
Optimising Problem Formulation for
Cylindrical Algebraic Decomposition ?

Russell Bradford, James H. Davenport, Matthew England, and David Wilson

University of Bath, Bath, BA2 7AY, U.K.
{R.J.Bradford, J.H.Davenport, M.England, D.J.Wilson}@bath.ac.uk,
WWW home page: http://people.bath.ac.uk/masjhd/Triangular/

Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool for the study of real algebraic geometry with many applications both
within mathematics and elsewhere. It is known to have doubly exponen-
tial complexity in the number of variables in the worst case, but the
actual computation time can vary greatly. It is possible to offer different
formulations for a given problem leading to great differences in tractabil-
ity. In this paper we suggest a new measure for CAD complexity which
takes into account the real geometry of the problem. This leads to new
heuristics for choosing: the variable ordering for a CAD problem, a des-
ignated equational constraint, and formulations for truth-table invariant
CADs (TTICADs). We then consider the possibility of using Gröbner
bases to precondition TTICAD and when such formulations constitute
the creation of a new problem.

1 Introduction

Cylindrical algebraic decomposition (CAD) is a key tool in real algebraic geom-
etry both for its original motivation, quantifier elimination (QE) problems [10,
etc.], but also in other applications ranging from robot motion planning [25, etc.]
to programming with complex functions [13, etc.] and branch cut analysis [17,
etc.]. Decision methods for real closed fields are used in theorem proving [15], so
CAD has much potential here. In particular MetiTarski employs QEPCAD [4] to
decide statements in special functions using polynomial bounds [1, 2, 23]. Work
is ongoing to implement a verified CAD procedure in Coq [9, 22].

Since its inception there has been much research on CAD. New types of
CAD and new algorithms have been developed, offering improved performance
and functionality. The thesis of this paper is that more attention should now be
given to how problems are presented to these algorithms.

How a problem is formulated can be of fundamental importance to algo-
rithms, rendering simple problems infeasible and vice versa. In this paper we
take some steps towards better formulation by introducing a new measure of
CAD complexity and new heuristics for many of the choices required by CAD
algorithms. We also further explore preconditioning the input via Gröbner bases.

? The final publication is available at http://link.springer.com.

ar
X

iv
:1

30
4.

72
22

v2
 [

cs
.S

C
]

 2
4

M
ay

 2
01

3

1.1 Background on CAD

A CAD is a decomposition of Rn into cells arranged cylindrically (meaning their
projections are equal or disjoint) and described by semi-algebraic sets. Tradition-
ally CADs are produced sign-invariant to a given set of polynomials in n variables
x, meaning the sign of the polynomials does not vary on the cells. This definition
was provided by Collins in [10] along with an algorithm which proceeded in two
main phases. The first, projection, applies a projection operator repeatedly to a
set of polynomials, each time producing another set of polynomials in one fewer
variables. Together these sets provide the projection polynomials. The second
phase, lifting, then builds the CAD incrementally from these polynomials. First
R is decomposed into cells which are points and intervals corresponding to the
real roots of the univariate polynomials. Then R2 is decomposed by repeating
the process over each cell using the bivariate polynomials at a sample point of
the cell. The output for each cell consists of sections of polynomials (where a
polynomial vanishes) and sectors (the regions between these). Together these
form the stack over the cell, and taking the union of these stacks gives the CAD
of R2. This process is repeated until a CAD of Rn is produced. This final CAD
will have cells ranging in dimension from 0 (single points) to n (full dimensional
portions of space). The cells of dimension d are referred to as d-cells.

It has often been noted that such decompositions actually do much more
work than is required for most applications, motivating theory which consid-
ers not just polynomials but their origin. For example, partial CAD [12, etc.]
avoids unnecessary lifting over a cell if the solution to the QE problem on a
cell is already apparent. Another example is the use of CAD with equational
constraints [21, etc.] where sign-invariance is only ensured over the sections of
a designated equation, thus reducing the number of projection polynomials re-
quired. It is worth noting that while the lifting stage takes far more resources
that the projection, improvements of the projection operator have offered great
benefits.

Applications often analyse formulae (boolean combinations of polynomial
equations, inequations and inequalities) by constructing a sign invariant CAD
for the polynomials involved. However this analyses not only the given problem,
but any formula built from these polynomials. In [3] the authors note that it
would be preferable to build CADs directly from the formulae and so define a
Truth Table Invariant CAD (TTICAD) as one which is has invariant truth values
of various quantifier-free formulae (QFFs) in each cell. In [3] an algorithm was
produced which efficiently constructed such objects for a wide class of problems
by utilising the theory of equational constraints.

1.2 Formulating problems for CAD algorithms

The TTICAD algorithm in [3] takes as input a sequence of QFFs, each of which is
a formula with a designated equational constraint (an equation logically implied
by the formula). It outputs a CAD such that on each cell of the decomposi-
tion each QFF has constant truth value. The algorithm is more efficient than

constructing a full sign-invariant CAD for the polynomials in the QFFs, since
it uses the theory of equational constraints for each QFF to reduce the projec-
tion polynomials used and hence the number of cells required. Its benefit over
equational constraints alone is that it may be used for formulae which do not
have an overall explicit equational constraint (and to greater advantage than the
use of implicit equational constraints). Many applications present problems in a
suitable form for TTICAD, such as problems from branch cut analysis [17].

However, it is possible to envision problems where although separate QFFs
are not imposed they could still lead to more economical CADs, (see Example
6). Further, we may consider splitting up individual QFFs if more than one equa-
tional constraint is present. This leads to the question of how best to formulate
the input to TTICAD, a question which motivated this paper and is answered
in Section 4. Some of this analysis could equally be applied to the theory of
equational constraints alone and so this is considered in Section 3.

In devising heuristics to guide this process we realised that the existing mea-
sures for predicting CAD complexity could be misled. An important use for these
is choosing a variable ordering for a CAD; a choice which can make a substantial
difference to the tractability of problems. We use x ≺ y to indicate x is less than
y in an ordering. In [14] the authors presented measures for CAD complexity
but none of these consider aspects of the problem sensitive to the domain we
work in (namely real geometry rather than complex). In Section 2 we suggest a
simple new measure (the number of zero cells in the induced CAD of R1) leading
to a new heuristic for use in conjunction with [14]. We demonstrate in general
it does well at discriminating between variable choices, and for certain problems
is more accurate than existing heuristics.

These three topics are all examples of choices for the formulation of problems
for CAD algorithms. They are presented in the opposite order to which they
were considered above, as it is more natural for presenting the theory. Problem
formulation was considered in this conference series last year [27] where the
idea of preconditioning CAD using Gröbner bases was examined. This work is
continued in Section 5 where we now consider preconditioning TTICAD.

The tools developed for the formulation of input here lead to the question of
whether their use is merely an addition to the algorithm or leads to the creation
of a new problem. This question also arose in [26] where a project collecting
together a repository of examples for CAD is described. In Section 6 we give our
thoughts on this along with our conclusions and ideas for future work.

2 Choosing a Variable Ordering for CAD

2.1 Effects of variable ordering on CAD

It is well documented [14, etc.] that the variable ordering used to construct
a CAD can have a large impact on the number of cells and computation time.
Example 1 gives a simple illustration. Note that the effect of the variable ordering
can be far greater than the numbers presented here and can change the feasibility

of a given problem. In [5] the authors prove there are problems where one variable
ordering will lead to a CAD with a constant number of cells while another will
give a number of cells doubly exponential in the number of variables.

Example 1. Consider the polynomial f := (x−1)(y2+1)−1 whose graph is the
solid curve in Figure 1. We have two choices of variable ordering, which lead to
the two different CADs visualised. Each cell is indicated by a sample point (the
solid circles). Setting y ≺ x we obtain a CAD with 3 cells; the curve itself and
the portions of the plane either side. However, setting x ≺ y leads to a CAD
with 11 cells; five 2-cells, five 1-cells and one 0-cell. The dotted lines indicate the
stacks over the 0-cells in the induced CAD of R1. With y ≺ x the CAD of R1

had just one cell (the entire real line) while with x ≺ y there are five cells.
We note that these numbers occur using various CAD algorithms. Indeed,

for this simple example it is clear that these CADs are both minimal for their
respective variable orderings, (i.e. there is no other decomposition which could
have less cells whilst maintaining cylindricity.)

Fig. 1. Plots visualising the CADs described in Example 1.

2.2 Heuristics for choosing variable ordering

In [14] the authors considered the problem of choosing a variable ordering for
CAD and QE via CAD. They identified a measure of CAD complexity that was
correlated to the computation time, number of cells in the CAD and number of
leaves in a partial CAD. They identified the sum of total degrees of all monomials
of all projection polynomials, known as sotd and proposed the heuristic of picking
the ordering with the lowest sotd. Although the best known heuristic, sotd does
not always pick the ideal ordering as demonstrated by some experiments in [14]
and sometimes cannot distinguish between orderings as shown in Example 2.

Example 2. Consider again the problem from Example 1. Applying any known
valid projection operator to f gives, with respect to y, the set of projection factors
{x − 1, x − 2}, (arising from the coefficients and discriminant of f). Similarly,
applying a projection operator with respect to x gives {y2 + 1}. Hence in this
case both variable orderings have the same sotd.

We consider why sotd cannot differentiate between the orderings in this case.
Algebraically, the only visible difference is that one ordering offers two factors of
degree one while the other offers a single factor of degree two. From Figure 1 we
see that one noticeable difference between the variable orderings is the number of
0-cells in the CAD of R1 (the dotted lines). This is a feature of the real geometry
of the problem as opposed to properties of the algebraic closure, measured by
sotd. Investigating examples of this sort we devised a new measure ndrr defined
to be the number of distinct real roots of the univariate projection polynomials
and created the associated heuristic of picking the variable ordering with lowest
ndrr. Considering again the projection factors from Example 2 we see that this
new heuristic will correctly identify the ordering with the least cells.

The number of real roots can be identified, for example, using the theory
of Sturm chains. This extra calculation will likely take more computation time
than the measuring of degrees required for sotd. However, both costs are usually
negligible compared to the cost of lifting in the CAD algorithm.

2.3 Relative merits of the heuristics

We do not propose ndrr as a replacement for sotd but suggest they are used
together since both have relative merits. We have already noted that the strength
of ndrr is its ability to give information on the real geometry of the CAD. Its
weakness is that it only gives information on the complexity of the univariate
polynomials, compared to sotd which measures at all levels. If the key differences
between orderings are not apparent in the univariate polynomials then ndrr is
of little use, as in Example 3.

Example 3. Consider the problem of finding necessary and sufficient conditions
on the coefficients of a quartic polynomial so that it is positive semidefinite:
eliminate the quantifier in, ∀x(px2+qx+r+x2 ≥ 0). This classic QE problem was
first proposed in [18] and was a test case in [14]. There are six admissible variable
orderings (since x must always be projected first). In all of these orderings the
univariate projection factor set will consist of just the single variable of lowest
order, (either p, q or r) and hence all orderings will have an ndrr of one. However,
the sotd can distinguish between the orderings as reported in [14].

Despite the shortcoming of only considering the first level, ndrr should not
be dismissed as effects at the bottom level can be magnified. We suggest using
the heuristics in tandem, either using one to break ties between orderings which
the other cannot discriminate or by taking a combination of the two measures.

In [14] the authors suggested a second heuristic, a greedy algorithm based
on sotd. This approach avoided the need to calculate the projection polynomi-
als for all orderings, instead choosing one variable at a time using the sum of
total degree of the monomials from those projection polynomials obtained so
far. Unfortunately there is not an obvious greedy approach to using ndrr. For
problems involving many variables (so that calculating the full set of projection
polynomials for each ordering is infeasible) we should revert to the sotd greedy
algorithm, perhaps making use of ndrr to break ties.

2.4 Coupled variables

It has been noted in [24] that a class of problems particularly unsuitable for
sotd is choosing between coupled variables (two variables which are the real
and imaginary parts of a complex variable). These are used, for example, when
analysing complex functions by constructing a CAD to decompose the domain
according to their branch cuts. The ordering of the coupled variables for the
CAD can affect the efficiency of the algorithm, as in Example 4.

Example 4. Consider f =
√
z2 + 1 where z ∈ C. The square root function has a

branch cut along the negative real axis and so f has branch cuts when

<(z2 + 1) = x2 − y2 + 1 < 0 and =(z2 + 1) = 2xy = 0,

where x, y are coupled real variables such that z = x+iy. With variable ordering
x ≺ y we have sotd = 8, ndrr = 4 and a CAD with 21 cells while with variable
ordering y ≺ x we have sotd = 8, ndrr = 5 and a CAD with 29 cells. The CADs
are visualised in Figure 2 using the same techniques as described for Figure 1.

Fig. 2. Plots visualising the CADs described in Example 4.

3 Designating Equational Constraints

An equational constraint is an equation logically implied by a formula. The
theory of equational constraints is based on the observation that the formula will
be false for any cell in the CAD where the equation is not satisfied. Hence the
polynomials forming any other constraints need only be sign invariant over the
sections of the equational constraint. The observation was first made in [11] with
McCallum providing the first detailed approach in [21]. Given a problem with an
equational constraint McCallum suggested a reduced projection operator, which
will usually result in far fewer projection factors and a simpler CAD.

This approach has been implemented in Qepcad, a command line interface
for quantifier elimination through partial CAD [4]. It can also be induced in any
implementation of TTICAD as discussed in Section 4. The use of equational con-
straints can offer increased choice for problem formulation beyond that of picking
a variable order. If a problem has more than one equational constraint then one
must be designated for use in the algorithm. We propose simple heuristics for
making this choice based on sotd and ndrr.

Let P be the McCallum projection operator which, informally, is applied to a
set of polynomials to produce the coefficients, discriminant and cross resultants.
The full technical details are available in [19] and a validated algorithm was given
in [20]. Note that implementations usually make some trivial simplifications such
as removal of constants, exclusion of polynomials that are identical to a previous
entry (up to constant multiple), and only including those coefficients which are
really necessary for the theory to hold.

Next, for some equational constraint f let Pf be the reduced projection op-
erator relative to f described in [21]. Informally, this consists of the coefficients
and discriminant of f together with the resultant of f taken with each of the
other polynomials. This is used for the first projection, reverting to P for subse-
quent projections. We can then apply the sotd and ndrr measures to the sets of
projection polynomials as a measure of the complexity of the CADs that would
be produced. We denote these values by S and N respectively and our heuristics
are then to choose the equational constraint that minimises these values.

We ran experiments to test the effectiveness of these heuristics using prob-
lems from the CAD repository described in [26]1. We selected those problems
with more than one equational constraint, for which at least one of the choices
is tractable. The experiments were run in Maple using the ProjectionCAD
package [16] and the results are displayed in Table 1 with the cell count, compu-
tation time and heuristic values given for each problem and choice of equational
constraint.

The full details on the problems can be found in the repository. The exam-
ples each contain two or three equational constraints and the numbering of the
choices in the table refers to the order the equational constraints are listed in the
repository. The variable orderings used were those suggested in the repository.

1 Freely available at http://opus.bath.ac.uk/29503

http://opus.bath.ac.uk/29503

Problem EC Choice 1 EC Choice 2 EC Choice 3
Cells Time S N Cells Time S N Cells Time S N

Intersection A 657 5.6 61 7 463 5.1 64 8 269 1.3 42 4
Intersection B 711 6.3 66 6 471 5.4 71 6 303 1.1 40 5
Random A 375 2.7 81 9 435 3.6 73 8 425 2.8 80 8
Random B 1295 21.4 140 13 477 3.8 84 9 1437 23.9 158 14
Sphere-Catastrophe 285 2.0 61 7 169 1.0 59 5
Arnon84-2 39 0.1 54 5 9 0.0 47 1
Hong-90 F - 14 0 F - 14 0 27 0.1 14 0
Cyclic-3 57 0.3 32 3 117 0.7 35 3 119 0.6 36 4

Table 1. Comparing the choice of equational constraint for a selection of problems.
The lowest cell count for each problem is highlighted and the minimal values of the
heuristics emboldened.

The time taken to calculate S and N for each problem was always less than 0.05
seconds and so insignificant to the overall timings.

For each problem the equational constraint choice resulting in the lowest cell
count and timing has been highlighted and the minimal values of the heuristics
emboldened. We can see that for almost all cases both the heuristics point to
the best choice. However, there is an example (Random A) where both point to
an incorrect choice. The heuristic based on sotd is more sensitive (because it
measures at all levels) and as a result is sometimes more effective. For example,
it picks the appropriate choice for the Cyclic-3 example while the other does not.

Although the sotd heuristic is superior for all these examples it can be misled
by examples where the real geometry differs, as in Example 5.

Example 5. Consider the polynomials

f := y5 − 2y3x+ yx2 + y = y(y2 − (x+ i))(y2 − (x− i))

g := y5 − 2y3x+ yx2 − y = y(y2 − (x+ 1))(y2 − (x− 1))

along with the formula f = 0∧ g = 0 and variable ordering x ≺ y. We could use
either f or g as an equational constraint when constructing a CAD. We have

discrim(f) = 256(x2 + 1)3, discrim(g) = 256(x− 1)3(x+ 1)3

and so both the projection sets have the same sotd. However, with f as an
equational constraint the projection set has ndrr= 0 while with g it is 2. The
CADs of R2 have 3 and 31 cells respectively.

4 Formulating Input for TTICAD

Let Φ represent a set of QFFs, {φi}. In [3] the authors define a Truth-Table
Invariant CAD (TTICAD) as a CAD such that the boolean value of each φi is

constant (either true or false) on each cell. Clearly such a CAD is sufficient for
solving many problems involving the formulae.

A sign-invariant CAD is also a TTICAD, however, in [3] the authors present
an algorithm to construct TTICADs more efficiently for the case where each φi
has a designated equational constraint fi (an equation logically implied by φi).
They adapt the theory of equational constraints to define a TTICAD projec-
tion operator and prove a key theorem explaining when it is valid. Informally,
the TTICAD projection operator produces the union of the application of the
equational constraints projection operator to each φi along with the cross resul-
tants of all the designated equational constraints, (see [3] for the full technical
details). As noted in the introduction, TTICAD is more efficient than equational
constraints alone.

If there is more than one equational constraint present within a single φi
then a choice must be made as to which is designated for use in the algorithm,
(the others would then be treated as any other constraint). As with choosing
equational constraints in Section 3 the two different projection sets could be
calculated and the measures sotd and ndrr taken and used as heuristics, picking
the choice that leads to the lowest values.

However, this situation actually offers further choice for problem formula-
tion than the designation. If φi had two equational constraints then it would be
admissible to split this into two QFFs φi,1, φi,2 with one equational constraint
assigned to each and the other constraints partitioned between them in any man-
ner. (Admissible because any TTICAD for φi,1, φi,2 is also a TTICAD for φi.)
This is a generalisation of the following observation: given a formula φ with two
equational constraints a CAD could be constructed using either the traditional
theory of equational constraints or the TTICAD algorithm applied to two QFFs.
On the surface it is not clear why the latter option would ever be chosen since
it would certainly lead to more projection polynomials after the first projec-
tion. However, a specific equational constraint may have a comparatively large
number of intersections with another constraint, in which case, while separating
these into different QFFs would likely increase the number of projection polyno-
mials it may still reduce the number of cells in the CAD, (since the resultants
taken would be less complicated leading to fewer projection factors at subsequent
steps). Example 6 describes a simple problem which could be tackled using the
theory of equational constraints alone, but for which it is beneficial to split into
two QFFs and tackle with TTICAD.

Example 6. Let x ≺ y and consider the polynomials

f1 := (y − 1)− x3 + x2 + x, g1 := y − x
4 + 1

2 ,

f2 := (−y − 1)− x3 + x2 + x, g2 := −y − x
4 + 1

2 ,

and the formula φ := f1 = 0 ∧ g1 > 0 ∧ f2 = 0 ∧ g2 < 0.
The polynomials are plotted in Figure 3 where the solid curve is f1, the solid

line g1, the dashed curve f2 and the dashed line g2. The three figures also contain
dotted lines indicating the stacks over the 0-cells of the CAD of R1 arising from
the decomposition of the real line using various CAD algorithms.

First, if we use the theory of equational constraints (with either f1 or f2 as
the designated equational constraint) then a CAD is constructed which identifies
all the roots and intersection between the four polynomials except for the inter-
section of g1 and g2. (Note that this would be identified by a full sign-invariant
CAD). This is visualised by the plot on the left while the plot on the right relates
to a TTICAD with two QFFs. In this case only three 0-cells are identified, with
the intersections of g2 with f1 and g1 with f2 ignored.

The TTICAD has 31 cells while the CADs produced using equational con-
straints both have 39 cells. The TTICAD projection set has an sotd of 26 and
an ndrr of 3 while each of the CADs produced using equational constraints have
projection sets with values of 30 and 6 for sotd and ndrr.

Fig. 3. Plots visualising the induced CADs of R1 described in Example 6.

As suggested by Example 6 we propose using the measures sotd and ndrr
applied to the set of projection polynomials as heuristics for picking an approach.
We can apply these with the TTICAD projection operator for deciding if it would
be beneficial to split QFFs. This can also be used for choosing whether to use
TTICAD instead of equational constraints alone, since applying the TTICAD
algorithm from [3] on a single QFF is equivalent to creating a CAD invariant
with respect to an equational constraint.

We may also consider whether it is possible to combine any QFFs. If the
formulae were joined by conjunction then it would be permitted and probably
beneficial but we would then need to choose which equational constraint to
designate. Formulae joined by disjunction could also be combined if they share an
equational constraint, (with that becoming the designated choice in the combined
formula). Such a situation is common for the application to branch cut analysis
since many branch cuts come in pairs which lie on different portions of the same
curve. However, upon inspection of the projection operators, we see that such
a merger would not change the set of projection factors in the case where the
shared equational constraint is the designated one for each formula. Note, if
the shared equational constraint is not designated in both then the only way to
merge would be by changing designation.

When considering whether to split and which equational constraint to desig-
nate the number of possible formulations increases quickly. Hence we propose a
method for TTICAD QFF formulation, making the choices one QFF at a time.
Given a list Φ̂ of QFFs (quantifier free formulae):

(1) Take the disjunction of the QFFs and put that formula into disjunctive
normal form,

∨
φ̂i so that each φ̂i is a conjunction of atomic formulae.

(2) Consider each φ̂i in turn and let mi be the number of equational constraints.
– If mi = 0 then Φ̂ is not suitable for the TTICAD algorithm of [3],

(although we anticipate that it could be adapted to include such cases).
– If mi = 1 then the sole equational constraint is designated trivially.
– If mi > 1 then we consider all the possible partitions of the formula

in φ̂i into sub QFFs with at least one equational constraint each, and
all the different designations of equational constraint within those sub-
QFFs with more than one. Choose a partition and designation for this
clause according to the heuristics based on sotd and ndrr applied to the
projections polynomials from the clause.

(3) Let Φ be the list of new QFFs, φi, and the input to TTICAD.

5 Using Gröbner Bases to Precondition TTICAD QFFs

Recall that for an ideal, I ⊂ R[x], a Gröbner basis (for a given monomial or-
dering) is a polynomial basis of I such that {lm(g) | g ∈ G} is also a basis
for {lm(f) | f ∈ I}. In [7] experiments were conducted to see if Gröbner basis
techniques could precondition problems effectively for CAD. Given a problem:

ϕ :=
∧s

i=1 fi(x) = 0,

a purely lexicographical Gröbner basis {f̂i}ti=1 for the fi, (taken with respect
to the same variable ordering as the CAD), could take their place to form an
equivalent sentence:

ϕ̂ :=
∧t

i=1 f̂i(x) = 0.

Initial results suggested that this preconditioning can be hugely beneficial in
certain cases, but may be disadvantageous in others.

In [27] this idea was considered in greater depth. A larger base of problems
was tested and the idea extended to include Gröbner reduction. Given a problem:

ψ := (
∧s1

i=1 fi(x) = 0) ∧ (
∧s2

i=1 gi(x) ∗i 0) , ∗i ∈ {=, 6=, >,<},

you can first compute {f̂i}t1i=1 followed by reducing the gi with respect to the f̂i
to obtain {ĝi}t2i=1. Then the following sentence will be equivalent to ψ:

ψ̂ := (
∧t1

i=1 f̂i(x) = 0) ∧ (
∧t2

i=1 ĝi(x) ∗i 0).

Experimentation showed that this Gröbner preconditioning can be highly
beneficial with respect to both computation time and cell count, however the

Fig. 4. Plot of the functions described in Example 7.

effect is not universal. To identify when preconditioning is beneficial a simple
metric was posited and shown to be a good indicator. The quantity TNoI (total
number of indeterminates) for a set of polynomials F is simply defined to be the
sum of the number of variables present in each polynomial in F . In all testing
carried out (both for [27] and henceforth) if the produced Gröbner basis has a
lower TNoI than the original set of polynomials then preconditioning is beneficial
for sign-invariant CAD (the converse is not always true).

A natural question is whether Gröbner preconditioning can be adapted for
TTICAD. This is possible by performing the Gröbner preconditioning on the
individual QFFs. There is a necessity, however, for a problem to be suitably
complicated for this preconditioning to work: each QFF must have multiple
equational constraints amenable to the creation of a Gröbner Basis. This required
complexity means there are few examples in the literature which are suitable and
tractable for experimentation. We demonstrate the power of combining these two
techniques through a worked example.

Example 7. Consider the polynomials

f1,1 := x2 + y2 − 1, f2,1 := (x− 4)
2
+ (y − 1)

2 − 1,

f1,2 := x3 + y3 − 1, f2,2 := (x− 4)
3
+ (y − 1)

3 − 1,
g1 := xy − 1

4 , g2 := (x− 4) (y − 1)− 1
4

and the formula [f1,1 = 0 ∧ f1,2 = 0 ∧ g1 > 0] ∨ [f2,1 = 0 ∧ f2,2 = 0 ∧ g2 > 0].
The polynomials are plotted in Figure 4 where the solid curves represent

f1,1, f1,2, g1, and the dashed curves f2,1, f2,2, g2.

We will consider both variable orderings: y ≺ x and x ≺ y. We can compute
full CADs for this problem, with 725 and 657 cells for the respective orderings.
If we use TTICAD to tackle the problem then there are four possible two-QFF
formulations, (splitting QFFs is not beneficial for this problem). The four for-
mulations are described in the second column of Table 2.

Order Full CAD TTI CAD TTI+Grö CAD
Cells Time Eq Const Cells Time S N Eq Const Cells Time S N

y ≺ x 725 22.802 f1,1, f2,1 153 0.818 62 12 f̂1,1, f̂2,1 27 0.095 37 3
f1,1, f2,2 111 0.752 94 10 f̂1,1, f̂2,2 47 0.361 50 5
f1,2, f2,1 121 0.732 85 9 f̂1,1, f̂2,3 93 0.257 50 9
f1,2, f2,2 75 0.840 99 7 f̂1,2, f̂2,1 47 0.151 47 5

f̂1,2, f̂2,2 83 0.329 63 7
f̂1,2, f̂2,3 145 0.768 81 11
f̂1,3, f̂2,1 95 0.263 46 10
f̂1,3, f̂2,2 151 0.712 80 12
f̂1,3, f̂2,3 209 0.980 62 16

x ≺ y 657 22.029 f1,1, f2,1 125 0.676 65 14 f̂1,1, f̂2,1 29 0.085 39 4
f1,1, f2,2 117 0.792 96 11 f̂1,1, f̂2,2 53 0.144 52 6
f1,2, f2,1 117 0.728 88 11 f̂1,1, f̂2,3 97 0.307 53 97
f1,2, f2,2 85 0.650 101 8 f̂1,2, f̂2,1 53 0.146 49 6

f̂1,2, f̂2,2 93 0.332 65 8
f̂1,2, f̂2,3 149 0.782 81 13
f̂1,3, f̂2,1 97 0.248 48 11
f̂1,3, f̂2,2 149 0.798 82 13
f̂1,3, f̂2,3 165 1.061 65 18

Table 2. Experimental results relating to Example 7. The lowest cell counts are high-
lighted and the minimal values of the heuristics emboldened.

We can apply Gröbner preconditioning to both QFFs separately, computing
a Gröbner basis, with respect to the compatible ordering, of {fi,1, fi,2}. For both
QFFs and both variable orderings three polynomials are produced. We denote
them by {f̂i,1, f̂i,2, f̂i,3} (note the polynomials differ depending on the variable
ordering). The algorithm used to compute these bases gives the polynomials in
decreasing order of leading monomials with respect to the order used to compute
the basis (purely lexicographical).

Table 2 shows that the addition of Gröbner techniques to TTICAD can pro-
duce significant reductions: a drop from 153 cells in 0.8s to 27 cells in under 0.1s
(including the time required to compute the Gröbner bases). As discussed in [27],
preconditioning is not always beneficial, as evident from the handful of cases that
produce more cells than TTICAD alone. As with Table 1 we have highlighted the
examples with lowest cell count and emboldened the lowest heuristic. Looking
at the values of S and N we see that for this example ndrr is the best measure
to use.

In [27] TNoI was used to predict whether preconditioning by Gröbner Basis
would be beneficial. In this example TNoI is increased in both orderings by
taking a basis, which correctly predicts a bigger full CAD after preconditioning.
However, TNoI does not take into account the added subtlety of TTICAD (as
shown by the huge benefit above).

6 Conclusions and Future Work

In this paper we have considered various issues based around the formulation of
input for CAD algorithms. We have revisited the classic question of choosing the
variable ordering, proposing a new measure of CAD complexity ndrr to com-
plement the existing sotd measure. We then used these measures as heuristics
for the problem of designating equational constraints and QFF formulation for
TTICAD. Finally we considered the effect of preconditioning by Gröbner bases.

It is important to note that these are just heuristics and, as such, can be
misleading for certain examples. Although the experimental results in Section 3
suggest sotd is a finer heuristic than ndrr we have demonstrated that there are
examples when ndrr performs better, not just Example 5 which was contrived
for the purpose but also Example 7 introduced for the work on Gröbner bases.

These issues have been treated individually but of course they intersect. For
example it is also necessary to pick a variable ordering for TTICAD. This choice
will need to made before employing the method for choosing QFF formulation
described in Section 4. However, the optimal choice of variable ordering for one
QFF formulation may not be optimal for another! For example, the TTICAD
formulation with two QFFs was the best choice in Example 6 where the variable
ordering was stated as x ≺ y but if we had y ≺ x then a single QFF is superior.

The idea of combining TTICAD with Gröbner preconditioning (discussed
in [7], [27]) is shown, by a worked example, to have the potential of being a very
strong tool. However, this adds even more complication in choosing a formulation
for the problem. Taken together, all these choices of formulation can become
combinatorially overwhelming and so methods to reduce this, such as the greedy
algorithm in [14] or the method at the end of Section 4, are of importance.

All these options for problem formulation motivate the somewhat philosoph-
ical question of when a reformulation results in a new problem. When a variable
ordering is imposed by an application (such as projecting quantified variables
first when using CAD for quantifier elimination) then violating this would clearly
lead to a new problem while changing the ordering within quantifier blocks could
be seen to be a optimisation of the algorithm. Similar distinctions could be drawn
for other issues of formulation.

Given the significant gains available from problem reformulation it would
seem that the existing technology could benefit from a redesign to maximise
the possibility of its use. For example, CAD algorithms could allow the user to
input the variables is quantifier blocks so that the technology can choose the
most appropriate ordering that still solves the problem.

We finish with some ideas for future work on these topics.

– All the work in this paper has been stated with reference to CAD algorithms
based on projection and lifting. A quite different approach, CAD via Trian-
gular Decomposition, has been developed in [8] and implemented as part of
the core Maple distribution. This constructs a (sometimes quite different)
sign-invariant CAD by transferring the problem to complex space for solving.
A key question is how much of the work here transfers to this approach?

– Can the heuristics for choosing equational constraints also be used for choos-
ing pivots when using the theory of bi-equational constraints in [6]?

– Can the ndrr measure be adapted to consider also the real roots of those
projection polynomials with more than one variable?

We finish by discussing one of the initial motivations for engaging in work
on problem formulation: a quantifier elimination problem proving a property of
Joukowski’s transformation. This is the transformation z 7→ 1

2 (z +
1
z) which is

used in aerodynamics to create an aerofoil from the unit circle. The fact it is
bijective on the upper half plane is relatively simple to prove analytically but we
found the state of the art CAD technology was incapable of producing an answer
in reasonable time. Then, in a personal communication, Chris Brown described
how reformulating the problem with a succession of simple logical steps makes
it amenable to Qepcad, allowing for a solution in a matter of seconds. These
steps included splitting a disjunction to form two separate problems and the
(counter-intuitive) removal of quantifiers which block Qepcad’s use of equa-
tional constraints. Further details are given in [13, Sec. III] and in the future
we aim to extend our work on problem formulation to develop techniques to
automatically render this problem feasible.

Acknowledgements

This work was supported by the EPSRC grant: EP/J003247/1. The authors
would like to thank Scott McCallum for many useful conversations on TTICAD
and Chris Brown for sharing his work on the Joukowski transformation.

References

1. B. Akbarpour and L.C.Paulson. MetiTarski: An Automatic Prover for the El-
ementary Functions. Intelligent Computer Mathematics (LNCS), 5144:217–231,
2008

2. B. Akbarpour and L.C.Paulson. MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning, 44(3):175–205, 2010.

3. R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson. Cylin-
drical algebraic decompositions for boolean combinations. In Press: Proc. ISSAC
’13. Preprint at http://opus.bath.ac.uk/33926/, 2013.

4. C.W. Brown. QEPCAD B: A program for computing with semi-algebraic sets
using CADs. ACM SIGSAM Bulletin, 37(4):97–108, 2003.

5. C.W. Brown and J.H. Davenport. The complexity of quantifier elimination and
cylindrical algebraic decomposition. In Proc. ISSAC ’07, pages 54–60. ACM, 2007.

6. C.W. Brown and S. McCallum. On using bi-equational constraints in CAD con-
struction. In Proc. ISSAC ’05, pages 76–83. ACM, 2005.

7. B. Buchberger and H. Hong. Speeding up quantifier elimination by Gröbner bases.
Technical report, 91-06. RISC, Johannes Kepler University, 1991.

8. C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic
decomposition via triangular decomposition. In Proc. ISSAC ’09, pages 95–102.
ACM, 2009.

9. C. Cohen and A. Mahboubi Formal proofs in real algebraic geometry: from ordered
fields to quantifier elimination. LMCS, 8(1:02):1–40, 2012.

10. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proc. 2nd GI Conference on Automata Theory and Formal
Languages, pages 134–183. Springer-Verlag, 1975.

11. G.E. Collins. Quantifier elimination by cylindrical algebraic decomposition – 20
years of progress. In B. Caviness and J. Johnson, editors, Quantifier Elimina-
tion and Cylindrical Algebraic Decomposition, Texts & Monographs in Symbolic
Computation, pages 8–23. Springer-Verlag, 1998.

12. G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput., 12:299–328, 1991.

13. J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program verification
in the presence of complex numbers, functions with branch cuts etc. In Proc.
SYNASC ’12, 2012.

14. A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for CAD. In
Proc. ISSAC ’04, pages 111–118. ACM, 2004.

15. A. Dolzmann, T. Sturm, and V. Weispfenning. A New Approach for Automatic
Theorem Proving in Real Geometry. Journal of Automated Reasoning, 21(3):357–
380, 1998.

16. M. England. An implementation of CAD in Maple utilising McCallum projection.
Department of Computer Science Technical Report series 2013-02, University of
Bath. Available at http://opus.bath.ac.uk/33180/, 2013.

17. M. England, R. Bradford, J.H. Davenport, and D. Wilson. Understanding branch
cuts of expressions. In Press: Proc. CICM ’13, 2013.

18. D. Lazard. Quantifier elimination: Optimal solution for two classical examples. J.
Symb. Comput., 5(1–2):261–266, 1988.

19. S. McCallum. An improved projection operation for cylindrical algebraic decom-
position of three-dimensional space. J. Symb. Comput., 5(1-2):141–161, 1988.

20. S. McCallum. An improved projection operation for cylindrical algebraic decompo-
sition. In B. Caviness and J. Johnson, editors, Quantifier Elimination and Cylin-
drical Algebraic Decomposition, Texts & Monographs in Symbolic Computation,
pages 242–268. Springer-Verlag, 1998.

21. S. McCallum. On projection in CAD-based quantifier elimination with equational
constraint. In Proc. ISSAC ’99, pages 145–149. ACM, 1999.

22. A. Mahboubi, Implementing the cylindrical algebraic decomposition within the
Coq system. Math. Struct. in Comp. Science, 17(1):99–127, 2007.

23. G.O. Passmore, L.C.Paulson, and L. de Moura. Real Algebraic Strategies for Meti-
Tarski Proofs. Intelligent Computer Mathematics (LNCS), 7362:358–370, 2012.

24. N. Phisanbut. Practical Simplification of Elementary Functions using Cylindrical
Algebraic Decomposition. PhD thesis, University of Bath, 2011.

25. J.T. Schwartz and M. Sharir. On the “Piano-Movers” Problem: II. General tech-
niques for computing topological properties of real algebraic manifolds. Adv. Appl.
Math., 4:298–351, 1983.

26. D.J. Wilson, R.J. Bradford, and J.H. Davenport. A repository for CAD examples.
ACM Communications in Computer Algebra, 46(3):67–69, 2012.

27. D.J. Wilson, R.J. Bradford, and J.H. Davenport. Speeding up cylindrical alge-
braic decomposition by Gröbner bases. Intelligent Computer Mathematics (LNCS),
7362:280–294, 2012.

	Optimising Problem Formulation for Cylindrical Algebraic Decomposition

