
Understanding Branch Cuts of Expressions ?

Matthew England, Russell Bradford, James H. Davenport, and David Wilson

University of Bath, Bath, BA2 7AY, U.K.
{M.England, R.J.Bradford, J.H.Davenport, D.J.Wilson}@bath.ac.uk,
WWW home page: http://people.bath.ac.uk/masjhd/Triangular/

Abstract. We assume some standard choices for the branch cuts of
a group of functions and consider the problem of then calculating the
branch cuts of expressions involving those functions. Typical examples
include the addition formulae for inverse trigonometric functions. Un-
derstanding these cuts is essential for working with the single-valued
counterparts, the common approach to encoding multi-valued functions
in computer algebra systems. While the defining choices are usually sim-
ple (typically portions of either the real or imaginary axes) the cuts
induced by the expression may be surprisingly complicated. We have
made explicit and implemented techniques for calculating the cuts in the
computer algebra programme Maple. We discuss the issues raised, clas-
sifying the different cuts produced. The techniques have been gathered
in the BranchCuts package, along with tools for visualising the cuts. The
package is included in Maple 17 as part of the FunctionAdvisor tool.

1 Introduction

We consider the problem of calculating the branch cuts of expressions in a single
complex variable. When defining multi-valued functions mathematicians have
a choice of where to define the branch cuts. There are standard choices for
most well-known functions [1, 18,21], usually following the work of Abramowitz
and Stegun. These choices were justified in [11] and match the choices within
the computer algebra programme Maple for all elementary functions except
arccot (for reasons explained in [11]). Within this paper we assume branch cut
definitions matching those of Maple (which may be observed using Maple’s
FunctionAdvisor by giving the function name without an argument). We note
that a different choice would not lead to any fewer or less complicated issues.

Handbooks (including online resources such as [21]) and software usually stop
at these static definitions. However, our thesis is that this knowledge should be
dynamic; processed for the user so it is suitable for their situation. Hence we
consider the problems that follow after the initial choice of definition is settled.
This will involve symbolic computation but is also an issue of Mathematical
Knowledge Management (following the process view of MKM in [9]).

We wish to axiomatically understand the branch cuts of expressions in multi-
valued functions, such as functions applied to a non-trivial argument, function
? The final publication is available at http://link.springer.com.

ar
X

iv
:1

30
4.

72
23

v3
 [

cs
.M

S]
 2

4
M

ay
 2

01
3

http://link.springer.com

compositions, and function combinations (sum, product, relations). Many of the
well-known formulae for elementary functions, such as addition formulae for in-
verse trigonometric functions, are such expressions. Care needs to be taken when
working with multi-valued functions since there are different, often unstated,
viewpoints possible as discussed in [12,13]. Most computer algebra software (and
indeed most users) tend to work with multi-valued functions by defining their
single-valued counterparts which will have discontinuities over the branch cuts.
As a result, relations true for the multi-valued functions may no longer be true
for the single valued counterparts and hence understanding the branch cuts of
the relations becomes essential for working with them efficiently.

Despite the importance of understanding such branch cuts, the authors are
not aware of any (available) software which calculates them beyond the original
definitions. It also seems rare for them to get a detailed mathematical study in
their own right, beyond their introduction and simple examples, with [17] one
notable exception.

We denote multivalued functions evaluating to sets of values using names
with upper cases (i.e. Arctan, Sqrt(z), Log) and denote their single valued coun-
terparts by the normal notation (i.e. arctan,

√
z, log). So, for example, Sqrt(4) =

{−2, 2} while
√
4 = 2. (Given our above choice of branch cut definitions, this now

means our notation throughout the paper matches the commands in Maple.)
We note that when dealing with sets of values for multi-valued functions not
all combinations of choices of values of will be meaningful and sometimes the
choices for sub-expression values are correlated.

A simple example of the problem described above is that while the identity
Sqrt(x)Sqrt(y) = Sqrt(xy) is true (in the sense that the set of all possible prod-
ucts of entries from the two sets on the right is the same as the set on the left),
the single valued counterpart

√
x
√
y =
√
xy is not universally true (for example

when x = y = −1). The regions of truth and failure are determined by the
branch cuts of the functions involved.

The standard choices for branch cuts of the elementary functions are reason-
ably simple, always taking portions of either the real or imaginary axes. Indeed,
all the branch cut definitions within Maple adhere to this rule (including those
from outside the class of elementary functions). However the branch cuts invoked
by the expressions built from these can be far more complicated.

Consider for example the composite function arcsin(2z
√
1− z2) which is a

term from the double angle formula for arcsin. While arcsin(z) has simple branch
cuts (when z takes values along the real axis, to the left of −1 and to the right of
+1), the branch cuts of the composite function are curves in the complex plane
as demonstrated by the plot of the function on the left of Figure 1.

The cuts can be described by the four sets below which are visualised in the
image on the right of Figure 1.{
=(z) = 0, 1 < <(z)

}
,

{
=(z) = =(z),<(z) = −(1/2)

√
2 + 4=(z)2

}
,{

=(z) = 0,<(z) < −1
}
,

{
=(z) = =(z),<(z) = (1/2)

√
2 + 4=(z)2

}
.

(1)

We have implemented techniques for calculating the branch cuts inherited
by functions acting on non-trivial arguments, and extended this to calculate the

Fig. 1. Plots relating to arcsin(2z
√
1− z2).

cuts of expressions and relations of such functions. The techniques have been
gathered together in a Maple package, BranchCuts included as part of Maple
17 and accessed via the FunctionAdvisor tool. Readers with an earlier version
can download the code as detailed in Appendix A. Both the sets in (1) and the
visualisation on the right of Figure 1 were produced by the package. In fact, all
the 2d figures in the paper are produced by the package from the output of the
branch cut algorithms, while all the 3d figures are numerical plots of either the
real or imaginary parts of the expressions in question.

Maple’s FunctionAdvisor is a handbook for special functions, designed to
be both human and machine readable, and interactive, processing the output
to fit the query, [10]. It covers topics such as symmetries and series expansions
with information for almost all of Maple’s built in functions. In Maple 16 the
functionality for branch cut computation was limited. There existed a table with
the defining cuts for most functions in terms of a variable z and if a function was
given with a different argument it would return the definitions with z replaced by
that argument. Presenting branch cuts this way could be unintuitive and in some
cases incorrect (for example, when the argument induced its own branch cuts
these were not returned). In Maple 17 queries to FunctionAdvisor on branch
cuts use the BranchCuts package discussed in this paper, and additionally, a
variety of options are now available for visualising the cuts.

The primary motivation for the implementation is a wider project at Bath
on simplification. The aim is to develop the technology for computer algebra
systems to safely apply identities for multi-valued functions on their single valued
counterparts. The key idea is to decompose the complex domain using cylindrical
algebraic decomposition (CAD) according to the branch cuts of the functions
involved, so that the truth value of the proposed identity will be constant in
each region of the decomposition and hence may be tested by a sample point.
This decomposition approach was introduced in [15] with the method using CAD
developed in a series of papers; [2–6, 20]. Many of the results are summarised
in [19] with the current state discussed recently in [14]

In this paper we discuss the implementation of the techniques in Maple, and
the issues raised. We start in Section 2 by giving pseudo-algorithms describing
the implementation. These can produce sets of cuts which are a superset of
the actual branch cuts, that is, some of the cuts produced may not actually
correspond to discontinuities of the functions. This led us to a classification
of the different types of output, presented in Section 3. While there has been
work on calculating branch cuts before, most notably in [15], our work goes
much further with the careful description of the algorithms, their output and
how it may be classified. Finally, in Section 4 we consider the use of this work
in simplification technology and the effect of the condition that the input to
CAD be a semi-algebraic set (list of polynomial equations or inequalities in
real variables). Finally, some details on using the actual Maple package are
provided in Appendix A. Although our implementation is in Maple, we note
that the ideas presented are relevant for any system to compute branch cuts.

2 Calculating Branch Cuts

2.1 Moving to real variables

We first consider representing branch cuts as portions of algebraic curves in two
real variables; the real and imaginary parts of a complex variable, z.

Example 1. Consider the function f(z) = log(z2 − 1). The function log has
branch cuts when its argument lies on the negative real axis hence f(z) has
branch cuts when =(z2− 1) = 0 and <(z2− 1) < 0. If we let x = <(z), y = =(z)
then this reduces to 2xy = 0, x2−y2−1 < 0, with solutions {y = 0, x ∈ (−1, 1)}
and {x = 0, y free}. Hence the branch cuts are as shown in Figure 2.

Fig. 2. Plots relating to f(z) = log(z2 − 1) from Examples 1 and 4.

This technique is summarised by Algorithm 1. In the implementation steps 1
and 2 are performed by calls to FunctionAdvisor, accessing the table of defining

cuts. In step 2 we assume that the defining cuts are portions of either the real
or imaginary axis encoded as the choice of which is zero and a range over which
the other varies. While not strictly required in theory the assumption is used
throughout the implementation. Then in step 6 the semi-algebraic set will consist
of one equality and one or two inequalities (depending on whether the range runs
to infinity). Each solution in step 7 will consist of an equality defining one of
{x, y} in terms of the other, and a range for the other variable. Step 7 could
be implemented with a variety of techniques. We use Maple’s standard solving
tools and find it most efficient to first solve the equality and then consider each
possible solution with the inequalities. In using these tools we are assuming that
Maple can identify all the solutions, which is not the case for polynomials of high
degree. However, we find them sufficient for all practical examples encountered.

Algorithm 1: BC–F–RV1
Input : f(p(z)) where p is a polynomial and f has known defining cuts.
Output: The branch cuts of the mathematical function defined f(p(z)).

1 if f introduces branch cuts then
2 Obtain the defining branch cut(s) for f .
3 Set <(z) = x,=(z) = y to obtain p(z) = p(x, y).
4 Set R and I to be respectively the real and imaginary parts of p(x, y).
5 for each defining cut Ci do
6 Define a semi-algebraic set in (x, y) by substituting R and I into Ci.
7 Set Bi to be the set of solutions to the semi-algebraic set.

8 return The union of the Bi.
9 else

10 return the empty set.

2.2 Combinations of functions

We extend Algorithm 1 to study combinations of functions (sums, products and
relations) by applying the algorithm to each component and then taking the
union of the sets of branch cuts in the outputs, as specified in Algorithm 2. In
step 3 a suitable algorithm is one beginning BC–F that accepts Fi as input.

Note that the output specification of Algorithm 2 is looser than that of
Algorithm 1. One reason for this is that a combination of functions with branch
cuts may have their individual branch cuts intersecting, and if the discontinuities
introduced are equivalent then these would cancel out as in Example 2. In Section
3 we classify the output of these algorithms, including output relating to these
cancellations, (Definition 3).

Example 2. Let f(z) = log(z+1)− log(z−1) and use Algorithm 2 to identify the
branch cuts. First we use Algorithm 1 to identify the branch cut of the first term

Algorithm 2: BC–C
Input : Any combination of functions whose branch cuts can individually be

studied by an available algorithm.
Output: A set of cuts, a subset of which are the branch cuts of the

mathematical function defined by the expression.

1 Set F1, . . . Fn to be the functions involved in the expression.
2 for i = 1 . . . n do
3 Set Bi to the output from applying a suitable branch cuts algorithm to Fi.

4 return ∪iBi

as the real axis below −1 and the branch cut of the second to be the real axis
below 1. Hence Algorithm 2 returns the union; the real axis below 1 as visualised
on the left of Figure 3. However, the function actually only has discontinuities
on the real axis in the range (−1, 1) as demonstrated by the plot on the right of
Figure 3. Crossing the negative real axis below −1 does induce a discontinuity
in the imaginary part of both terms. However, those discontinuities are equal
and so cancel each other out in the expression for f(z).

Fig. 3. Plots relating to f(z) = log(z + 1)− log(z − 1) from Example 2.

2.3 Allowing nested roots

We can extend Algorithm 1 to let p be a rational function by modifying step
7 to multiply up after substituting R and I into Ci. The question of zero de-
nominators will only arise if the input p itself has a zero denominator and so we
might assume this issue would have been dealt with previously.

We can relax the input specification further by allowing nested roots, more
specifically, by letting the argument belong to the class of radical expressions in z

(expressions built up from +,−, /, ∗ and n
√ where n is a natural number greater

than 1). This is because such an argument can be modified to give a rational
function from which information on the real and imaginary parts of the original
argument can be inferred, a process known as de-nesting the roots. Hence we
can still obtain a semi-algebraic set representing the branch cuts as before.

By de-nesting the roots we may end up with extra solutions which do not
define branch cuts of the input function. For example, consider a function with
argument q(z) which when squared gives q2 = p(z), a rational function in z.
However, this now represents the solution set q(z) = ±p(z), i.e. solutions for
both branches of the square root, instead of just the desired principal branch.
Ideally these erroneous solutions should be identified and removed.

Another issue in relaxing the input specification is that we must now consider
the possibility of extra branch cuts arising from the argument itself. Taking these
issues into account, we describe Algorithm 3. This is a modification of Algorithm
1 with a relaxed input specification, leading to looser output specification.

Algorithm 3: BC–F–RV2
Input : f(q(z)) where q is a radical expression and f has known defining cuts.
Output: A set of cuts, a subset of which are the branch cuts of the

mathematical function defined by f(q(z)).

1 if f introduces branch cuts then
2 Obtain the defining branch cuts for f .
3 Set z = x+ iy to obtain q(z) = q(x, y).
4 De-nest the roots in q(x, y) to obtain p(x, y). Set Rp and Ip to be

respectively the real and imaginary parts of p(x, y).
5 Define a semi-algebraic set in (x, y) from Rp and Ip using information from

the defining cuts.
6 Set B to be the solutions of the semi-algebraic set.
7 If possible, remove erroneous solutions arising from the de-nesting.
8 else
9 Set B to be the empty set.

10 Set A =BC–C(q(z)) (application of Algorithm 2).
11 return A ∪B.

Various methods for de-nesting roots and removing the erroneous solutions
have been studied in [2–4,19]. The BranchCuts package currently has only a very
limited implementation of the squaring method outlined above, but further work
is planned. Note that even this simple implementation can induce the erroneous
solutions discussed as outlined by Example 3.

Example 3. Let f = log(2
√
z) and use Algorithm 3 to identify the branch cuts.

First we set q = 2
√
z = 2

√
x+ iy. Then we de-nest by squaring to give p = q2 =

4(x+ iy). In this simple example,

Rp = 4x and Ip = 4y. (2)

We suppose that q = Rq + Iqi and hence

p = R2
q − I2q + 2i(RqIq) (3)

Since log has defining cuts along the negative real axis we know Rq < 0 and Iq =
0. Upon comparing (2) and (3) we see the second condition implies y = 0 and
x = 1

4R
2
q > 0. In this example the first condition offers no further information

(if the defining cut had not run to∞ it could have bounded x). Hence we define
the semi-algebraic set {y = 0, x > 0}. We also compute the set {y = 0, x < 0},
which is the branch cut of q(z) itself, and return the union of the sets which
together specify the entire real axis as presented visually on the left of Figure 4.

Unfortunately, the function only actually has discontinuities over the negative
real axis, as demonstrated by the plot of the right of Figure 4. The first solution
set was erroneous. This is clear since if x > 0 and y = 0 then

√
z > 0 and so

can never lie on the negative real axis. The solution related to the case q = −√p
which was not relevant to the problem. (The reason for the factor of 2 in the
example is because Maple automatically simplifies log(

√
z) to 1

2 log(z) which
can be analysed by Algorithm 3 to give exactly the branch cuts of the function.)

Fig. 4. Plots relating to f(z) = log(2
√
z) from Example 3.

2.4 Using a complex parametric representation

We now consider a second approach to representing branch cuts, first suggested
by [15]. Rather than moving to real variables this approach defines cuts using a
complex function of a real parameter and a range for that parameter.

Example 4. Let f(q(z)) = log(z2−1), the function from Example 1. We consider
when q takes values on the branch cuts of f by setting q = a where a ranges over
the cuts. In this case z2−1 = a can be easily rearranged to give z(a) = ±

√
a+ 1.

Hence we can represent the branch cuts by the two roots, each presented with
the range a ∈ (−∞, 0). By considering the behaviour of the functions for vari-
ous portions of the parameter range we see that these define the same cuts as
presented in Example 1 and visualised on the right of Figure 2.

This technique is summarised by Algorithm 4. In this case the assumption
that the defining cuts are portions of either the real or imaginary axis is really
required. If q(z) is a radical expression containing nested roots then step 5 will
require de-nesting and so the output may be a superset of the actual branch
cuts. (For example, the set produced for log(2

√
z) is equivalent to that produced

in Example 3.) Note that Algorithm 4 could have been provided with the input
and output specifications of Algorithm 3 (i.e if q(z) were a radical expression
then given sufficient computing resources all the branch cuts could be identified
as part of a larger set). Instead we have provided the specifications used for the
implementation. This does not restrict the possibilities for q(z), instead building
in a warning system to ensure the correctness of the output. In particular this
allows q to contain any elementary function, returning not the complete (possibly
infinite) set of branch cuts but at least those in the principal domain.

Algorithm 4: BC–F–CV
Input : f(q(z)) where f has known defining cuts.
Output: A set of cuts which either contain the branch cuts of the

mathematical function defined by f(q(z)) as a subset, or are
accompanied with a warning that this is not the case.

1 if f introduces branch cuts then
2 Obtain the defining branch cuts for f , each a range on an axis.
3 for each cut Ci do
4 If Ci is on the real axis then set q(z) = a, otherwise set q(z) = ia.
5 Find the solutions z(a) to this equation. If the complete set of solutions

cannot be guaranteed then provide a warning
6 Set B to be the set of solutions, each given with the range for a from Ci.
7 If possible, remove erroneous solutions arising from any de-nesting.

8 else
9 Set B to be the empty set.

10 Set A =BC–C(q(z)) (application of Algorithm 2).
11 return A ∪B.

This approach was simple to implement in Maple using the solve command
as a black box for step 5. (As discussed before Algorithm 1, this is making as-
sumptions on the solve tools which would not always be valid, but they are found
to be sufficient for all practical examples encountered.) The main advantage of
this approach over moving to real variables is that it tends to be much quicker,
especially when there are nested roots. The major disadvantage is that the out-
put is usually far more complicated (requires much more space to display), often

contains components that map to the same cuts, and is far less intuitive (the
curves encoded are not visible algebraically). Example 5 demonstrates some of
these features. Despite the often unwieldy output, Maple’s plotting features
allows for the position and nature of the cuts to be quickly made apparent.

For these reasons it is expected that the earlier algorithms are more useful for
implementation in other code and use in mathematical study while Algorithm 4
is very useful for getting a quick visual understanding of the branch cuts in an
expression and may have much utility in practical applications for this purpose.

Example 5. A classic example within the theory of branch cut calculation and
simplification is that of Kahan’s teardrop, from [16]. Kahan considers the relation

2arccosh

(
3 + 2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
= 2arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)
(4)

noting that it is true for all values of z in the complex plane except for a small
teardrop shaped region over the negative real axis, as demonstrated by the plot
on the left of Figure 5. Both of the approaches to calculating branch cuts outlined
above will return a set represented visually by the image on the right of Figure
5. However, the algebraic representations are quite different. When working in
real variables the upper half of the teardrop is represented by the set{

=(z) =
√
−(2<(z) + 5)(2<(z) + 9)(<(z) + 3)

2<(z) + 5
, −5

2
< <(z),<(z) < −9

4

}
while using the complex parametric approach the same portion of the teardrop
is given by

z =
−3

4
(
2 a− a3 + 2

√
−a2 (−1 + a2)

)2/3 [(2 a− a3 + 2
√
−a2 (−1 + a2)

)2/3

−3 i
√
3a2 − 3 ia

√
3
√
−a2 (−1 + a2)− 3

3

√
2 a− a3 + 2

√
−a2 (−1 + a2)a

−3 3

√
2 a− a3 + 2

√
−a2 (−1 + a2)

√
−a2 (−1 + a2)− 3 a2

−3 a
√
−a2 (−1 + a2) + 3 i

3

√
2 a− a3 + 2

√
−a2 (−1 + a2)

√
3a

+3 i
3

√
2 a− a3 + 2

√
−a2 (−1 + a2)

√
3
√
−a2 (−1 + a2)

]
with a running over the range (−1, 1).

We note that the identity (4) in Example 5 is actually introduced by a fluid
mechanics problem and so this example demonstrates how issues relating to
branch cuts may be encountered by users of multi-valued functions in other
fields. Hence the importance of understanding them fully and the benefit of an
accurate and intuitive representation.

Fig. 5. Plots relating to equation (4) from Example 5.

3 Classification of Branch Cuts

The work of Section 2 raises several issues and necessitates a classification of the
different cuts that can be produced by these methods. It is common to use the
generic term branch cuts to refer to any curve portions that are defining cuts
of functions or output from the algorithms. We classify these, starting with the
definition most usually meant by users.

Definition 1. Let F be an analytic multi-valued function and f its single-valued
counterpart. The branch cuts of the mathematical function (called true
cuts for brevity) are the curves or curve segments over which f is discontinuous,
corresponding to F moving to another branch of its Riemann surface.

Hence all the defining branch cuts are true cuts, as are any cuts produced
by Algorithm 1. However, as demonstrated by Examples 2 and 3 the other algo-
rithms may give output that does not adhere to this definition.

Definition 2. Define any branch cuts calculated by the algorithms over which
the function is actually continuous as spurious cuts.

(In [15] the authors used the term removable instead of spurious, in analogy
with removable singularities.) All branch cuts may be classified as either true or
spurious. We further classify spurious cuts according to their origin.

Definition 3. Define those spurious cuts introduced through a de-nesting pro-
cedure as de-nesting cuts, while those introduced by the intersection of true
cuts from different parts of an expression as formulation cuts.

Hence all spurious branch cuts produced by the algorithms in this paper are
either de-nesting cuts or formulation cuts. Some spurious cuts may be both (or
more accurately there may be two cuts, one of each type, which coincide).

Note that the output of Algorithms 3 and 4 are collections of true cuts and
de-nesting cuts, while the output of Algorithm 2 is a collection of true cuts,
de-nesting cuts and formulation cuts.

It would be desirable to have algorithms to remove all spurious cuts, or
perhaps better, algorithms that do not introduce them in the first place. There
has already been work on the removal of certain spurious cuts in [15] and [19, etc.]
and this will be the topic of more study. We feel that formulation cuts will be
the more difficult to avoid since they are inherent to the formulation of the
mathematical function chosen in the expression given to an algorithm. Consider

fε(z) = log(z + 1)− ε log(z − 1).

When ε = 1 we are in the case of Example 2 and applying Algorithm 2 will
result in a branch cut over the real axis below 1, with the portion between −1
and 1 being a true cut and the rest a spurious cut. However, if we let ε differ
at all from 1 then the spurious cuts will instantly become true. The size of the
discontinuities will depend on the magnitude of ε but their presence does not.
Figure 6 shows the presence of the true cuts occurring when ε varies by just one
tenth from 1.

Fig. 6. Plots relating to fε(z) = log(z + 1)− ε log(z − 1).

4 Semi-algebraic Output for Simplification Technology

As discussed in the introduction, the primary motivation for this work was appli-
cation in simplification technology, based on decomposing the domain according
to the branch cuts of proposed simplifications using CAD. However, most CAD
algorithms require the input to be a semi-algebraic set (list of polynomial equa-
tions and inequalities), with the polynomials usually defined over the field of
rational coefficients. None of the algorithms described so far give such output,
however Algorithms 1 and 3 could be easily modified to do so, by terminating
early and returning the output of steps 5 and 6 respectively. We denote such

an algorithm by BC−F−SA and note that it could be used on combinations via
Algorithm 2. For Example 1 BC−F−SA would return {2xy = 0, x2−y2−1 < 0}.
However, for more complicated examples, the output may contain far more in-
formation than required to describe the cuts.

Example 6. Consider the formula

arctan(z) + arctan(z2) = arctan

(
z(1 + z)

(1− z3)

)
. (5)

The plot on the left of Figure 7 is a visualisation for the output from either of
the approaches in BranchCuts, while the true cuts are apparent from the centre
plot. Define,

f(x, y) = (1− x) y4 −
(
2x3 + 1

)
y2 − x5 − x4 + x2 + x

g(x, y) = y6 − y5 + 3x2y4 − 2
(
x2 + x

)
y3

+ 3
(
2x+ x4

)
y2 −

(
x4 + 2x3 + 2x+ 1

)
y + x6 − 2x3.

If we were to instead take the semi-algebraic output, then we would have the
following list of semi-algebraic sets,

{x = 0,−y ≤ −1}, {x2 − y2 = 0,−2xy ≤ −1}, {f(x, y) = 0, g(x, y) ≤ −1},
{x = 0, y ≤ −1}, {x2 − y2 = 0, 2xy ≤ −1}, {f(x, y) = 0, g(x,−y) ≤ −1}.

A full sign-invariant CAD for this problem would ignore the relation signs and
just consider the polynomials present. A plot of the polynomials is given on the
right of Figure 7 and clearly contains far more information than required to
understand the branch cuts. Note that the correctness of the original formula is
governed only by the branch cuts and hence the plot on the left: equation (5) is
true in the connected region containing the origin and false in the other three
full dimensional regions. A CAD allows us to find the regions of truth and falsity
axiomatically by testing each cell of the CAD using a sample point.

There are various smarter approaches than calculating a full sign-invariant
CAD, such as partial CADs and equational constraints. Work on a CAD based
method that can take into account more of the structure of problems of branch
cut analysis has recently been reported in [7], and studied further in [8].

5 Summary and Future Work

We have considered the problem of calculating the branch cuts of expressions,
presenting two approaches and describing their implementation as part of Maple
17. We have classified the output of our algorithms and described how they could
be adapted to provide semi-algebraic output for simplification technology. We
are currently working on developing such technology based on the new concept
of a truth table invariant CAD [7,8]; a decomposition which can be more closely
fitted to the semi-algebraic description of branch cuts.

Fig. 7. Plots relating to equation (5) from Example 6.

Future work with branch cuts will include the generalisation to many complex
variables and the utilisation of better knowledge of branch cuts elsewhere, such
as for choosing intelligent plot domains. Most importantly will be the further
characterisation of spurious cuts and methods to remove them from the output.

Acknowledgements

This work was supported by the EPSRC grant: EP/J003247/1. The code in
Maple 17 is a collaboration between the University of Bath and Maplesoft. We
would particularly like to thank Edgardo Cheb-Terrab from Maplesoft for his
interest in the work and contribution to the code.

References

1. M. Abramowitz and I.A. Stegun. Handbook of mathematical functions. National
Bureau of Standards, 1964.

2. J. Beaumont, R. Bradford, J. H. Davenport, and N. Phisanbut. A poly-algorithmic
approach to simplifying elementary functions. In Proc. ISSAC ’04. ACM, 2004.

3. J. Beaumont, R. Bradford, J.H. Davenport, and N. Phisanbut. Testing elementary
function identities using CAD. Applicable Algebra in Engineering, Communication
and Computing, 18:513–543, 2007.

4. J. Beaumont, N. Phisanbut, and R. Bradford. Practical simplification of elementary
functions using CAD. In A. Dolzmann, A. Seidl, and T. Sturm, editors, Proc.
Algorithmic Algebra and Logic, Passau, 2005.

5. R. Bradford and J.H. Davenport. Towards better simplification of elementary
functions. In Proc. ISSAC ’02, pages 16–22. ACM, 2002.

6. R. Bradford and J.H. Davenport. Better simplification of elementary functions
through power series. In Proc. ISSAC ’03. ACM, 2003.

7. R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson. Cylin-
drical algebraic decompositions for boolean combinations. In Press: Proc. ISSAC
’13. Preprint at http://opus.bath.ac.uk/33926/, 2013.

8. R. Bradford, M. England, J.H. Davenport, and D. Wilson. Optimising problem
formulations for cylindrical algebraic decomposition. In Press: Proc. CICM ’13,
2013.

9. J. Carette and W.M. Farmer. A review of Mathematical Knowledge Management.
In Intelligent Computer Mathematics, CICM ’09, pages 233–246. Springer-Verlag,
2009.

10. E.S. Cheb-Terrab. The function wizard project: A computer algebra handbook of
special functions. In Proceedings of the Maple Summer Workshop. University of
Waterloo, Canada, 2002.

11. R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt. According to
Abramowitz and Stegun. SIGSAM Bulletin, 34(3):58–65, 2000.

12. J.H. Davenport. What might "understand a function" mean? In M Kauers, M Ker-
ber, R Miner, and W Windsteiger, editors, Towards Mechanized Mathematical As-
sistants, 4573:55–65. Springer LNAI, 2007.

13. J.H. Davenport. The challenges of multivalued "functions". In S. Autexier, J. Cal-
met, D. Delahaye, P. Ion, L. Rideau, R. Rioboo and A. Sexton, editors, Intelligent
Computer Mathematics, 6167:1–12, Springer LNAI, 2010.

14. J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program verification
in the presence of complex numbers, functions with branch cuts etc. In Proc.
SYNASC 2012, pages 83–88. IEEE, 2012.

15. A. Dingle and R.J. Fateman. Branch cuts in computer algebra. In Proc. ISSAC
’94, pages 250–257. ACM, 1994.

16. W. Kahan. Branch cuts for complex elementary functions. In A. Iserles and M.J.D.
Powell, editors, Proceedings The State of Art in Numerical Analysis, pages 165–211.
Clarendon Press, 1987.

17. A.I. Markushevich. Theory of Functions of a Complex Variable I (translated by
R.A. Silverman). Prentice-Hall, 1965.

18. W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, editors. NIST Handbook
of Mathematical Functions. Cambridge University Press, 2010. Print companion
to [21].

19. N. Phisanbut. Practical Simplification of Elementary Functions using Cylindrical
Algebraic Decomposition. PhD thesis, University of Bath, 2011.

20. N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of branch cuts. ACM
Communications in Computer Algebra, 44(3):132–135, 2010.

21. National Institute for Standards and Technology. The NIST digital library of math-
ematical functions. http://dlmf.nist.gov. Online companion to [18].

A The BranchCuts Package in Maple 17

The BranchCuts package is part of the MathematicalFunctions package in
Maple 17, but is usually accessed directly by queries to the FunctionAdvisor.
To access the commands individually in Maple 17 use
> kernelopts(opaquemodules=false):
> with(MathematicalFunctions:-BranchCuts):
Readers with an earlier version of Maple can download a file with the code
from http://opus.bath.ac.uk/32511/ along with an introductory worksheet
demonstrating its installation and use.

Two key commands are available; BCCalc which produces branch cuts using
the algorithms of this paper and BCPlot which can make 2d visualisations of the
output. There are two mandatory arguments for BCCalc; the expression to be
considered and the variable. The key optional argument is the choice of method.

Providing method=RealVariables will cause BCCalc to use Algorithms 1 and
3 while providing method=ComplexVariable will use Algorithm 4. The default,
chosen for efficiency, uses Algorithm 1 where possible and Algorithm 4 elsewhere.
Combinations of functions are dealt with using Algorithm 2.

The specification of the algorithms are checked but not strictly enforced. In-
stead warnings are provided if the method is not applicable or the output cannot
be guaranteed to contain all true cuts. The package can work with any function
whose defining cuts (or lack of cuts) is recorded in the FunctionAdvisor table.
It covers all elementary functions and many others such as Bessel functions,
Jacobi θ-functions and Chebyshev polynomials. These examples are actually
multivariate in a computer algebra sense (univariate functions with parameters
in a mathematical sense). Their branch cuts can be considered since they only
occur with respect to one variable. If the presence of the branch cuts depends
on the value of the parameters then the condition is checked. If it cannot be
determined true or false (say if the relevant parameter has not been set), then
the branch cut is included but a relevant warning is given. For example,

> BCCalc(BesselJ(a,sqrt(z^3-1)), z,
parameters={a}, method=RealVariables);

produces the message, Warning, branch cuts have been calculated which
only occur if a::(Not(integer)), and outputs the six branch cuts

{=(z) = 0,<(z) < 1}, {=(z) = 0, 1 < <(z)},
{<(z) = − 1

3

√
3=(z), 12

√
3 < =(z)}, {<(z) = − 1

3

√
3=(z),=(z) < 1

2

√
3},

{<(z) = 1
3

√
3=(z),− 1

2

√
3 < =(z)}, {<(z) = 1

3

√
3=(z),=(z) < − 1

2

√
3}.

Applying BCPlot to this output produces the image on the left of Figure 8. The
true cuts for two specific values of a can be observed in the centre and right
plots, demonstrating the validity of the warning message.

Fig. 8. Plots relating to BesselJ(a,
√
z3 − 1).

	Understanding Branch Cuts of Expressions

