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Abstract. Personal Informatics (PI) systems help individuals collect
and reflect on personal physiological, behavioral and/or contextual data.
Typically, these systems offer users interactive visualizations that allow
meaningful exploration of the data. Through this exploration, PI systems
have great potential to facilitate self-reflection and encourage behavior
change.

One of the challenges facing PI systems is a general lack of trans-
parency about the uncertainty, noise or measurement error in the infor-
mation they display. Data acquisition, processing/inference, and wireless
transmission, can each inject errors into the data. However, most PI sys-
tems do not provide a way to help users understand what types of errors
could be in the data, where these errors come from, and to what extent
they can trust the data they see is correct. This paper describes how
errors can affect the perception and use of PI data and discusses ways
to integrate more transparency into PI systems.
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1 Introduction

The combination of wearable sensors and ubiquitous computation (e.g., smart-
phones) is creating a self-surveillance society, where individuals can track a
variety of personal behaviors and states to improve their mood[1], health[2],
productivity[15], and ecological footprint[6], among others (Figure 1). Comple-
menting these sensing and computation tools are user interfaces that support
reflection on such behaviors and states. Taken together, these components - self-
tracking sensors, self-report tools, computation, and self-reflection user interfaces
- are often called personal informatics (PI) systems [8]. PI systems have emerged
as powerful tools in facilitating reflection on behaviors and ultimately, changes
in behavior.

While PI systems are powerful tools for behavior change, they generally
present opaque user interfaces. More specifically, they process, filter, and ag-
gregate data before it is presented to the user, with the goal of hiding details
that may not facilitate reflection on a behavior of interest. This is generally a
good practice, as it reduces the complexity of the data and makes it more acces-
sible to the end-user. However, this paper argues there is one category of data
hidden by PI user interfaces that should be made more transparent: uncertainty.
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Uncertainty (noise or measurement error) can be injected into PI data at
several places, including data acquisition, processing, and display. This error or
uncertainty, if left hidden from the user, can present two important challenges
to the long-term adoption of PI systems. First, if the behaviors presented by a
system do not match the user’s memory, the user may feel the system is too inac-
curate to be useful, and thus may lose trust in the system, and perhaps abandon
its use. Second, errors in the data can skew the story the data is supposed to
tell users. If users are not aware that errors, and by extension skew, exist in the
data, then they could make inappropriate behavior changes based on the data.

This paper aims to address these challenges by proposing two forms of trans-
parency for PI systems: data acquisition transparency (DAT) and data uncer-
tainty transparency (DUT). DAT involves presenting users with the provenance,
or history of the data, including the source of the data, and any processes that
alter or transform the data until it is presented to the user. By presenting prove-
nance data, we aim to help users identify sources of data errors and better
understand the weaknesses of their PI systems. DUT involves modifying PI user
interfaces to juxtapose known error or uncertainty with the data itself, allowing
end-users to evaluate the quality of their PI data in context. By adding trans-
parency to PI systems, we aim to increase user trust in PI systems and improve
decision-making based on observations of noisy PI data.

Fig. 1. A generic architecture for personal informatics systems



522 L.G. Jaimes, T. Murray, and A. Raij

2 Sources of Error in PI Systems

The path from the acquisition of raw data to the presentation of the data in
a PI tool requires several transformations and interpretations of the data, and
thus presents several opportunities for error to be injected into the PI data. To
demonstrate this problem, we present Corredor, a PI system designed to provide
feedback on physical activity.

Corredor processes smartphone accelerometry to identify one of three user
activities: standing, walking, and running. First, data is sampled from an ac-
celerometer built into the user’s smartphone. Second, before passing this data
to Corredor, the smartphone may apply additional filtering algorithms to re-
duce the effects of noise. The filtered data is then passed on to Corredor for
classification. Third, Corredor starts the classification process by applying data
reduction and smoothing algorithms, eliminating outliers, and imputing missing
values. Fourth, frequency-based features are extracted from the signal. Fifth,
these features are then passed to a J48 decision tree classifier, which transforms
input features to the specific activity the user is performing.

Error can be injected into Corredor’s data processing pipeline at several
places. Amplifiers and ambient temperature changes add noise when the ac-
celerometer is sampled. Filtering and smoothing is critical to making the data
useable, but valuable features of the data could be lost in the process. Overzeal-
ous outlier elimination could remove good data, while overly conservative outlier
elimination might leave too many outliers in the data, both of which could skew
classification later in the pipeline. Lastly, machine learning based classifiers (e.g.,
J48 decision trees) are also prone to error, especially if not enough data of each
class was used to train the classifier.

Thus, opportunities for error and uncertainty to play a role in PI system
outputs are numerous. Furthermore, as in Li et al’s stage-based model of per-
sonal informatics [8], errors in earlier stages cascade through the data processing
pipelining, affecting the quality of the output at later stages in the pipeline. All
of these potential sources of error occur before the user has any interaction with
the system, and thus the error and its sources are often hidden from view.

3 Consequences of Error in PI Systems

Figure 2 illustrates scenarios that occur when users interpret and compare the
displayed PI data to their memory of their activities. When the user’s perception
of history differs from what the PI system displays (Figure 2 - left side in red),
trust in the system falls (independent of whether the system is correct). On the
other hand, when the PI system display matches the user’s perceptions (Figure
2 - right side in green), trust in the system is maintained.

In the latter case, we note that trust in the system is maintained even when the
data presented by the PI system is inaccurate, because the user has no reason
to suspect its inaccuracy. Adjusting behavior based on inaccurate data could
have significant negative consequences. For example, if a PI system incorrectly
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Fig. 2. User Perceptions vs. PI System Display vs. PI System Accuracy

tells a user that his/her stress level is generally low, and the user believes this
assessment is correct, the user will not take action to reduce daily stress, even
though he/she may need to do so to avoid heart disease later in life.

In previous work, a lack of trust in a PI system led users to quickly lose interest
in the system [9]. Dzindolet et al [4] and Kulesza [7] point out that the frequent
occurrence of data errors tends to erode the confidence of users and eventually
users abandon the system. Users are often skeptical of black-box systems [3]
and may often discount important data, rather than adapt their conceptions
and change behaviors. Authors such as Lim and Dey [3] [10] and Kulesza [7]
hypothesize that explaining the system behavior to end users will enable them
to form better judgments and increase their trust in the system. Their proposals
include self-explanatory algorithms to give users a better understanding of the
system outputs.

Building on these ideas, we propose two approaches to increasing the trans-
parency of, and trust in, PI systems: 1) data acquisition transparency and data
uncertainty transparency. In data acquisition transparency, users are shown
provenance models describing how the data is collected and derived. In data
uncertainty transparency, information about the accuracy of the data is inte-
grated into the PI system’s visualizations.

4 Data Acquisition Transparency

Data provenance refers to metadata describing the derivation history or chronol-
ogy of a data product [11]. Providing the user with a data provenance model
would make the data acquisition history, and by extension the sources of er-
ror, more transparent. Users could then determine the causes of error and take
appropriate action. The appropriate action could be to abandon the PI system
because the error is unacceptable, to continue using the system as is, or perhaps
make changes to the system or his/her behaviors to reduce errors (based on their
understanding of the model).

The challenge then is choosing the right model and model visualization that
can convey the data flow and possible sources of error clearly. We use an extended
Open Provenance Model (OPM) proposed by Riboni and Bettini [14] to model
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the provenance of Corredor (Figure 3). This extension is specifically designed
to model components of context-aware and ubiquitous systems, such as sensors,
context, smartphones, and inference algorithms.

OPM represents data provenance with directed acyclic graphs (DAGs). Graph
nodes represent entities and edges represent causal dependencies. The Riboni and
Bettini OPMmodel incorporates three types of nodes: artifacts (i.e., data) repre-
sented by ovals; processes (i.e., sensors and inference algorithms) represented by
rectangles; and agents, entities that control processes (e.g., smartphones control-
ling onboard sensors). Agents are represented by hexagons. Entities are connected
to each other by edges describing causal relationships, such asWas-Controlled-By,
Used, Was-Generated-By, and Was-Derived-By.

Several of these relationships are shown in Figure 3: a Was-Controlled edge
from the smartphone (agent) to sensors (processes); a Used edge from seg-
mentation algorithms (processes) to accelerometer data streams (artifacts); a
Was-Generated edge from activity predictions (artifacts) to inference algorithms
(processes); and aWas -Derived edge that relates acceleration features (artifacts)
to raw streams of acceleration data (artifacts).

Figure 3 represents a specific moment in the use of Corredor, when an individ-
ual named John Doe takes a morning run. The model shows that the prediction
of John Doe’s 7:00am activity (running) was generated by the J48 activity in-
ference process. That prediction was derived from features generated by the
Fast Fourier Transform (FFT) process. The FFT process received as input a set
of accelerometer magnitudes computed in the time domain by a segmentation
process. The segmentation process derived those magnitudes from streams of
3-axis acceleration data provided by the accelerometer sensors on John Doe’s
smartphone.

While we believe the extended OPM is a useful model to describe provenance,
it is not clear if a visual representation of the model (similar to Figure 3) would
help end-users understand the sources of error in PI systems. Perhaps collapsing
nodes of the graph to reduce its complexity would provide a simpler, more useful
view of the data. For instance, we could collapse the FFT and segmentation
processes into one process to create a more direct presentation of the relationship
between streams of raw data and features.

5 Data Uncertainty Transparency

Data uncertainty transparency refers to integrating uncertainty or error measure-
ments directly into the PI system user interface. This allows users to visually
assess the quality of the data they rely on to make behavior change decisions.
A critical assumption is that the PI system is capable of assessing the quality
of every data point it produces. In the rest of this section, we present several
example uncertainty visualizations that could be integrated into PI systems to
provide transparency.
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Fig. 3. Corredor’s OPM extension graph describing detection of John Doe’s 7:00am
running episode

Figure 4 is a time-series visualization of sample stress predictions from Au-
toSense [12] [5], a suite of sensors and a smartphone that infers a user’s stress
level from physiological data. A value of 1 indicates the user is not stressed, 2
indicates the user is stressed, and 3 indicates there is not enough information to
make a prediction. However, in the intervals in which predictions are uncertain,
the time series is plotted with a dashed line. The size of the dash is inversely
proportional to the uncertainty in the data. Larger dashes mean the uncertainty
is low, smaller dashes mean the uncertainty is high, and no dashes (a continu-
ous line) mean there is no known error in the data. The user can then interact
with this visualization to selectively query the data. Figure 4 shows the result
of querying an interval (shown in red) for precise accuracy data.

We present another time-series visualization in Figure 5, this time using data
collected by Corredor. As in Figure 4, the horizontal axis is a time span (800 sec-
onds), and the vertical axis represents different activities Corredor can classify:
standing, walking, and running. The three activities are shown in red, green,
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Fig. 4. Visualizing data uncertainty in a PI system for stress monitoring and reflection

Fig. 5. 800 seconds of activity data produced by Corredor. Uncertain activity classi-
fications are shown in gray, and are positioned between the two classifications most
likely to be correct.

and blue, respectively, and are also separated spatially. In addition to the three
activities, Corredor assesses its confidence in each activity classification. Only
those classifications above a confidence threshold σ are shown in red, green, or
blue. The remaining uncertain classifications are shown in gray. They are po-
sitioned spatially between the two activities that are most likely to be correct.
By reviewing Figure 5, a user can see the frequency of uncertain classifications
for each activity, and thus better understand what types of activity are likely to
confuse the system.

Figure 6 uses a pie chart to present an aggregated version of the Corredor
data in Figure 5. The pie chart shows the percentage of data classified into each
activity and the percentage of data for which confidence in the classifications was
low. The latter are spatially positioned between two activity classes to indicate
which two activity classes are most likely to be correct in these low-confidence
situations. One piece of information present here that is not in Figure 5 is the dis-
tribution of low-confidence classifications among the two possible correct classes.
These distributions are demonstrated visually by subdividing the low-confidence
sections of the pie chart proportionally to the percent that fall in each class. For
example, in Figure 5, 12% of the classifications are considered low-confidence.
Of those low-confidence classifications, 8% could either be classified as walking
or standing. Furthermore, 5% is more likely to be walking and the remaining 3%
is more likely to be standing.
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Fig. 6. A pie chart summarizing the percentages of activities classified by Corredor
with high and low confidence

Fig. 7. An avatar-based iconographic visualization of the activities detected by Corre-
dor

Lastly, Figure 7 presents a third approach to presenting Corredor’s data to the
end-user, using avatars as icons that demonstrate the three activity classes. Per-
centages of each activity detected are shown below the activity’s corresponding
avatar icon. Visual aggregations of low-confidence classifications are positioned
between the two corresponding activity icons and are depicted as the two activ-
ity icons layered on top of each other. Transparency and color blending are used
to indicate the extent to which each low confidence classification could be one
class or the other.

6 Conclusion and Future Work

In this work, we presented an approach to increasing the level of transparency,
and by extension trust, in personal informatics (PI) systems. We introduced data
acquisition transparency as the use of provenance model visualizations to explain
how data is produced by a PI system and help users pinpoint sources of error in
PI data. We also introduced data uncertainty transparency as the integration of
error and uncertainty measures directly into the UI elements already presented in
many PI systems. This integration of error and uncertainty into the UI leverages
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the juxtaposition of data with error to help users understand what types of errors
can occur and whether they should be a concern.

The next step in this research effort is the systematic study of both data
acquisition and uncertainty transparency in real PI systems. Most importantly,
these studies need to verify that transparency does indeed improve user trust in
PI systems. If this is indeed true, then next steps should focus on identifying the
most transparent, intuitive visualizations of data provenance and uncertainty.
This is particularly critical for PI systems, where the end-user is often the ’aver-
age’ person rather than a data scientist with significant experience interpreting
visualizations [16,13].
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