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Abstract. Broadly speaking, there are two kinds of semantics-aware as-
sistant systems for mathematics: proof assistants express the semantic
in logic and emphasize deduction, and computer algebra systems express
the semantics in programming languages and emphasize computation.
Combining the complementary strengths of both approaches while mend-
ing their complementary weaknesses has been an important goal of the
mechanized mathematics community for some time.
We pick up on the idea of biform theories and interpret it in the Mmt/
OMDoc framework which introduced the foundations-as-theories ap-
proach, and can thus represent both logics and programming languages
as theories. This yields a formal, modular framework of biform theory
graphs which mixes specifications and implementations sharing the mod-
ule system and typing information.
We present automated knowledge management work flows that interface
to existing specification/programming tools and enable an OpenMath

Machine, that operationalizes biform theories, evaluating expressions by
exhaustively applying the implementations of the respective operators.
We evaluate the new biform framework by adding implementations to
the OpenMath standard content dictionaries.

1 Introduction

It is well-known that mathematical practices – conjecturing, formalization, prov-
ing, etc. – combine (among others) axiomatic reasoning with computation. Nev-
ertheless, assistant systems for the semantics-aware automation of mathematics
can be roughly divided into two groups: those that use logical languages to ex-
press the semantics and focus on deduction (commonly called proof assistants),
and those that use programming languages to express the semantics and focus
on computation (commonly called computer algebra systems). Combining
their strengths is an important objective in mechanized mathematics.

Our work is motivated by two central observations. Firstly, combination ap-
proaches often take a deduction or computation system and try to embed the
respective other mode into its operations, e.g., [HT98,DM05] and [HPRR10],
respectively. Secondly, most of these systems are usually based on the homo-
geneous method, which fixes one foundation (computational or deductive) with
all primitive notions (e.g., types, axioms, or programming primitives) and uses
only conservative extensions (e.g., definitions, theorems, or procedures) to model
domain objects.
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In this paper, we want to employ the heterogeneous method, which focuses
on encapsulating primitive notions in theories and considers truth relative to a
theory. It optimizes reusability by stating every result in the weakest possible
theory and using theory morphisms to move results between theories in a truth-
preserving way. This is often called the little theories approach [FGT92]. In
computational systems this is mirrored by using programming languages that
relegate much of the functionality to an extensible library infrastructure.

SL PL

Spec Impl

Obl

Ref

In homogeneous approaches, we usually fix a
specification language SL and a programming lan-
guage PL and one implementation for each. In pro-
gram synthesis, a specification Spec is extended
(hooked arrows) to a refined specification Ref, from
which a program can be extracted (snaked arrow).
Both can be visualized by the diagram on the right
where dotted arrows denote the written-in relation.
In both cases, the proofs are carried out in a theory
of SL, and a non-trivial generation step crosses the
border between the SL-based deduction system (the gray area) and the PL-based
computation system, e.g., [HN10] generates programs from Isabelle/HOL proofs.

Dually, we find approaches that emphasize PL over SL. SML-style module
systems and object-orientation can be seen as languages that transform parts
of SL (namely the type system but not the entailment system) into PL. An
example is the transformation of SL=UML diagrams into PL=Java stubs, which
are then refined to a Java program. Advanced approaches can transform the
whole specification into PL by enriching the programming language as in [KST97]
or the programming environment as in [ABB+05].

A third approach is to develop a language SPL that is strong enough to com-
bine the features of specification and programming. Several implementations of
λ calculi have been extended with features of programming languages, e.g., Coq
[The11] and Isabelle/HOL [NPW02]. The FoCaLiZe language [H+12] systemat-
ically combines a functional and object-oriented programming language with a
logic, and a compilation process separates the two aspects by producing OCaml
and Coq files, respectively. The source files may also contain raw Coq snippets
that are not verified by FoCaLiZe but passed on to Coq. In Dedukti [BCH12],
rewriting rules are used to enhance a specification language with computational
behavior, and the computational aspect can be compiled into a Lua program.

We want to create a heterogeneous framework in which we can represent
such homogeneous approaches. We use the Mmt language [RK13], which ex-
tends the heterogeneous method with language-independence inspired by logical
frameworks. The key advantage is that this permit flexibly combining arbitrary
specification and programming languages. In Mmt, we represent both PL and
SL as Mmt theories SL and PL (see diagram below), which declare the primitive
concepts of the respective language. The dotted lines are represented explicitly
using the meta-theory relation, and relatively simple mappings (dashed snaked



lines) transform between specifications Spec and implementations Impl and the
corresponding Mmt theories Spec and Impl.

Typically SL and PL share some language features, e.g., the type system,
which SL enriches with deductive primitives and PL with computational primi-
tives. Mmt can represent this by giving a (possibly partial) morphism bifound :
SL → PL that embeds SL features into PL. Via bifound, Impl can access both SL

and PL features, and the fact that Impl implements Spec is represented as an
Mmt theory morphism (dashed line).

SL PL

Spec Impl

SL PL

Spec Impl

bifound

Our framework is inspired by the biform theories of
[Far07], which extend axiomatic theories with transform-
ers : named algorithms that implement axiomatically spec-
ified function symbols. We follow the intuition of hetero-
geneous biform theories but interpret them in Mmt. Most
importantly, this permits SL and PL to be arbitrary lan-
guages represented in Mmt.

We leverage this by using types and examples in Spec

to generate method stubs and test cases in Impl. Our in-
terest is not (yet) the corresponding treatment of axioms,
which would add formal deduction about the correctness
of programs. In particular, we do not provide a formal
definition of the meaning of the computational knowledge
other than linking symbols to algorithms via theory morphisms.

As a computational backend, we develop what we call the universal machine.
It extends Mmt with a component that collects the individual implementation
snippets occurring in a biform Mmt theory graph and integrates them into a
rule-based rewriting engine. The universal machine keeps track of these and
performs computations by applying the available rules.

In the past, a major practical limitation of frameworks like ours has been
the development of large libraries of biform theories. Here a central contribution
of our work is that the Mmt API [Rab13b] (providing, e.g., notations, module
system, and build processes) makes it easy to write biform theories in practice.
Moreover, the API is designed to make integration with other applications easy
so that the universal machine can be easily reused by other systems.

We evaluate this infrastructure in an extensive case study: We represent a
collection of OpenMath content dictionaries in Mmt (i.e., SL = OpenMath)
and provide implementations for the symbols declared in them using the pro-
gramming language Scala (i.e., PL = Scala). The resulting biform theory graph
integrates OpenMath CDs with the Scala code snippets implementing the sym-
bols.

2 Representing Languages in MMT

In this section we introduce the Mmt language and directly apply it to modeling
the pieces of our running example by representing OpenMath and Scala in
Mmt.



2.1 The MMT Language and System

Mmt [RK13] is a knowledge representation format focusing on modularity and
logic-independence. It is accompanied by the Mmt API, which implements the
language focusing on scalable knowledge management and system interoperabil-
ity. For our purposes, the simplified fragment of Mmt (which in particular omits
named imports and sharing between imports) given in Figure 1 suffices.

Module ::= theory T : ModuleName Statement∗

| view V : ModuleName → ModuleName Statement∗

Statement ::= constant c [: Term] [= Term] [#Notation]
| include ModuleName

Term ::= c | x | number | OMA(Term+) | OMBIND(Term;x+; Term)
Notation ::= (number[string...] | string)∗

Fig. 1. A Fragment of the Mmt Grammar

We will briefly explain the intuitions behind the concepts and then exemplify
them in the later sections, where we representOpenMath CDs and Scala classes
as Mmt theories.

An Mmt theory theory T : M Σ defines a theory T with meta-theory M

consisting of the statements in Σ. The meta-theory relation between theories
is crucial to obtain logic-independence: The meta-theory gives the language, in
which the theory is written. For example, the meta-theory of a specification is
the specification logic, and the meta-theory of a program is the programming
language – and the logic and the programming language are represented as Mmt

theories themselves (possibly with further meta-theories). Thus, Mmt achieves
a uniform representation of logics and programming languages as well as their
theories and programs.

Mmt theories form a category, and an Mmt view V : T1 → T2 Σ defines a
theory morphism V from T1 to T2 consisting of the statements in Σ. In such a
view, Σ may use the constants declared in T2 and must declare one definition
for every definition-less constant declared in T1. Views uniformly capture the
relations “T2 interprets/implements/models T1”. For example, if T1 represents
a specification and T2 a programming language, then views T1 → T2 represent
implementations of T1 in terms of T2 (via the definitions in Σ).

Theories and views are subject to the Mmt module system. Here we will
restrict attention to the simplest possible case of unnamed inclusions between
modules: If a module T contains a statement include S, then all declarations of
S are included into T .

Within modules, Mmt uses constants to represent atomic named declara-
tions. A constant’s optional type and definiens are arbitrary terms. Due to the
freedom of using special constants declared in the meta-theory, a type and a
definiens are sufficient to uniformly represent diverse statements of formal lan-
guages such as function symbols, examples, axioms, inference rules. Moreover,



constants have an optional notation which is used by Mmt to parse and render
objects. We will not go into details and instead explain notations by example,
when we use them later on.

Mmt terms are essentially the OpenMath objects [BCC+04] formed from
the constants included into the theory under consideration. This is expressive
enough to subsume the abstract syntax of a wide variety of formal systems. We
will only consider the fragment of Mmt terms formed from constants c, variables
x, numbers literals, applications OMA(f, t1, . . . , tn) of f to the ti, and bindings
OMBIND(b;x1, . . . , xn; t) where a binder b binds the variables xi in the scope t.

2.2 Content Dictionaries as MMT Theories

OpenMath declares symbols in named content dictionaries that have global
scope (unlike Mmt theories where symbols must be imported explicitly). Con-
sequently, references to symbols must reference the CD and the symbol name
within that CD. The official OpenMath CDs [OMC] are a collection of content
dictionaries for basic mathematics. For example, the content dictionary arith1

declares among others the symbols plus, minus, times, and divide for arithmetic
in any mathematical structure – e.g., a commutative group or a field – that
supports it.

Each symbol has a type using the STS type system [Dav00]. The types de-
scribe what kinds of application (rarely: binding) objects can be formed using the
symbol. For example, its type licenses the application of plus to any sequence of
arguments, which should come from a commutative semigroup. Moreover, each
symbol comes with a textual description of the meaning of the thus-constructed
application, and sometimes axioms about it, e.g., commutativity in the case of
plus.

OpenMath Mmt

CD theory
symbol constant
property F constant OMA(FMP, F )

We represent every OpenMath CD
as an Mmt theory, whose meta-theory
is a special Mmt theory OpenMath.
Moreover, every OpenMath symbol is
represented as an Mmt constant. All
constants are definition-less, and it remains to describe their types and nota-
tions. Mathematical properties that are given as formulas are also represented
as Mmt constants using a special type.

Meta-Theory and Type System OpenMathmust declare all those symbols that are
used to form the types of OpenMath symbols. This amounts to a formalization
of the STS type system [Dav00] employed in the OpenMath CDs. However,
because the details STS are not obvious and not fully specified, we identify the
strongest type system that we know how to formalize and of which STS is a
weakening. Here strong/weak means that the typing relation holds rarely/often,
i.e., every STS typing relation also holds in our weakened version. The types in
this system are: i) Object ii) OMA(mapsto,Object, . . . ,Object, A,Object) where A

is either Object or naryObject iii) binder. Here binder is the type of symbols that



take a context C and an Object in context C and return an Object. This type
system ends up being relatively simple and is essentially an arity-system.1

theory OpenMath
constant mapsto # 1×... → 2
constant Object
constant naryObject
constant binder
constant FMP

Fig. 2. Mmt Theory OpenMath

Moreover, we add a special symbol FMP to
represent mathematical properties as follows:
A property asserting F is represented as a con-
stant with definiens OMA(FMP, F ).2 Intuitively,
we can think of FMP as a partial function that
can only be applied to true formulas. We do
not need symbols for the formation of formulas
F because they are treated as normal symbols
that are introduced in CDs such as logic1.

This results in the following Mmt theory OpenMath in Figure 2. There,
the notation of mapsto means that it takes first a sequence or arguments with
separator × followed by the separator → and one more argument.

theory arith1 : OpenMath
plus : naryObject → Object

# 1+...
minus : Object × Object → Object

# 1 − 2
plus : naryObject → Object

# 1∗...
. . .

theory NumbersTest : OpenMath
include arith1
include fns1
include set1
include relations1
maptest = FMP
{0,1,2} map (x 7→ −x∗x+2∗x+3) = {3,4}

Fig. 3. OpenMath CDs in Mmt

Notations In order to write OpenMath objects conveniently – in particular,
to write the examples mentioned below – we add notations to all OpenMath

symbols. OpenMath does not explicitly specify notations for the symbols in
the official CDs. However, we can gather many implied notations from the
stylesheets provide to generate presentation MathML. Most of these can be
mapped to Mmt notations in a straightforward fashion. As Mmt notations are
one-dimensional, we make reasonable adjustments to two-dimensionalMathML

notations such as those for matrices and fractions.

Example 1. We will use a small fragment of our case study (see Section 5) as a
running example. The left listing in Fig. 3 gives a fragment of the Mmt theory
representing the CD arith1. Here the notation of plus means that it takes a
sequence or arguments with separator +, and the one of minus that it takes two
arguments separated by −.

1 In fact, we are skeptical whether any fully formal type system for all of OpenMath

can be more than an arity system.
2 We do not use a propositions-as-types representation here because it would make it
harder to translate OpenMath to other languages.



The right listing uses the module system to import some CDs and then give
an example of a true computation as an axiom. It uses the symbols set1?set,
fns1?lambda, and relation1?eq and the notations we declare for them.

2.3 Scala Classes as MMT Theories

Scala [OSV07] combines features of object-oriented and functional programming
languages. At the module and statement level, it follows the object-oriented
paradigm and is similar to Java. At the expression level, it supplements Java-
style imperative features with simple function types and inductive types.

A class is given by its list of member declarations, and we will only make use
of 3 kinds of members: types, immutable typed values, and methods, which are
essentially values of functional type.

Values have an optional definiens, and a class is concrete if all members
have one, otherwise abstract. Scala introduces special concepts that can be used
instead of classes without constructor arguments: trait in the abstract and object
in the concrete case. Traits permit multiple inheritance, i.e., every class can
inherit from multiple traits. Objects are singleton classes, i.e., they are at the
same time a class and the only instance of this class. An object and a trait may
have the same name, in which case their members correspond to the static and
the non-static members, respectively, of a single Java class.

The representation of Scala classes proceeds very similarly to that of Open-

Math CDs above (see Figure 4). In particular, we use a special meta-theory
Scala that declares the primitive concepts needed for our Scala expressions. Then
we represent Scala classes as Mmt theories and members as constants. While
OpenMath CDs always have the flavor of specifications, Scala classes can have
the flavor of specifications (abstract classes/traits) or implementations (concrete
classes/objects).

Scala Mmt

trait T theory T

type member constant of type type
value member constant
method member constant of functional type

object O of type T theory morphism T → Scala

members of O assignment to the corresponding T -constant

extension between classes inclusion between theories

Fig. 4. Scala Classes as Mmt Theories

Meta-Theory and Type System Our meta-theory Scala could declare symbols for
every primitive concept used in Scala expressions. However, most of the complex-
ity of Scala expressions stems from the richness of the term language. While the
representation of terms would be very useful for verification systems, it does not



contribute much to our goals of computation and biform development. Therefore,
we focus on the simpler type language. Moreover, we omit many theoretically
important technicalities (e.g., singleton and existential types) that have little
practical bearing. Indeed, many practically relevant types (e.g., function and
collection types) are derived notions defined in the Scala library.

Therefore, we represent only the relevant fragment of Scala in Scala. Adding
further features later is easy using the Mmt module system. For all inessential
(sub-)expressions, we simply make use Mmt escaping: Mmt expressions can
seamlessly escape into arbitrary non-Mmt formats.

theory Scala
constant type
constant Any
constant Function # (1,...)=> 2
constant Lambda # (1,...)=> 2
constant List # List[1]
constant list # List(1,...)
constant BigInt
constant Double
constant Boolean
constant String

Fig. 5. The Mmt Theory Scala

Thus, we use the Mmt theory Scala in Fig-
ure 5, which gives mainly the important type
operators and their introductory forms. Where
applicable, we use Mmt notations that mimic
Scala’s concrete syntax. This has the added
benefit that the resulting theory is hardly
Scala-specific and thus can be reused easily
for other programming languages. It would be
straightforward to add typing rules to this the-
ory by using a logical framework as the meta-
theory of Scala, but this is not essential here.

Representing Classes It is now straightforward
to represent a Scala trait T containing only
1. type members, 2. value members whose types only use symbols from Scala,
3. method members whose argument and return types only use symbols from
Scala as an Mmt theory T with meta-theory Scala.
1. type n yields constant n: type

2. val n: A yields constant n: A

3. def n(x1:A1,..,x r:Ar):A yields constant n: (A1,...,Ar)=>A

Here A is the structural translation of the Scala type A into an Mmt expression,
which replaces every Scala primitive with the corresponding symbol in Scala.

Similarly, we represent every object O defining (exactly) the members of T
as an Mmt view O : T → Scala. The member definitions in O give rise to
assignments in O as follows:
1. type n = t yields constant n = t

2. val n: A = a yields constant n = ”a”

3. def n(x1:A1,...,xr:Ar):A = a yields constant n = (x1:A1,...,xr:Ar):A = ”a”

Here ”E” represents the escaped representation of the literal Scala expression
E. Note that we do not escape the λ-abstraction in the implementation of comp.
The resulting partially escaped term is partially parsed and analyzed by Mmt.
This has the advantage that the back-translation from Mmt to Scala can reuse
the same variable names that the Scala programmer had chosen.

Example 2. A Scala class for monoids (with universe, unit, and composition)
and an implementation in terms of the integers are given as the top two code
fragments in Figure 6, their Mmt representations in the lower two.



trait Monoid {
type U
val unit: U
def comp(x1: U, x2: U): U

}

object Integers extends Monoid {
type U = BigInt
val unit = 0
def comp(x1: U, x2: U) = x1 + x2

}

theory Monoid : Scala
constant U : type
constant unit : U
constant comp : (U,U) => U

view Integers : Monoid −> Scala
constant U = BigInt
constant unit = ”0”
constant comp = (x1:U, x2:U) => ”x1 + x2”

Fig. 6. Scala and Mmt representations of Monoids and Integers

Representing the Module Systems The correspondence between Mmt theory
inclusions and Scala class extensions is not exact due to what we call the import
name clash in [RK13]: It arises when modules M1 and M2 both declare a symbol
c and M imports both M1 and M2. OpenMath and Mmt use qualified names
for scoped declarations (e.g., M1?c and M2?c) so that the duplicate use of c is
inconsequential. But Scala – typical for programming languages – identifies the
two constants if they have the same type.

There are a few ways to work around this problem, and the least awkward
of them is to qualify all field names when exporting Mmt theories to Scala.
Therefore, the first declaration in the trait Monoid is actually type Monoid U

and similar for all other declarations. Vice versa, when importing Scala classes,
we assume that all names are qualified in this way.

It remains future work to align larger fragments of the module systems, which
would also include named imports and sharing.

3 Biform Theory Development in MMT

We can now combine the representations of OpenMath and Scala in Mmt into
a biform theory graph. In fact, we will obtain this combination as an example
of a general principle of combining a logic and a programming language.

Bifoundations Consider a logic represented as an Mmt theory L and a pro-
gramming language represented (possibly partially as in our case with Scala) as
an Mmt theory P . Moreover, consider an Mmt theory morphism s : L → P .
Intuitively, s describes the meaning of L-specifications in terms of P .

Definition 1. A bifoundation is a triple (L, P, s : L → P ). L P

T

s

rNow consider a logical theory T represented as an Mmt the-
ory with meta-theory L. This yields the diagram in the category
of Mmt theories, which is given on the right. Then, inspired



by [Rab13a], we introduce the following definition of what it means to imple-
ment T in P :

Definition 2. A realization of T over a bifoundation (L, P, s) is a morphism
r : T → P such that the resulting triangle commutes.

Note that in Mmt, there is a canonical pushout s(T ) of T along s. Thus,
using the canonical property of the pushout, realizations r are in a canonical
bijection with morphisms r′ : s(T ) → P that are the identity on P .

A Bifoundation for OpenMath CDs and Scala We obtain a bifoundation by
giving an Mmt morphism s : OpenMath → Scala. This morphism hinges upon
the choice for the Scala type that interprets the universal type Object. There
are two canonical choices for this type, and the resulting morphisms are given
in Figure 7. Firstly, we can choose the universal Scala type Any. This leads
to a semantic bifoundation where we interpret every OpenMath object by its
Scala counterpart, i.e., integers as integers, lists as lists, etc. Secondly, we can
choose a syntactic bifoundation where every object is interpreted as itself. This
requires using a conservative extension ScalaOM of Scala that defines inductive
types Term of OpenMath objects and Context of OpenMath contexts. Such
an extension is readily available because it is part of the Mmt API.

view Semantic: OpenMath −> ScalaOM
constant Object = Any
constant mapsto = Function
naryObject = List[Any]
binder = (Context,Term) => Any
FMP = (x:Any) => ”assert(x == true)”

view Syntactic: OpenMath −> ScalaOM
constant Object = Term
constant mapsto = Function
naryObject = List[Term]
binder = (Context,Term) => Term
FMP = (x:Term) =>

”assert(x == OMS(logic1.true))”

Fig. 7. Two Bifoundations From Scala to OpenMath

In both cases, n-ary arguments are easily interpreted in terms of lists and
functions as functions. The case for binders is subtle: In both cases, we must
interpret binders as Scala functions that take a syntactic object in context.
Therefore, even the semantic foundation requires ScalaOM as the codomain.

Finally, we map mathematical properties to certain Scala function calls, e.g.,
assertions. In the semantic case, we assert the formula to be true. In the syntactic
case, we assert it to be equal to the symbol true from the OpenMath CD logic1.
Here, OMS is part of the Mmt API.

Of course, in practice, only the simplest of FMPs actually hold in the sense
that a simple Scala computation could prove them. However, our interpretation
of FMPs is still valuable: It naturally translates examples given in the Open-

Math CDs to Scala test cases that can be run systematically and automatically.



Moreover, in the syntactic case, we have the additional option to collect the as-
serted formulas and to maintain them as input for verification tools.

4 Mechanizing Biform Theory Graphs

We are particularly interested in the syntactic bifoundation given above. It cor-
responds to the well-understood notion of a syntactic model of a logic. Thus,
it has the advantage of completeness in the sense that the algorithms given in
T -realizations can be used to describe deductive statements about T . In this
section, we make this more precise and generalize it to arbitrary logics.

Abstract Rewrite Rules First we introduce an abstract definition of rule that
serves as the interface between the computational and the deductive realm. We
need one auxiliary definition:

Definition 3. An arity is an element of {n, n∗ : n ∈ N} ∪ {binder}.

We use n (n∗) for symbols that can be applied to n arguments (and a sequence
argument), and we use binder for symbols that form binding object. For example,
2 is the arity of binary symbols and 0∗ the arity of symbols with an arbitrary
sequence of arguments. This is a simplification of the arities we give in [KR12]
and use in Mmt, which permit sequences anywhere in the argument list and
gives binders different arities as well.

Now let us fix an arbitrary set of Mmt theories and write C for the set
of constants declared in them. We write T for the set of closed Mmt terms
using only constants from C, and T (x1, . . . , xn) for the set of terms that may
additionally use the variables x1, . . . , xn. Then we define:

Definition 4. A rule r for a constant c with arity n ∈ N is a mapping T n → T .
Such a rule is applicable to any t ∈ T of the form OMA(c, t1, . . . , tn). In that
case, its intended meaning is the formula t = r(t1, . . . , tn).

A rule for a constant c with arity n∗ is a mapping T n × (
⋃∞

i=0 T
i) → T .

Such a rule is applicable to any t ∈ T of the form OMA(c, t1, . . . , tk) for k ≥ n.
In that case, its intended meaning is the formula t = r(t1, . . . , tk).

A rule for a constant c with arity binder is a mapping {(G, t)|G = x1, . . . , xn∧
t ∈ T (G)} → T . Such a rule is applicable to any t ∈ T of the form OMBIND(c;G; t′).
In that case, its intended meaning is the formula t = r(G, t′).

A rule base R is a set of rules for some constants in C. We write R(c, a) for
the set of rules in R for the constant c with arity a.

Our rules are different from typical rewrite rules [BN99] of the form t1  t2
in two ways. Firstly, the left hand side is more limited: A rule for c is applicable
exactly to the terms t1 whose head is c. This corresponds to the intuition of a rule
implementing the constant c. It also makes it easy to find the applicable rules
within a large rule base. Secondly, the right hand side is not limited at all: Instead
of a term t2, we use an arbitrary function that returns t2. This corresponds to



our open-world assumption: Constants are implemented by arbitrary programs
(written in any programming language) provided by arbitrary sources.

In the special case without binding, our rules are essentially the same as
those used in [Far07], where the word transformer is used for the function r(−).

It is now routine to obtain a rewrite system from a rule base:

Definition 5. Given a rule base R, R-rewriting is the reflexive-transitive closure
of the relation  ⊆ T × T given by:

r∈R(c,0)
c r()

ti t′
i
for i=0,...,n

OMA(t0,...,tn) OMA(t′
0
,...,t′

n
)

r∈R(c,n) or r∈R(c,i∗) for i≤n

OMA(c,t1,...,tn) r(t1,...,tn)

ti t′
i
for i=1,2

OMBIND(t1;G;t2) OMBIND(t′
1
;G;t′

2
)

r∈R(c,binder)
OMBIND(c;G;t) r(G,t)

R-rewriting is not guaranteed to be confluent or terminating. This is unavoid-
able due to our abstract definition of rules where not only the set of constants
and rules are unrestricted but even the choice of programming language. How-
ever, this is usually no problem in practice if each rule has evaluative flavor, i.e.,
if it transforms a more complex term into a simpler one.

Realizations as Rewriting Rules Consider a realization r of T over the bifoun-
dation (OpenMath, ScalaOM, Syntactic), and let ρ be the corresponding Scala
object. Then for every constant c with type OMA(mapsto,Object, . . . ,Object) de-
clared in T , we obtain a rule rc by putting rc(t1, . . . , tn) to be the result of
evaluating the Scala expression ρ.c(t1, . . . , tn)

3. We obtain rules for constants
with other types accordingly. More generally, we define:

Definition 6. Given a theory T , an arity assignment maps every T -constant
to an arity.

Given an arity assignment, a realization T → ScalaOM is called syntactic if
the type of every T -constant with arity a is mapped to the following Scala type:
(Term,...,Term) => Term if a = n; (Term,...,Term, List[Term]) => Term

if a = n∗; and (Context,Term) => Term if a = binder.

A syntactic realization r : T → ScalaOM induces for every constant c

of T a rule rc in a straightforward way. If c has arity n, the rule rc maps
(t1, . . . , tn) to the result of evaluating the Scala expression r(c)(t1, . . . , tn), where
r(c) is the Scala function that r assigns to c. Technically, rc is only a partial
function because evaluation might fail or not terminate; in that case, we put
rc(t1, . . . , tn) = OMA(c, t1, . . . , tn). For other arities, rc is defined accordingly.

Definition 7. We write Rules(r) for the rule base containing for each constant
c declared in T the rule rc.

3 Technically, in practice, we need to catch exceptions and set a time-out to make rc

a total function, but that is straightforward.



A general way of obtaining arity assignments for all theories T with a fixed
meta-theory L is to give an Mmt morphism e : L → OpenMath. e can be
understood as a type-erasure translation that forgets all type information and
merges all types into one universal type. Then the arities of the T -constants are
determined by the OpenMath types in the pushout e(T ). Therefore, we can
often give bifoundations for which all realizations are guaranteed to be syntactic,
the bifoundation (OpenMath, ScalaOM, Syntactic) being the trivial example.

Def. 7 applies only to realizations in terms of Scala. However, it is straight-
forward to extend it to arbitrary programming languages. Of course, Mmt –
being written in Scala – can directly execute Scala-based realizations whereas
for any other codomain it needs a plugin that supplies an interpreter.

The Universal Machine We use the name universal machine for the new Mmt

component that maintains the rule base arising as the union of all sets Rules(r)
for all syntactic realizations r with domain ScalaOM in Mmt’s knowledge base.
Here “universal” refers to the open-world perspective that permits the extension
with new logics and theories as well as programming languages and implemen-
tations.

The universal machine implements the rewrite system from Def. 5 by ex-
haustively applying rules (which are assumed to be confluent) and exposes it as
a single API function, called simplification. The Mmt system does not perform
simplification at any specific point.

Instead, it is left to other components like plugins and applications to decide
if and when simplification should be performed. In the Mmt API, any term may
carry metadata, and this is used to mark each subterm that has already been sim-
plified. Thus, different components may call simplification independently without
causing multiple traversals of the same subterm.

Additionally, the API function is exposed in two ways. Firstly, Mmt accepts
simplification requests via HTTP post, where input and output are given as
strings using Mmt notations or as OpenMath XML elements. Secondly, sim-
plification is integrated with the Scala interactive interpreter, where users can
type objects using Mmt notations and simplification is performed automatically.
It is straightforward to connect further frontends.

5 Building a Biform Library

We evaluate the new Mmt concepts by building a biform Mmt theory graph
based on the bifoundation (OpenMath, Scala, Syntactic), which represents> 30 of
the official OpenMath CDs in Mmt and provides Scala implementations and test
cases for > 80 symbols. This development is available as an Mmt project and de-
scribed in more detail at https://tntbase.mathweb.org/repos/oaff/openmath.

Mmt projects [HIJ+11] already support different dimensions of knowledge,
such as source, content, and presentation, as well as build processes that trans-
form developments between dimensions. We add one new dimension for gener-
ated programs and workflows for generating it.

https://tntbase.mathweb.org/repos/oaff/openmath


Firstly, we write Mmt theories representing the OpenMath CDs such as the
one given on the left of Fig. 3. Specifically, we represent the arith, complex, fns,
integer, interval, linalg, list, logic, minmax, nums, relation, rounding, set, setname,
and units CDs along with appropriate notations.

Secondly, we write views from these CDs to ScalaOM. Then a new Mmt

build process generates all corresponding Scala classes. Typically, users write
view stubs in Mmt and then fill out the generated Scala stubs using an IDE
of their choice. Afterwards Mmt imports the Scala stubs and merges the user’s
changes into the Mmt views. This is exemplified in Fig. 8. Here the left side
gives a fragment of an Mmt view out of arith1, which implements arithmetic on
numbers. (We also give other views out of arith1, e.g., for operations on matrices.)
The implementation for plus is still missing whereas the one for minus is present.
The right side shows the generated Scala code with the editable parts marked
by comments.

view NumberArith :
arith1 −> ScalaOM =
plus = (args: List[Term]) ”
”

minus = (a: Term, b: Term) ”
(a,b) match {
case (OMI(x), OMI(y)) =>

OMI(x − y)
}

”

object NumberArith extends arith1 {
def arith1 plus(args: List[Term]) : Term = {
// start NumberArith?plus
// end NumberArith?plus

}
def arith1 minus(a: Term, b: Term) : Term = {
// start NumberArith?minus
(a,b) match {

case (OMI(x), OMI(y)) => OMI(x − y)
}

// end NumberArith?minus
}

}

Fig. 8. Partial Realization in Mmt and Generated Scala Code

Finally, we write Mmt theories for extensions of the OpenMath CDs with
examples as on the right in Fig. 3. We also give realizations for them, which
import the realizations of the extended CDs. Here Mmt generates assertions for
each FMP.

To apply these workflows to large libraries, we have added three build pro-
cesses to Mmt that can be integrated easily with make files or Mmt IDEs.
extract walks over an Mmt project and translates realizations into Scala source
files containing the corresponding objects. This permits editing realizations us-
ing Scala IDEs. integrate walks over the Scala source files and merges all
changes made to the realizations back into the Mmt files. load walks over the
Scala source files, compiles them, loads the class files, and registers the rule
bases Rules(r) with the universal machine. Optionally, it runs all test cases and
generates a report.



6 Conclusion

We described a formal framework and a practical infrastructure for biform the-
ory development, i.e., the integration of deductive theories and computational
definitions of the functions specified in them. The integration is generic and per-
mits arbitrary logics and programming languages; moreover, the same module
system is used for specifications and implementations.

We have instantiated our design with a biform development of the Open-

Math content dictionaries in Scala. Future work will focus on the development
of larger biform libraries and the use of further logics and programming lan-
guages. In particular, we want to explore how to treat richer type systems and
to preserve their information in the generated Scala code.

Regarding the integration of deduction and computation we focused only
on “soft verification”, i.e., linking function symbols with unverified implementa-
tions. We only extracted the computational content of examples (which results
in test cases) and omitted the more difficult problem of axioms. We believe that
future work can extend our approach to generate computation rules by spotting
axioms of certain shapes such as those in inductive definitions or rewrite rules.
Moreover, given a verifier for the used programming language, it will be possible
to generate the verification obligations along with the generated programs.
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