pp. 311–338.
Lawrence Erlbaum Associates, Inc. (1985)

6. Negroponte, N.: Being Digital. Vintage Books, New York (1994)
7. Paterno’, F., Santoro, C., Spano, L.D.: MARIA: A Universal, Declarative, Multiple Ab-

straction-Level Language for Service-Oriented Applications in Ubiquitous Environments.
ACM Transactions on Computer-Human Interaction 16(4) (2009)

8. Rettig, M.: Prototyping for tiny fingers. Communications of the ACM 37(4), 21–27 (1994)
9. Rodeiro, J.: Representácion y Análisis de la Componente Visual de la Interfaz de Usuario.

PhD Thesis, Universidad de Vigo (2001)
10. Rodeiro-Iglesias, J., Teixeira-Faria, P.M.: User Interface Representation Using Simple

Components. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS,
vol. 6761, pp. 278–287. Springer, Heidelberg (2011)

11. Savidis, A.: Supporting Virtual Interaction Objects with Polymorphic Platform Bindings in
a User Interface Programming Language. In: Guelfi, N. (ed.) RISE 2004. LNCS,
vol. 3475, pp. 11–22. Springer, Heidelberg (2005)

12. Souchon, N., Vanderdonckt, J.: A Review of XML-compliant User Interface Description
Languages. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003.
LNCS, vol. 2844, pp. 377–391. Springer, Heidelberg (2003)

13. Teixeira-Faria, P.M., Rodeiro-Iglesias, J.: Complex Components Abstraction in Graphical
User Interfaces. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011.
LNCS, vol. 6761, pp. 309–318. Springer, Heidelberg (2011)

14. W3C Recommendation: XML, XML 1.0 (2008),
http://www.w3.org/TR/REC-xml/

	An Interface Prototyper Supporting Free DesignComponents Specification
	1 Introduction
	1.1 Study Motivation
	1.2 Defined Problem

	2 Free Design Components
	3 Interface Prototyper
	4 Conclusions
	References

