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Abstract. The study of detecting and tracking hand gestures in general has been 
widely explored, yet the focus on fist gesture in particular has been neglected. 
Methods for processing fist gesture would allow more natural user experience 
in human-machine interaction (HMI), however, it requires a deeper understand-
ing of fist kinematics. For the purpose of achieving grasping-moving-rotating 
activity with single hand (SH-GMR), the extraction of fist rotation is necessary. 
In this paper, a feature-based Fist Rotation Detector (FRD) is proposed to bring 
more flexibility to interactions with hand manipulation in the virtual world. By 
comparing to other candidate methods, edge-based methods are shown to be a 
proper way to tackle the detection. We find a set of "fist lines" that can be easily 
extracted and be used steadily to determine the fist rotation. The proposed FRD 
is described in details as a two-step approach: fist shape segmentation and fist 
rotation angle retrieving process. A comparison with manually measured 
ground truth data shows that the method is robust and accurate. A virtual reality 
application using hand gesture control with the FRD shows that the hand  
gesture interaction is enhanced by the SH-GMR. 

1 Introduction 

Hand gesture recognition is a mathematization of the interpolation of human hand 
gestures assisted by modern computer technology. The purpose is to replace tradition-
al input devices, keyboard and mouse, with a new fashion that makes human interact 
with computer in a way that is as natural as in the real world [1]. In spatial domain, 
static hand gestures are recognized due to the different spatial distribution of fingers 
with respect to palms. A "thumb-up" gesture in sign language means "good". A "fist" 
gesture might stands for "stop" [2] or other meanings [3]. Laura et al presented a joint 
segmentation and adaptive classifier that can discriminate 4 static hand gestures under 
slight occlusion condition [4]. Yi et al.'s classifier that combined both supervised and 
unsupervised training process recognizes 14 hand gestures [5]. On the other hand, in 
temporal domain, hand kinematics under various gestures is meaningful as well.  
Yi and Thomas [6] described articulated hand local motion for a 16 rigid object 3D 
hand model with inverse kinematics. Human hand motions are very complicated  
and always occur in both spatial and temporal domain. A well representation of hand 
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gesture patterns and their kinematics lies in the improvement of natural user expe-
rience-as if users interact with the real world. However, current gesture recognition 
methods can hardly capture all subtle movements for manipulation in the virtual 
world.  

Holding an object and moving it with single hand is a common activity in daily 
life. Clenching fingers together to form a fist is a natural gesture, which represents 
grasping [7]. The ability to map this activity in designing interactions that allow in-
puts for software applications can be very useful.  However, the processing of images 
of hand fist and characterization of the various motions as input to computer is not 
straightforward. We term this motion behavior as single hand grasping-moving-
rotating (SH-GMR). These three actions always occur simultaneously. The detection 
of moving, or simple translation, is fairly easy, attested by the fact that a variety of 
algorithms already exist [8]. However, the detecting and tracking on fist rotation has 
been lacking for a long time. The existing compromised solution of rotating a virtual 
object is to make use of two hands to decide the rotation angle, which includes rota-
tion about an axis and "steering wheel" rotation [9]. The drawbacks are obvious. Two 
hands have to grasp the same object at the same time. For tiny objects, it needs sup-
plementary visual guidance for users to hold, such as virtual handles attached on the 
objects. More importantly, this two-hand gesture prevents users to interact with two 
objects at a time, which makes the interaction manners of many kinds quite awkward 
and inefficient. Thus, user experience suffers greatly. With these concerns, we argue 
that the single hand rotation is better than the two-hand rotation. Moreover, the study 
of fist rotation is crucial to achieve SH-GMR.  

From the image and vision perspective, the fist rotation is defined as a 3 dimen-
sional (yaw, pitch and roll) rotations of a deformable, scale variable and intensity 
variable object with associated translation movements. It is necessary to distinguish 
fist from other gestures because other gestures extend at least one finger out [10]. But 
fist gesture is defined as a hand with all fingers clenched into the palm [11]. Within 
certain angle of view, fingers are still visible, but they are fully folded and placed side 
by side with each other. In the following sections, we discuss several methods that 
can potentially be used for the fist rotation extraction and then give a proper solution 
to tackle this problem. 

2 Related Research 

There are several methods that could potentially be used as fundamental methods of 
FRD. They are skeletal model, volume model, optical flow, local features, and edge 
features. We review them below and give examples if necessary. 

Current skeletal models for kinematic representation of hand are applied for  
the open handed gesture that at least one finger is stretched out. Lee and Kunii [12] 
introduced a 27 DOFs hierarchical skeletal hand model with constraints on joint 
movements, which makes some hand configurations impossible so as to reduce the 
shape ambiguity. Du and Charbon proposed a 30 DOFs skeletal model for depth  
image fitting [13].These models are suitable for describing the clenched fist, but they 
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did not propose how to apply the model fitting algorithms in extracting the fist  
rotation using their internal constraints and external image forces.  

3D dense map, sometimes called point cloud generated by structured light [14], 
TOF camera or stereo camera, can be used to solve the ambiguity in certain degree. 
But huge computational cost of 3D fitting prevents them from being applied in  
real-time tracking [15]. We have not seen any solution that can handle the fist rotation 
problem. Besides, the depth map captured by current cameras cannot provide enough 
details in resolution to extract individual fingers from a clenched fist. 

Due to the complexity of hand movements, local features should be found that are 
invariant to hand translation, scaling, rotation, and invariant to illumination changes 
and 3D projections. We applied the Scale Invariant Feature Transform (SIFT) method 
[16, 17] to fist rotation detection to see whether it works properly. We test the hand 
feature matching problem using SIFT demo program developed by Lowe. Our goal is 
to see weather SIFT can constantly track the same features in continuous frames as 
long as they are visible. The matching features are connected by straight lines in  
azure in Figure 1. In each image pair in Figure 1, hand on left side is always the 1th 
frame of the video; right hands are in the 2nd, 5th, 15th, 30th, 45th, and 65th frames 
respectively. SIFT finds most of feature pairs correctly, but the number of points  
reduces sharply as the angle difference becomes larger. The method casts away most 
of detected features to keep a correct matching, which is not suitable for the  
extraction. 

 

Fig. 1. SIFT matching under different fist angles, between 1st frame and 2nd, 5th, 15th, 30th, 
45th, 65th frames 

   

     (a)                            (b) 

Fig. 2. Edge features on fists. (a) Manually labeled fist lines under different rotations. (b) Hand 
gestures that do not fully show the fist lines. 

It is easy to find that when five fingers are clenched, brightness between two fin-
gers is darker. Between index, middle, ring and pinky fingers, 3 clearly dark lines can 
be seen under most lighting conditions. These lines are nearly straight, parallel, and 
almost appear or disappear at the same time. During the rotation, they maintain their 
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relative positions unchanged no matter whether fist is facing directly to the camera or 
not. They are also good to preserve the fist structure. They are more stable and  
accurate to be tracked, compared with methods listed above. Moreover, instead of 
extracting relative angle value from frame-to-frame computation, the angle of the 
lines are absolute value with respect to camera coordinates, which means no cumula-
tive error would be established. We call these 3 lines as "fist lines" for simplicity. As 
shown in Figure 2(a), fist lines are manually labeled as red color in various fist rota-
tions. The fist lines will not appear under certain field of views. Figure 2(b) shows 
some fist gestures in which the fist lines are not clear or cannot be found. So far, the 
edge features turn out to be the best approach to handle the fist rotation.  

3 Approach 

In this paper, it is assumed that human arms have been segmented from the whole 
images, and also hands are in fist shape. Arm segmentation from other parts of the 
human body and fist shape classification from other gestures are beyond the scope of 
our interests. 

3.1 Fist Shape Segmentation 

Observation shows that, if seeing along a human arm, the width of the fist is always 
larger than that of the forearm under all camera views. Values of the width would 
have a suddenly drop down if sliding from fist side to arm side. This geometrical 
characteristic is feasible for the fist segmentation. Arm shapes in 2D are first  
transformed to 1D representation through a dimension reduction process, and then a 
classifier is used to decide the fist position along the arm. 

A contour retrieving algorithm is applied to topologically extract all possible  
contours in the image [18]. Contour C with the largest number of point set is the  
outermost contour of the arm, shown as Figure 3 (a).  Using the data set of the con-
tour C, a convex hull and its vertex set P [19] are computed. Sometimes image noise 
causes trivial boundary so that the number of vertices is sharply increased. In this 
case, a polygon approximation routine is used to reduce the excessive details along 
the boundary. The number of vertex should better be in the range of 8 to 15 consider-
ing both computational cost and accuracy. We compute the Euler distances of all 
vertex pairs except those who are adjacent. Then we find the longest two distances a


 

and b


. The direction of the main axis l is set to be the bisector of the angle of the two 
vectors: 
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Two longest distances are used to decide the main axis to prevent the value oscillation 
introduced by noise. Then, the whole points in contour C are rotated and translated: 

 TcontourCcontourC
mama

mama +






 −
=

θθ
θθ

cossin

sincos
'                         (2) 



 A Method for Single Hand Fist Gesture Input to Enhance HCI 295 

 

 

                       (a)             (b)            (c) 

Fig. 3. Fist segmentation. (a) the arm contour, convex hull, main axis, and the search window 
marked on the contour image, (b) a fist contour that has been rotated and translated to horizon-
tal position, (c) width curve of the contour in (b). 

The rotated main axis l' is located on x-coordinate, shown in Figure 3 (b). Given a x 
on the rotated contour, two y values are corresponded: one negative and one positive. 
The difference of these two y values indicates the width of the fist along l'. Compu-
ting all the widths along l', we get a smoothed width curve of the contour C', as 
shown in Figure 3(c). So far, we convert a 2D shape clustering problem to 1D. It is 
easy to classify fists from forearms by looking at features along the width curve. Var-
ious clustering methods can be used, such as K-means, area-based, and etc. The curve 
on Figure 3 (c) shows that the fist is located at the first half of the contour of Figure 3 
(b). Going back to the original contour C, a fist bounding box is found according to 
the result of the width curve, shown in Figure 3 (a) in a magenta rectangle. The 
bounding box is served as the search window for the fist detection. 

3.2 Fist Rotation Detection 

Finding the three fist lines is a challenging task for the reason that there are many  
line and curve features in the search window. Inspired by the observation shown in 
Figure 2, we find the fist lines are basically straight, parallel, and almost appear or 
disappear at the same time. Thus, three parallel straight lines with the interval of d are 
used as the theoretical model to fit the selected feature point data. 3 parameters need 
to be decided: the slope of the lines θ, the intercept of the middle line b, and the inter-
val d. Note that even though the fist lines are equidistant, their distances appearing on 
images may not be the same due to the perspective from 3D space to the camera 
plane. But in this paper, we particularly see the roll rotation as the major direction 
meanwhile ignoring other DOFs. The mathematical model is: 
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Edge Feature Extraction. We use Laplacian of  Gaussian (LOG) [20] method to 
extract features in the search window because it is scale sensitive to blobs that has the 
similar size. It has strong response to features of extent σ2 , where σ is the variance 
of Gaussian function. The LOG kernel can be pre-computed before the convolution 
on the original image: 
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Since features around fist lines are very similar, the LOG method extracts stable and 
mostly continuous lines between fingers. But it also recovers features located on hand 
edges. Figure 4 shows edge feature maps under different fist rotations. All the edges 
are stored into a structured 2-row array E. Mathematically, this edge set E is ܧ ൌ ڂ ேߝ , where N is the number of feature edges ε. 

A Rough Angle Estimation with Histogram. The edge feature maps gives us an im-
portant clue that after the feature extraction the amount of features on the fist lines is 
larger than that on other non-fist-line features. It is because the fist segmentation pre-
serves most of fist lines while eliminating most of unrelated features. Figure 4 shows 
that the distribution of the histograms of the feature maps is highly related to the fist 
angles. We can approximately compute the coarse fist angle range δ by finding the 
highest percentage of pixel bins within the histogram of the slopes. The highest bins 
and its two nearest neighbors are picked to calculate the angle range using the center of 
gravity method. To compute the slope of the feature segments, the step length between 
two points should be larger than 5 so as to provide plenty of angle resolution. 

 

Fig. 4. Feature maps and their corresponding histogram under different angles 

Back Projection and Edge Pruning. All pixels within the angle range δ are back-
projected to the edge feature map. Edges that contain these pixels are marked and kept 
in Ω, while other edges are pruned: 

                                          (5) 

where γε is the angle value of the feature segments in edge ε. After this process, the 
number of edge candidates is greatly reduced. 

Cutting off, Merging, and Sorting Operation. In Ω, the slope of features within one 
edge may go out of the angle range. These parts are cut off from the edge and the 
residues are merged again, indicated as: 

                                         (6) 

where χε is a feature point in ε, and γ(χε) is the angle value of  χε .  
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If two edges are almost collinear as if they are in the same fist line, they are 
merged into one edge, described as: 
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where ε12 is the merged feature set from ε1 and ε2, and collinear( ) is a function that 
decide whether two feature points are basically collinear.  

Last, all the existing edges are sorted according to their positions, and then stored 
in set ϒ. So far, the number of edges in ϒ is slightly more than 3, which is very cost 
effective for the following angle refining process. 

Fitting the Mathematical Model with the 3 Selected Edges. For any given 3 edges, 
φ1, φ2, φ3 in ϒ, parameters θ, b, and d can be calculated by fitting the theoretical mod-
el described in equation (3) to the three edges. To convert equation (3) into linear 
equations, we let k = tanθ, and c = d/cosθ. Then the equations can be expressed with 
linear equations as: 

 

.),(,),(,),(

],,,,,[~
1

1

1

1

0

1

0

1

1

1

1

1~],,,[

,~~

333222111

323122211211

323122211211

ϕϕϕ ∈∈∈
=

















−−
==

=

iiiiii yxyxyx

yyyyyyy

xxxxxx

xcbkA

whereyxA





                          (8) 

Several methods can be used to solve this over-determined, multiple linear regression 
problem, such as least square, Gauss elimination, and Singular value decomposition 
(SVD). The fitting error E(φ1, φ2, φ3) can be derived from the sum of absolute differ-
ence (SAD) between fitted lines and edge pixels: 
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Optimized Fist Lines with Minimum Error. We compute all the combinations of 3 
possible fist lines in  ϒ. The number of combination is given by 3

nC , where n is num-

ber of edges in ϒ. A correct choice of the fist lines is indicated by *)*,*,( 321 ϕϕϕ  that 

has the minimum fitting error: 
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Its angle θ* = atan(k*) is the optimized fist rotation angle within (-90o, 90o). A large 
amount of pixel involved in the fitting process guarantees an accurate and stable out-
come. Figure 5(a) shows the three fitting lines are found, marked with red, blue, and 
magenta. 
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                             (a)                  (b) 

Fig. 5. (a) Three fitting lines that minimum the fitting error. (b) Feature points out of the angle 
range marked with green color.  

Deciding the Fist Rotation within 360o. As mentioned above, the line model can 
only decide rotation within (-90o, 90o).  Due to the special finger position with rela-
tion to the palm, more features can be found near the palm side rather than the back 
side of the fist. These features mostly have different directions with the fist lines. We  
empirically discriminate between the palm side and the back side by measuring the 
distribution difference of features that are out of the range of the rough rotation angle 
δ. They are marked as green color in Figure 5(b). The center of gravity of the selected 
3 fist lines are first computed. Then, through this point, a straight line (the orange line 
in Figure 5(b)) that is perpendicular to the fist lines splits the search window into two 
parts. The palm side and back side of hands must be located in these two parts respec-
tively. The part that has more green pixels is the palm side, and vice versa. With  
the angle θ* computed in the previous steps, the final rotation angle can be decided 
within 360o. 

4 Experiment and Application 

We pay mostly attention to the accuracy and stability of the proposed FRD. One expe-
riment is implemented to test these two aspects. To generate ground truth (GT) data, 
two markers in cross shape are stuck on the middle finger so that they can be manual-
ly labeled afterwards and be used to calculate hand rotations, shown as Figure 6. Then 
the GT angle is compared with the angle generated by the FRD every 10 frames.  

The GT angle is manually computed every 10 frames. Then it is compared with the 
FRD output within the same frame, shown as Figure 7. The maximum angle value is 
140o due to the physical limit of human hands. The result shows that the proposed 
FRD method is stable and consistent with the GT data, with the absolute mean differ-
ence of 3.27o (0.9% of 360o), and standard deviation of 2.81o (0.8% of 360 o). The 
largest error occurs between 110o and 140o.  

There are several reasons that cause the error. First, the manually labeled GT value 
may not be accurate due to the image quality. Then, remember that hand is a deform-
able object. The rotation of the markers may not fully represent that of the fist lines, 
especially when the hand is twisted almost to its physical limit. Last, as analyzed in 
previous sections, hand rotation always happens in 3 DOFs. The proposed FRD and 
the GT measurement only consider one major movement while ignoring others. This 
will also introduce difference in the comparison.  
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Considering the real applications of fist rotations in HMI and the accuracy level of 
human body movements, the proposed FRD is effective to be used as detecting hu-
man fist rotations in HMI applications. The computational cost is various depending 
on the amount of feature points. In our test video with the resolution of 640×480, the 
size of the search window after the fist shape segmentation is usually within 120×120. 
Modern computer can easily handle this amount of data in real time.  

To illustrate the improvement of the SH-GMR behaviors with the help of the pro-
posed FRD algorithm, we present a simple application that implements a chemical 
reaction experiment in a 3D virtual reality environment. This system captures 3D 
hand movements with stereo cameras. With our FRD routine integrated, the system is 
able to handle SH-GMR. Figure 8 shows a user is implementing a chemical experi-
ment by pouring one sort of liquid from the right flask into the right flask to trigger 
certain chemical reaction. As shown in Figure 8 (b), in the virtual environment, two 
flasks are moved close to each other, and right flask is leant to pour the liquid into the 
left one, with the operation of two hands respectively.  

           

 

           

                       (a)                            (b) 

Fig. 8. (a) The user's gesture of operating objects in the virtual reality environment. (b) An on-
going virtual chemical experiment controlled by two hands. 

5 Conclusion 

Hand interaction is highly limited by the current two-hand rotation gesture due to the 
lack of the research on hand fist kinematics. A single fist rotation detector is crucial to 
implement single hand grasping-moving-rotating activity that makes two hands fully 
control different objects possible. We present a feature-based FRD method that pro-
vides accurate and stable detection of the fist rotation problem for the purpose of 
enriching hand gesture databases with finer hand motion sequences. Except the fist 
rotation, there are plenty of hand gestures and their kinematics that we have not fully 
utilized. Deeply digging into this area will greatly benefit the hand gesture interaction 
and also bring user experience to a brand new level. 

Fig. 7. The comparison of the FRD and GT for
every 10 frames 

Fig. 6. Two markers stuck on a 
hand for computing GT angle.
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