Hyper-Optimization for Deterministic Tree Automata

Andreas Maletti

Institute for Natural Language Processing University of Stuttgart, Germany

Halifax, Canada — July 19, 2013

Contents

Intuition

- minimize automaton allowing a finite number of errors
- several (non-isomorphic) hyper-minimal automata

return automaton committing the least number of errors

Intuition

- minimize automaton allowing a finite number of errors
- several (non-isomorphic) hyper-minimal automata
- return automaton committing the least number of errors

Intuition

- minimize automaton allowing a finite number of errors
- several (non-isomorphic) hyper-minimal automata
- return automaton committing the least number of errors

n = number of states

m = size of the automaton

model/process	hyper-minimization	hyper-optimization
DFA	$\mathcal{O}(m \log n)$	$\mathcal{O}(mn)$
DBA	$\mathcal{O}(mn)$???
DCA	$\mathcal{O}(mn)$???
DTA	$\mathcal{O}(m \log n)$	$\mathcal{O}(mn)$

DTA = deterministic tree automaton

DBA / DCA = deterministic BÜCHI / Co-BÜCHI automaton

Why Hyper-Optimization?

Advantages

- makes the DTA smaller \rightarrow efficiency gain
- reduces spurious, artificial effects
- conservative as it keeps the number of errors minimal

Disadvantages

- reductions sometimes rather small
- no discrimination between errors
- no non-trivial limit on the number of errors

Why Hyper-Optimization?

Advantages

- makes the DTA smaller \rightarrow efficiency gain
- reduces spurious, artificial effects
- conservative as it keeps the number of errors minimal

Disadvantages

- reductions sometimes rather small
- no discrimination between errors
- no non-trivial limit on the number of errors

Contents

Overview

Definition (GÉCSEG, STEINBY 1984)	
(Q, Σ, δ, F) deterministic tree automaton (DTA)	
• <i>Q</i> finite set	states
 Σ ranked alphabet 	input symbols
• $\delta \colon \Sigma(Q) \to Q$	transitions
• $F \subseteq Q$	final states

Definition

transition function extends to δ : $T_{\Sigma}(Q) \rightarrow Q$ by

$$\delta(q) = q$$

 $\delta(\sigma(t_1, \dots, t_k)) = \delta(\sigma(\delta(t_1), \dots, \delta(t_k)))$

Definition (GÉCSEG, STEINBY 1984)	
(Q, Σ, δ, F) deterministic tree automaton (DTA)	
• <i>Q</i> finite set	states
 Σ ranked alphabet 	input symbols
• $\delta \colon \Sigma(Q) \to Q$	transitions
• $F \subseteq Q$	final states

Definition

transition function extends to δ : $T_{\Sigma}(Q) \rightarrow Q$ by

$$egin{aligned} &\delta(m{q}) = m{q} \ &\delta(\sigma(t_1,\ldots,t_k)) = \delta(\sigma(\delta(t_1),\ldots,\delta(t_k))) \end{aligned}$$

- states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- $\bullet\,$ nullary input symbols α,β,γ and binary σ
- for all nullary symbols π,π'

$$\pi\mapsto \pmb{q}_{\pi} \qquad \sigma(\pmb{q}_{\pi},\pmb{q}_{\pi'})\mapsto \pmb{q}_{\sigma} \qquad \sigma(\pmb{q}_{\alpha},\pmb{q}_{\sigma})\mapsto \pmb{q}_{\sigma}$$

- states q_{α}, q_{β} (nonfinal) and q_{γ}, q_{σ} (final)
- $\bullet\,$ nullary input symbols α,β,γ and binary σ
- for all nullary symbols π,π'

$$\pi\mapsto \pmb{q}_{\pi} \qquad \sigma(\pmb{q}_{\pi},\pmb{q}_{\pi'})\mapsto \pmb{q}_{\sigma} \qquad \sigma(\pmb{q}_{lpha},\pmb{q}_{\sigma})\mapsto \pmb{q}_{\sigma}$$

- states q_{α}, q_{β} (nonfinal) and q_{γ}, q_{σ} (final)
- $\bullet\,$ nullary input symbols α,β,γ and binary σ
- for all nullary symbols π,π'

$$\pi\mapsto \pmb{q}_{\pi} \qquad \sigma(\pmb{q}_{\pi},\pmb{q}_{\pi'})\mapsto \pmb{q}_{\sigma} \qquad \sigma(\pmb{q}_{lpha},\pmb{q}_{\sigma})\mapsto \pmb{q}_{\sigma}$$

- states q_{α}, q_{β} (nonfinal) and q_{γ}, q_{σ} (final)
- $\bullet\,$ nullary input symbols α,β,γ and binary σ
- for all nullary symbols π,π'

$$\pi\mapsto \pmb{q}_{\pi} \qquad \sigma(\pmb{q}_{\pi},\pmb{q}_{\pi'})\mapsto \pmb{q}_{\sigma} \qquad \sigma(\pmb{q}_{lpha},\pmb{q}_{\sigma})\mapsto \pmb{q}_{\sigma}$$

- states q_{α}, q_{β} (nonfinal) and q_{γ}, q_{σ} (final)
- $\bullet\,$ nullary input symbols α,β,γ and binary σ
- for all nullary symbols π,π'

$$\pi\mapsto q_\pi \qquad \sigma(q_\pi,q_{\pi'})\mapsto q_\sigma \qquad \sigma(q_lpha,q_\sigma)\mapsto q_\sigma$$

- states q_{α}, q_{β} (nonfinal) and q_{γ}, q_{σ} (final)
- $\bullet\,$ nullary input symbols α,β,γ and binary σ
- for all nullary symbols π,π'

$$\pi\mapsto q_\pi \qquad \sigma(q_\pi,q_{\pi'})\mapsto q_\sigma \qquad \sigma(q_lpha,q_\sigma)\mapsto q_\sigma$$

Shorthands

•
$$L(M)_{q'}^q = \{ c \in C_{\Sigma} \mid \delta(c[q']) = q \}$$

• $L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$

• $L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$

Shorthands

•
$$L(M)_{q'}^q = \{ c \in C_{\Sigma} \mid \delta(c[q']) = q \}$$

•
$$L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$$

• $L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$

Shorthands

•
$$L(M)_{q'}^q = \{ c \in C_{\Sigma} \mid \delta(c[q']) = q \}$$

•
$$L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$$

•
$$L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$$

Shorthands

•
$$L(M)_{q'}^q = \{ c \in C_{\Sigma} \mid \delta(c[q']) = q \}$$

•
$$L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^{f}$$

•
$$L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$$

Definition (Recognized tree language) $L(M) = \bigcup_{f \in F} L(M)^{f}$

Definition

states q and q' are

- equivalent if $L(M)_q = L(M)_{q'}$
- almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem (known)

- trim DTA is minimal
 - ⇔ no different, but equivalent states
- minimal DTA is hyper-minimal
 - \iff no different, but almost equivalent special states

Definition

states q and q' are

- equivalent if $L(M)_q = L(M)_{q'}$
- almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem (known)

trim DTA is minimal

- ↔ no different, but equivalent states
- minimal DTA is hyper-minimal
 - \implies no different, but almost equivalent special states

Definition

states q and q' are

- equivalent if $L(M)_q = L(M)_{q'}$
- almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem (known)

- trim DTA is minimal
 - ↔ no different, but equivalent states
- minimal DTA is hyper-minimal
 - ↔ no different, but almost equivalent special states

Contents

Almost Equivalent DTA

Definition DTA *M* and *N* are almost equivalent if they recognize almost equal tree languages

Definition

- state q is a kernel state if $L(M)^q$ is infinite
- $\operatorname{Ker}(M) = \{q \in Q \mid q \text{ kernel state}\}$
- $\operatorname{Pre}(M) = Q \operatorname{Ker}(M)$

preamble states

Almost Equivalent DTA

Definition DTA *M* and *N* are almost equivalent if they recognize almost equal tree languages

Definition

- state q is a kernel state if $L(M)^q$ is infinite
- $\operatorname{Ker}(M) = \{q \in Q \mid q \text{ kernel state}\}$
- $\operatorname{Pre}(M) = Q \operatorname{Ker}(M)$

preamble states

Kernel and Preamble States

$$N = (P, \Sigma, \mu, G)$$

Theorem

If M and N are hyper-minimal and almost equivalent, then there exists a bijection $h: Q \rightarrow P$ such that

 $\operatorname{Ker}(M) \times \operatorname{Ker}(N)$ for all $q \in \operatorname{Ker}(M)$

$N = (P, \Sigma, \mu, G)$

Theorem

If M and N are hyper-minimal and almost equivalent, then there exists a bijection $h: Q \rightarrow P$ such that

2)
$$h(q) \in G \iff q \in F$$

$h(\delta(s)) = \mu(h(s))$ for every

 $s \in \Sigma(Q) - \{s \in \Sigma(\mathsf{Pre}(M)) \mid \delta(s) \in \mathsf{Ker}(M)\}$

 $\operatorname{Ker}(M) \times \operatorname{Ker}(N)$ for all $q \in \operatorname{Ker}(M)$

$$N = (P, \Sigma, \mu, G)$$

Theorem

If M and N are hyper-minimal and almost equivalent, then there exists a bijection $h: Q \rightarrow P$ such that

$$\ 2 \ \ h(q) \in G \iff q \in F$$

$$h(\delta(s)) = \mu(h(s)) \text{ for every}$$

 $s \in \Sigma(Q) - \{s \in \Sigma(\operatorname{Pre}(M)) \mid \delta(s) \in \operatorname{Ker}(M)\}$

 $\operatorname{Ker}(M) \times \operatorname{Ker}(N)$ for all $q \in \operatorname{Ker}(M)$

$$N = (P, \Sigma, \mu, G)$$

Theorem

If M and N are hyper-minimal and almost equivalent, then there exists a bijection $h: Q \rightarrow P$ such that

$$\ \textbf{0} \quad \textbf{0} \in \textbf{G} \iff \textbf{q} \in \textbf{F}$$

$$h(\delta(s)) = \mu(h(s)) \text{ for every} \\ s \in \Sigma(Q) - \{s \in \Sigma(\operatorname{Pre}(M)) \mid \delta(s) \in \operatorname{Ker}(M)\}$$

 $\operatorname{Ker}(M) \times \operatorname{Ker}(N)$ for all $q \in \operatorname{Ker}(M)$

Intuition

hyper-minimal and almost equivalent DTA can differ in

- the finality of preamble states
- transitions from exclusively preamble states to a kernel state

$$N = (P, \Sigma, \mu, G)$$

Theorem

If M and N are hyper-minimal and almost equivalent, then there exists a bijection $h: Q \rightarrow P$ such that

- h is bijective on kernels

$$\begin{array}{l} h(\delta(\boldsymbol{s})) = \mu(h(\boldsymbol{s})) \ \textit{for every} \\ \boldsymbol{s} \in \Sigma(\boldsymbol{Q}) - \{ \boldsymbol{s} \in \Sigma(\mathsf{Pre}(\boldsymbol{M})) \mid \delta(\boldsymbol{s}) \in \mathsf{Ker}(\boldsymbol{M}) \} \end{array}$$

 $\operatorname{Ker}(M) \times \operatorname{Ker}(N)$ for all $q \in \operatorname{Ker}(M)$

Intuition

hyper-minimal and almost equivalent DTA can differ in

- the finality of preamble states
 - transitions from exclusively preamble states to a kernel state

$$N = (P, \Sigma, \mu, G)$$

Theorem

If M and N are hyper-minimal and almost equivalent, then there exists a bijection $h: Q \rightarrow P$ such that

•
$$h(\delta(s)) = \mu(h(s))$$
 for every

 $s \in \Sigma(Q) - \{s \in \Sigma(\operatorname{Pre}(M)) \mid \delta(s) \in \operatorname{Ker}(M)\}$

 $\operatorname{Ker}(M) \times \operatorname{Ker}(N)$ for all $q \in \operatorname{Ker}(M)$

Intuition

hyper-minimal and almost equivalent DTA can differ in

the finality of preamble states

Itransitions from exclusively preamble states to a kernel state

Almost equivalent DTA

Rough Outline	
given DTA <i>M</i> :	
minimize M	$\mathcal{O}(m \log n)$
Apper-minimize M	$\mathcal{O}(m \log n)$
optimize hyper-minimal DTA M	$\mathcal{O}(mn)$

Rough Outline	
given DTA M:	
• minimize M	$\mathcal{O}(m \log n)$
Participation of the second	$\mathcal{O}(m \log n)$
optimize hyper-minimal DTA M	$\mathcal{O}(mn)$

Rough Outline	
given DTA M:	
• minimize M	$\mathcal{O}(m \log n)$
Phyper-minimize M	$\mathcal{O}(m \log n)$
optimize hyper-minimal DTA M	$\mathcal{O}(mn)$

State Merging

Definition

merge of q into q': redirect all transitions leading to q into q'

State Merging

Definition

merge of q into q': redirect all transitions leading to q into q'

Lemma (known)

Merging q into q' yields an almost equivalent DTA if

- q and q' are almost equivalent
- q is a preamble state

Theorem (known)

DTA hyper-minimal \iff no different, but almost equivalent states involving a preamble state

Lemma (known)

Merging q into q' yields an almost equivalent DTA if

- q and q' are almost equivalent
- q is a preamble state

Theorem (known)

DTA hyper-minimal \iff no different, but almost equivalent states involving a preamble state

Contents

hyper-minimal DTA N

minimal input DTA M

 $\mu(t) \in \operatorname{Pre}(N)$ $\mu(t) \in \operatorname{Ker}(N)$

Intuition

each error tree $t \in L(M) \ominus L(N)$ occurs either at

- a preamble state of N
- a kernel state of N

Observations

•
$$\delta(t) \in \operatorname{Pre}(M)$$
 if $\mu(t) \in \operatorname{Pre}(N)$

 $B = \{q \in Q \mid q \text{ almost equivalent to } \delta(t)\}$

hyper-minimal DTA N

minimal input DTA M

 $\mu(t) \in \operatorname{Pre}(N)$

 $\mu(t) \in \operatorname{Ker}(N)$

Intuition

each error tree $t \in L(M) \ominus L(N)$ occurs either at

- a preamble state of N
- a kernel state of N

Observations

•
$$\delta(t) \in \mathsf{Pre}(M)$$
 if $\mu(t) \in \mathsf{Pre}(N)$

• $L(N)^{\mu(t)} = \bigcup_{q \in B} L(M)^q$

 $B = \{q \in Q \mid q \text{ almost equivalent to } \delta(t)\}$

hyper-minimal DTA N

minimal input DTA M

 $\mu(t) \in \operatorname{Pre}(N)$ $\mu(t) \in \operatorname{Ker}(N)$

Intuition

each error tree $t \in L(M) \ominus L(N)$ occurs either at

- a preamble state of N
- a kernel state of N

Observations

•
$$\delta(t) \in \mathsf{Pre}(M)$$
 if $\mu(t) \in \mathsf{Pre}(N)$

•
$$L(N)^{\mu(t)} = \bigcup_{q \in B} L(M)^q$$

 $B = \{q \in Q \mid q \text{ almost equivalent to } \delta(t)\}$

Preamble State Errors

Theorem

The preamble state $p \in Pre(N)$ causes

- $\sum_{q \in B \cap F} |L(M)^q|$ errors if $p \notin G$
- $\sum_{q\in B-F} |L(M)^q|$ errors if $p\in G$

where $t \in L(N)^p$ and $B = \{q \in Q \mid q \text{ almost equivalent to } \delta(t)\}.$

Observations• $B \subseteq \operatorname{Pre}(M)$ • $|L(M)^q|$ easily computable for $q \in \operatorname{Pre}(M)$ $\mathcal{O}(m)$

Preamble State Errors

Theorem

The preamble state $p \in Pre(N)$ causes

- $\sum_{q \in B \cap F} |L(M)^q|$ errors if $p \notin G$
- $\sum_{q\in B-F} |L(M)^q|$ errors if $p\in G$

where $t \in L(N)^p$ and $B = \{q \in Q \mid q \text{ almost equivalent to } \delta(t)\}.$

Observations

- $B \subseteq \operatorname{Pre}(M)$
- $|L(M)^q|$ easily computable for $q \in Pre(M)$

Preamble State Errors

Theorem

The preamble state $p \in Pre(N)$ causes

- $\sum_{q \in B \cap F} |L(M)^q|$ errors if $p \notin G$
- $\sum_{q\in B-F} |L(M)^q|$ errors if $p\in G$

where $t \in L(N)^p$ and $B = \{q \in Q \mid q \text{ almost equivalent to } \delta(t)\}.$

Observations• $B \subseteq \operatorname{Pre}(M)$ • $|L(M)^q|$ easily computable for $q \in \operatorname{Pre}(M)$ $\mathcal{O}(m)$

hyper-minimal DTA N

minimal input DTA M

 $\mu(t) \in \operatorname{Pre}(N)$ $\mu(t) \in \operatorname{Ker}(N)$

Intuition

Each error tree $t \in L(M) \ominus L(N)$ occurs either at

- a preamble state of N
- a kernel state of N

Observations

If $\mu(t) \in \text{Ker}(N)$, then there exists a left-most position $p \in \text{pos}(t)$ such that

- $\delta(t|_{p}) \in \operatorname{Ker}(N)$
- $\delta(t|_{pw}) \in \operatorname{Pre}(N)$ for all $w \neq \varepsilon$

hyper-minimal DTA N

minimal input DTA M

 $\mu(t) \in \operatorname{Pre}(N)$ $\mu(t) \in \operatorname{Ker}(N)$

Intuition

Each error tree $t \in L(M) \ominus L(N)$ occurs either at

- a preamble state of N
- a kernel state of N

Observations

If $\mu(t) \in \text{Ker}(N)$, then there exists a left-most position $p \in \text{pos}(t)$ such that

•
$$\delta(t|_{\rho}) \in \operatorname{Ker}(N)$$

•
$$\delta(t|_{pw}) \in \operatorname{Pre}(N)$$
 for all $w
eq \varepsilon$

Example

DTA
$$M = (Q, \Sigma, \delta, \{q_{\alpha}\})$$
 with $L(M) = T_{\Sigma} - \{\beta, \sigma(\beta, \beta)\}$

•
$$\boldsymbol{Q} = \{\boldsymbol{q}_{\alpha}, \boldsymbol{q}_{\beta}, \boldsymbol{q}_{\sigma}\}$$

•
$$\Sigma = \{\alpha^{(0)}, \beta^{(0)}, \sigma^{(2)}\}$$

• for all
$$(q,q')\in \mathcal{Q}^2-\{(q_eta,q_eta)\}$$

$$\delta(\alpha) = q_{\alpha} \qquad \delta(\beta) = q_{\beta} \qquad \delta(\sigma(q_{\beta}, q_{\beta})) = q_{\sigma} \qquad \delta(\sigma(q, q')) = q_{\alpha}$$

Almost equivalent hyper-minimal (single-state) DTA N with $L(N) = T_{\Sigma}$

Observation

- error $\sigma(\beta,\beta)$ processed in kernel state \top of *N*
- both β → ⊤ transitions switch from exclusively preamble states to a kernel state

Example

DTA
$$M = (Q, \Sigma, \delta, \{q_{\alpha}\})$$
 with $L(M) = T_{\Sigma} - \{\beta, \sigma(\beta, \beta)\}$

•
$$\boldsymbol{Q} = \{\boldsymbol{q}_{\alpha}, \boldsymbol{q}_{\beta}, \boldsymbol{q}_{\sigma}\}$$

•
$$\Sigma = \{\alpha^{(0)}, \beta^{(0)}, \sigma^{(2)}\}$$

• for all
$$(q,q')\in \mathcal{Q}^2-\{(q_eta,q_eta)\}$$

$$\delta(\alpha) = q_{\alpha} \qquad \delta(\beta) = q_{\beta} \qquad \delta(\sigma(q_{\beta}, q_{\beta})) = q_{\sigma} \qquad \delta(\sigma(q, q')) = q_{\alpha}$$

Almost equivalent hyper-minimal (single-state) DTA N with $L(N) = T_{\Sigma}$

Observation

- error $\sigma(\beta,\beta)$ processed in kernel state \top of *N*
- both β → ⊤ transitions switch from exclusively preamble states to a kernel state

Definition

left-most switch contexts:

 $\mathrm{LC} = \{ c \in \mathcal{C}_{\Sigma} \mid \forall w \in \mathsf{pos}(c) \colon w \sqsubset \mathsf{pos}_{\Box}(c) \text{ implies } [\delta(c|_w)] \subseteq \mathsf{Pre}(\mathit{M}) \}$

Lemma

Definition

left-most switch contexts:

$$\begin{split} \mathrm{LC} &= \{ c \in C_{\Sigma} \mid \forall w \in \mathsf{pos}(c) \colon w \sqsubset \mathsf{pos}_{\Box}(c) \text{ implies } [\delta(c|_w)] \subseteq \mathsf{Pre}(M) \} \\ \overline{C}_M &= C_{\Sigma}(\mathsf{Pre}(M)) \cap \Sigma(Q \cup \{\Box\}) \end{split}$$

Lemma

Definition

left-most switch contexts:

$$\begin{split} \mathrm{LC} &= \{ c \in \mathcal{C}_{\Sigma} \mid \forall w \in \mathsf{pos}(c) \colon w \sqsubset \mathsf{pos}_{\Box}(c) \text{ implies } [\delta(c|_w)] \subseteq \mathsf{Pre}(\mathcal{M}) \} \\ \overline{\mathcal{C}}_{\mathcal{M}} &= \mathcal{C}_{\Sigma}(\mathsf{Pre}(\mathcal{M})) \cap \Sigma(\mathcal{Q} \cup \{\Box\}) \end{split}$$

Lemma

$$d(q,q)=0$$

Definition

left-most switch contexts:

$$\begin{split} \mathrm{LC} &= \{ c \in \mathcal{C}_{\Sigma} \mid \forall w \in \mathsf{pos}(c) \colon w \sqsubset \mathsf{pos}_{\Box}(c) \text{ implies } [\delta(c|_w)] \subseteq \mathsf{Pre}(\mathcal{M}) \} \\ \overline{\mathcal{C}}_{\mathcal{M}} &= \mathcal{C}_{\Sigma}(\mathsf{Pre}(\mathcal{M})) \cap \Sigma(\mathcal{Q} \cup \{\Box\}) \end{split}$$

Lemma

$$d(q,q) = 0$$

$$d(q,q') = \left(\sum_{\substack{c \in \overline{C}_M \\ c = \sigma(q_1,...,q_i,\Box,q_{i+1},...,q_k) \\ [q_1],...,[q_i] \subseteq \operatorname{Pre}(M)}} a_{q_i} \cdot \ldots \cdot a_{q_k} \cdot d(\delta(c[q]), \delta(c[q']))\right) + I$$

Lemma

For every $s = \sigma(p_1, \ldots, p_k) \in \Sigma(\operatorname{Pre}(N))$ with $\mu(s) \in \operatorname{Ker}(N)$

$$|E_s| = \sum_{\substack{q_1 \in [\delta(u_{p_1})] \\ q_k \in [\ddot{\delta}(u_{p_k})]}} |L(M)^{q_1}| \cdot \ldots \cdot |L(M)^{q_k}| \cdot d(\delta(\sigma(q_1, \ldots, q_k)), q)$$

where $u_p \in L(N)^p$ for every $p \in Pre(N)$ and $q \equiv \mu(s)$

Main Result

m = |M|

$$n = |Q|$$

Theorem

- Given hyper-minimal DTA N, almost equivalent to M, we can determine $|L(M) \ominus L(N)|$ in time $\mathcal{O}(mn)$.
- We can compute a hyper-optimal DTA in time $\mathcal{O}(mn)$.

Main Result

m = |M|

$$n = |Q|$$

Theorem

- Given hyper-minimal DTA N, almost equivalent to M, we can determine $|L(M) \ominus L(N)|$ in time O(mn).
- We can compute a hyper-optimal DTA in time $\mathcal{O}(mn)$.

Conclusion

Solved problems

- Structural characterization of almost equivalent hyper-minimal DTA
- Hyper-optimization algorithm $\mathcal{O}(mn)$

Open problems

- Can hashes be avoided in hyper-minimization?
- Sub-quadratic error optimization?

Conclusion

Solved problems

- Structural characterization of almost equivalent hyper-minimal DTA
- Hyper-optimization algorithm $\mathcal{O}(mn)$

Open problems

- Can hashes be avoided in hyper-minimization?
- Sub-quadratic error optimization?

References

- BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite state automata. ITA 43, 2009
- BADR: Hyper-minimization in O(n²). IJFCS 20, 2009
- GAWRYCHOWSKI, JEZ: Hyper-minimisation made efficient. MFCS 2009
- GAWRYCHOWSKI, JEŻ, MALETTI: On minimising automata with errors. MFCS 2011
- GÉCSEG, STEINBY: Tree automata. Akadémiai Kiadó, 1984
- HÖGBERG, MAY, MALETTI: Backward and forward bisimulation minimization of tree automata. TCS 410, 2009
- HOLZER, JAKOBI From qquivalence to almost-equivalence, and beyond minimizing automata with errors. DLT 2012
- HOLZER, MALETTI: An n log n algorithm for hyper-minimizing states in a (minimized) deterministic automaton. TCS 411, 2010
- MALETTI, QUERNHEIM: Optimal hyper-minimization. IJFCS 22, 2011
- SCHEWE: Beyond hyper-minimisation minimising DBAs and DPAs is NP-complete. FSTTCS 2010