

M. Kurosu (Ed.): Human-Computer Interaction, Part IV, HCII 2013, LNCS 8007, pp. 513–522, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Collaborative Smart Virtual Keyboard
with Word Predicting Function

Chau Thai Truong1, Duy-Hung Nguyen-Huynh1,
Minh-Triet Tran1, and Anh-Duc Duong2

1 University of Science, VNU-HCM, Vietnam
2 University of Information Technology, VNU-HCM, Vietnam
{0912034,0912202}@student.hcmus.edu.vn,

tmtriet@fit.hcmus.edu.vn, ducda@uit.edu.vn

Abstract. The authors propose a table-top with virtual keyboards for
multi-users to work in a collaborative environment. The proposed system has
two main modules: a system for virtual keyboards with touch event detection
from depth data of a Kinect and a word predicting module based on the idea of
Hidden Markov Model and Trie data structure. The system can replace physical
keyboards, improve the accuracy of a virtual keyboard, and increase the typing
speed of users. Our experimental results show that our system archives an accu-
racy of 94.416% with the virtual keyboard, saves 11-22% of keystrokes, and
corrects 89.02% of typing mistakes.

Keywords: table top, virtual keyboard, word prediction, 3D interaction.

1 Introduction

Human-computer interaction (HCI) plays an important role in the evolution of
computing society. Researches in the field of interaction between users and computers
aim to enhance the comfort, ergonomics, and portability as well as to save time for
users. To efficiently assist users in various activities in daily life, HCI not only
provides useful utilities for single users to interact with computing systems but also
collaboration environment for multiple users to work together.

Text-based data entry is one of the most common tasks in most applications. Thus
different types of keyboards have been developed to enhance the usefulness and com-
fort for users. Inspired by the augmenting interactive table system with mice and
keyboards of Hartmann [6], we propose a collaborative smart virtual keyboard system
with word predicting function. Our proposed system uses a regular projector to project
over an arbitrary relatively-flat surface the images of multiple virtual keyboards and a
Kinect to capture depth information for touch event detection. Multiple users can now
work together on a single large area, e.g. a desk, using only virtual devices. Further-
more, the layout, language, and size of any virtual keyboards can be visually
customized to save extra cost for real physical devices to meet users’ various needs.

Besides, the word predicting function is designed to support users to increase the
typing speed and correct typing mistakes quickly. We use a dictionary stored in a

514 C.T. Truong et al.

prefix tree (Trie [12]) to save memory and to increase processing speed. The dictio-
nary contains both words and their frequencies in the same category, e.g. sports,
education, politics, etc. There are two parts of this function: predicting the words that
a user intends to type and correcting words that a user mistyped. The operations of
these parts are based on word frequencies in a trained dictionary and the prefix cha-
racters that a user has just typed. Experimental results show that our virtual keyboard
system achieves the accuracy of 94.42% in keystrokes detection, the word prediction
can save 10-20% keystrokes, and the word correction can eliminate up to 80-90%
mistakes when users type text data with the same topic as that of the used dictionary.

The content of the paper is as follows. In Section 2, the authors briefly review the
approaches in HCI, especially in developing table top and virtual keyboards.
Our proposed system and experimental results are presented in Section 3 and 4
respectively. Conclusions are discussed in Section 5.

2 Related Work

Interactive surfaces of different materials, technologies, and sizes have become popu-
lar means of interaction between users with computing devices and systems. While
touch screens are suitable for small and medium sized devices, such as tablets, mobile
devices, ATM machines, etc., tabletops are more applicable for economic and large
sized interactive surfaces.

Different approaches have been proposed to develop various models of tabletops,
such as using laser to detect and localize touch events [1], using single or multiple
traditional cameras to detect hands and fingers’ actions with or without mark-
ers/gloves [2], using sensors of multi-touch surfaces to perform interaction [10]. With
the appearance of depth-sensing technology and depth cameras such as Kinects, vi-
sion-based methods for tabletop interaction can take a further step with extra useful
information of depth data. Wilson uses depth data as touch sensor and can determine
interaction points by using a depth camera [3]. In this paper, we follow this new trend
to develop our smart virtual keyboard with depth data captured from a Kinect.

Among with tabletops, applications that support multi-user work or collaboration
are also a topic of concern. A multi-user web browser system is proposed to support
multiple people to search and to watch the same webpages simultaneously [8]. Klink-
hammer et. al. develop a system that enables many people to share information, data
while working on the same interactive surface [9]. WeSearch system is proposed to
enable a group of up to four members to use a web browser at the same time on a
tabletop [7]. Especially, Hartmann et. al. propose eight interaction methods that are
used in a working desk that supports interactions with real keyboards and mice [6].
This motivates our inspiration to develop our system. However, we take a further
step. Our system does not require any physical input devices, e.g. keyboards, mice.
Users interact through virtual devices projected by a projector over any relatively-flat
surface and touch events are detected from depth data captured from a Kinect. There-
fore, keyboard layouts and languages can be customized easily.

Beside applications of tabletops and supports for collaboration, the efficiency
in typing on virtual keyboards is also a practical demand. Findlater et. al. propose a

 Collaborative Smart Virtual Keyboard with Word Predicting Function 515

method to evaluate an adaptive personalized virtual keyboard layout to improve
typing on a touch-screen [4]. Wigdor et. al. examine the hand patterns in touch-typing
on a flat surface to suggest a new design for touch screen keyboards [5]. In this paper,
our approach is to perform word prediction and correction using word frequencies in a
dictionary containing words in the same category. This approach has many advantag-
es. Different dictionaries can be built by training large data from online articles of the
same topic from the Internet. The frequencies of words can be combined with the
neighborhood keys to correct mistyped words.

3 Proposed System

This section shows the main components and operations of our smart virtual keyboard
with word prediction and correction. The overview of our system is presented in
Sec. 3.1. The operations of Kinect are described in Sec.3.2. Finally, Sec.3.3 shows
the operations of word prediction function including the data structure to store a
dictionary and our proposed methods to predict words from prefixes.

3.1 Overview of the System

(a) Overview

(b) Main components

Fig. 1. Overview and architecture of the system

Figure 1 illustrates the overview and main components of our proposed system. A
user interacts with a virtual keyboard displayed on an non-touch interactive surface.
In our system, the interactive surface and the Kinect are in fixed positions during an
interaction process. A projector is used to project images of multiple virtual key-
boards, texts, and multimedia information on demand. A single computer is used to
processed all keystrokes from multiple users and other functions. These functions are
divided into two subcomponents: touch detection and word prediction.

Touch detection: A Kinect device is used to continuously capture depth images on
the interactive surface. The computer receives depth information to detect touched
points on virtual keyboards and generates appropriate keyboard events. Finally, the
projector shows the image of virtual keyboards and typed texts. The role of Kinect in
this component is described in detail in Sec.3.2.

516 C.T. Truong et al.

Word prediction: this subcomponent is designed to enhance the accuracy of touch
detection and to increase typing speed. When a prefix is typed, the system suggests
appropriate words to the user. The use of data structure to store a dictionary and our
proposed methods to predict words are presented in Sec.3.3.

3.2 Touch Event Detection with a Kinect

In this part, we present the use of a Kinect in touch detection. First, a background
image is trained to estimate the main interaction plane. It should be noticed that the
interaction plane is not required to be perfectly flat. Any fixed, relatively flat surface
can be used as the interaction plane.

Then, when users start using the system, query images of depth data are computed
periodically to detect touched points. However, when computing the background
image and query images, due to the instability of Kinect depth data, the depth infor-
mation in an image should be denoised on consecutive frames by a median filter.

Background estimation: A background image contains only depth data of the inter-
active surface. Therefore, the computation of the background image must be done on
many continuous frames at the beginning of an interaction process. Let N1 be the
number of depth frames used in training the background, I(x, y) be the value of a pixel
(x, y) in an image I, IB be the background image and , , …, be the frames

that are used to compute IB. We estimate the background image with the following
formula: , median , ; 1,

Computing query images: Suppose the process starts at the s-th frame. Let N2 be the
number of consecutive depth frames used to compute a query image. The i-th query
image (i >0), denoted by IQ is computed from the frame – 1 · to the frame · – 1 by the following formula: , median , ; – 1 · , · 1

Finding the points that are near the interactive surface: Depending on its real
distance DP to Kinect, a point P in a depth image is classified into one of the three
classes: inside, near, and far point. The depth value at a pixel is the distance from
Kinect to the plane that contains the pixel and is perpendicular to the viewing direc-
tion of Kinect. Let D’ be the distance from Kinect to the plane containing P. D’>DP
means that P is inside the interactive surface. This is certainly a noise data because
Kinect and the surface are assumed to be stable. Therefore, if D’>DP, we reset D’=DP
to eliminate noise. Finally, we have D’≤ DP, .

Let ∆ , ∆ min ∆ | and ∆ max ∆ | .
We define the set of near points | ∆ ∆ ∆ . With the same

value of Δmax, the smaller value of Δmin causes more noise data between Δmin and Δmax.
Otherwise, the larger value of Δmin makes the touch events generated earlier. With the
same value of Δmin, if Δmax is larger, the noise between Δmin and Δmax is higher. Other-
wise, the time interval of a touch event is shorter and a touch event is more likely to
be missed. The experiment to choose Δmin and Δmax is presented in Sec.4.1.

 Collaborative

Touch detection: For a se
touch event is triggered at th

3.3 Word Prediction an

When a user types a prefix
suggests a number of word
can save time to type that w
These mistakes can be typi
the system. When a prefix i
on the neighborhood chara
save time for both typing an

Both functions use dictio
words in the same topic wi
files can also be utilized to
more often a user uses the s

Prefix tree (Trie): Trie da, with a root r, a
edge , contains a
yj, we have , ≠ ,

Fig. 2. Trie built from

The efficiency of using Tr
len(x) be the length of strin
tionary, we consider the fol

• Storing a set of string T
Assume that we need one
units that can be saved whe

Total number of characte

Smart Virtual Keyboard with Word Predicting Function

et T containing connected near points, if |T| > minAre

he position (xtouch, ytouch) where: ∑ .| | and
∑ .| |

nd Correction

, i.e. a sequence of initial characters of a word, the syst
ds with highest probabilities. If the user accepts, he or
word. This feature is also used to correct typing mistak
ing mistakes of users and touch event mistakes caused
is typed, the system corrects and suggests new words ba
cters of the typed characters. Using this feature, users
nd correction.
onaries to perform. The dictionary contains frequencies
ith the typing text. Together with the dictionary, user p
o enhance the accuracy of these functions. Therefore,
system, the more efficient the system becomes.

ata structure is first proposed by Fredkin [12]. Trie is a t
a vertex set V , and an directed edge set , . E
a character , . For a node x and its children nodes yi

for yi ≠ yj. Figure 2 illustrates an example of a trie.

m strings “A”, “to”, “tea”, “ted”, “ten”, “i”, “in” and “inn”

rie in dictionary: Let S be the set of words in a dictiona
ng x and | | be the average length of all words in the d
llowing operations.

 with the same prefix u.

memory unit to store a character, the number of mem
en using Trie to store T is as follow:
ers in T – number of memory unit to store using Trie

517

ea, a

tem
she

kes.
d by
ased
can

s of
pro-
the

tree
Each

and

ary,
dic-

mory

518 C.T. Truong et al.

 | | 1 .

• Finding a prefix v = v1v2…vk in S

When not using Trie, the system iterates through every word or binary searches the
wordlist to find v. The complexity of these operations are | |. |u | and log | | . |u | respectively. When using Trie, the system starts from root r and
visits child nodes until v is found or cannot visit more. The complexity is then |u | . Therefore, using Trie can reduce searching time of a prefix.

• Adding a new word v = v1v2…vk to S

When not using Trie, the complexity to insert v at position i in alphabetical order is | ||u | . When using Trie, the system finds a prefix of v. Then, it iterates through
every remaining position to add new child nodes. The complexity of this is |u | .
Therefore, the adding time is faster.

In conclusion, the use of Trie to store dictionaries has three advantages: smaller
capacity, faster time to search and add words. That is the reason of our choice to use
Trie to perform main functions for word prediction and correction in our system.

Hidden Markov Model (HMM) [11] has the following elements:

− A finite number, denoted by N, of states in the model. At each clock time, t, a new
state is entered based upon a transition probability distribution which depends on
the previous state.

− After each transition is made, an observation output symbol is produced according
to a probability distribution which depends on the current state. This probability
distribution is held fixed for the state regardless of when and how the state is en-
tered. There are thus N such observation probability distributions which, of course,
represent random variables or stochastic processes.

All of those elements are formally defined in the following:

T = length of the observation sequence
N = number of states in the model
M = number of observations
Q = {q1, q2, . .. ,qN}, states
V = {V1, V2, ... ,VM,}, observations
A = {aij}, aij = Pr(qj at t + 1 | qi at t), state transition probability distribution
B = {bj(k)}, bj(k) = Pr(vk at t | qj at t), observation probability distribution in state j
π = {πi}, πi = Pr(qi at t =1), initial state distribution

Prediction based on frequencies of prefixes: When a user types a prefix s, a com-
plete word ui that has the prefix s and has the highest probability is suggested. Let

 be the frequency of s. The probability of ui is defined as follow: |

 Collaborative Smart Virtual Keyboard with Word Predicting Function 519

Prediction based on finger position and keyboard layout: Let s = s1s2…sm be the
typed prefix, the system suggests the list of prefixes u = u1u2…um that has the high-
est probability. The suggestions of prefixes u depends on two criteria:

─ The frequency of u in a dictionary.
─ The neighborhood characters of si (for i ≤ m) is the set H(si) of characters b such

that the keys of si and b are identical or share a common part in key borders. For
example, in a standard US keyboard, the keys E, R, F, C, X ,S are neighborhoods
of D. These keys b have the nearest distances from their centers to the center of
key si. Therefore, we choose this set as a criterion. Let Pt(si, b) be the probability
that a user actually wants to type b instead of si. We assign Pt (si, b) = r% when si ≠
b. Pt(si, si) changes depending on r and |H(si)|.

Let σ(u, i) = u1u2…ui. The application of hidden Markov model is as follows:

− The states are the prefixes σ(u, i) (i ≤ m) that exist in the dictionary and ui is a
neighborhood of si.

− The observations of the current state σ(u, i) (i < m) is the set H(si+1).
− Transition probability distribution A: if i < j, σ(u, i) is a prefix of σ(u, j). We have: , , , ,,

− Observation probability distribution B: given the state u’ = σ(u, i) (i < m) and
H(si+1) are the observations. We have: , , where

− Initial state distribution πu: Let P be the set of all prefix in the dictionary, we have: ∑

− The probability of an observation series u1u2...um is:

+ For m = 1, we have , , ,

 , where Ø is the empty string.
+ For m > 1, we have: … , 1 , , 1

, , , , , ,, ,

4 Experimental Results

In this section we present four experiments. The experiment in Sec.4.1 determines the
optimum values of Δmin and Δmax for touch detection. Sec.4.2 measures the accuracy
of our virtual keyboard with the chosen values of Δmin and Δmax in Sec.4.1. The expe-
riments in Sec.4.3 and Sec.4.4 are to evaluate the efficiency of word prediction based
on word frequencies and the accuracy of word correction based on both word fre-
quencies and neighborhood characters. These experiments are performed on the sys-
tem using CPU core i7 2.2Ghz, 6GB RAM.

520 C.T. Truong et al.

4.1 Finding Optimal Values of Δmin and Δmax

This experiment is to find the optimum values of Δmin and Δmax to achieve the highest
precision in touch detection. For experiments in this section and Sec.4.2, Kinect is
kept at a distance of 0.8m from the surface. 26 square regions with the same size of
1.5cm × 1.5cm are selected to be the virtual keys corresponding to 26 alphabet cha-
racters from ‘a’ to ‘z’. The data consists of 1800 depth frames in 640×480 resolution.
The first 300 frames are used to train the (3D) background. Touching action is per-
formed at arbitrary regions in the remaining frames. The accuracy is determined as
the proportion between the number of error frames and the total number of used
frames. From the experiment, we choose Δmin = 10mm and Δmax = 13mm.

4.2 Estimating the Accuracy of Virtual Keyboard

The purpose of this experiment is to measure the accuracy of our virtual keyboard
with the optimum parameters Δmin and Δmax determined in Sec.4.1. The data consists
of 10 strings with 154 characters in total. For each string, we type 5 times to the vir-
tual keyboard. The accuracy of each typing time is the percentage of correct touch
events. After typing all of 10 strings, we calculate the average accuracy of five times
over all strings. Table 1 shows the results.

Table 1. Accuracy of virtual keyboard in 5 typing times

Test Result
1 94.156%
2 94.805%
3 92.208%
4 94.805%
5 96.104%

Average 94.416%

From Table 1, we conclude that our system archives the average accuracy of
94.416% in touch detection of our virtual keyboard.

4.3 Estimating the Efficiency of Word Prediction Based on Word Frequency

In this experiment, the efficiency of word prediction is measured by the percentage of
keystrokes that users can save when they type texts in the same topic as that of the
current dictionary. We measure two methods: offline –word frequencies are fixed;
and online – the word frequencies are updated gradually after each time a user types a
word. A dictionary containing words and their frequencies is built from 100 articles in
a single topic (e.g. business, technology, health, etc). 100 other articles in the same
topic are selected to test the system. Each article in the training set and test set has
2000-6000 words. The result is illustrated in Figure 3.

 Collaborative Smart Virtual Keyboard with Word Predicting Function 521

Fig. 3. Percentage of saved keystrokes when applying two methods (online and offline) of word
prediction based on word frequencies

From the experimental results, we conclude that with the same text and topic, when
the number of typed words is small, the accuracy of two methods do not have much
difference. When the number of words increases, the efficiency of online method
becomes higher. On average, users can save 11.61% keystrokes with offline method
and 22.19% with online method.

4.4 Estimating the Accuracy of Word Correction Based on Word Frequency
and Neighborhood Characters

This experiment aims to measure the accuracy of system to correct typing mistakes of
users based on the frequencies of words in the same specific topic and the neighbor-
hoods of the typed characters. Let Perror be the probability that a character is mistyped
to a neighborhood character, we measure the percentage Pfix of corrected mistakes
after using our method. A dictionary are built from 40 articles in a single topic and 40
other articles are used as testcases. Each article has 2000-6000 words and the total
number of characters is 85627. Recall the Sec.3.3, we choose Pt(a, b) = 5% if a ≠ b.
The result of this experiment is in Figure 4.

Fig. 4. Result of the efficiency of word correction using word frequencies and neighborhood
characters

From the experimental result, we conclude that using word frequencies and neigh-
borhood characters to correct typing mistakes can solve 89.02% on average of these
mistakes when typing in the same topic. This percentage decreases when the initial
error rate increases.

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 11 21 31 41 51 61 71 81 91

Percentage of
saved keystrokes

Number of
trained test

Offline
Online

91.00% 90.00% 88.33% 86.75%

0%
20%
40%
60%
80%

100%

10% 20% 30% 40%

Pfix

Perror

522 C.T. Truong et al.

5 Conclusions

We propose to develop a table top with smart virtual keyboards for multiple users to
work in a collaborative environment. To eliminate noise in Kinect, we use a median
filter in both background training and touch event detection. The virtual keyboard
system can be apply over any relatively flat area with the accuracy of 94.416%. The
position, layout, and language of each virtual keyboard can be customized easily.

Besides, the accuracy of our virtual keyboard is enhanced by word predicting func-
tion that learns from both train data and user profile to suggest and correct the typed
words quickly. This feature helps users to save up to 11-22% of keystrokes and cor-
rect 89.02% mistakes in typing documents in the same topic with the dictionary.

We are currently develop further features for our tabletop environment and
improve the system to apply on any types of surfaces (curve, sphere, etc). Besides
various dictionaries are being built for different topics and categories, even for
programming languages (e.g. C++, Pascal, C#).

References

1. Tobias Schwirten, L.: Radar Touch, http://www.radar-touch.com/
2. Marquardt, N., Kiemer, J., Greenberg, S.: What caused that touch? expressive interaction

with a surface through duciary-tagged gloves. In: ACM International Conference on
Interactive Tabletops and Surfaces, ITS 2010, pp. 139–142. ACM (2010)

3. Wilson, A.D.: Using a depth camera as a touch sensor. In: ACM International Conference
on Interactive Tabletops and Surfaces, ITS 2010, pp. 69–72. ACM (2010)

4. Findlater, L., Wobbrock, J.: Personalized input: improving ten-finger touchscreen typing
through automatic adaptation. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 2012, pp. 815–824. ACM (2012)

5. Findlater, L., Wobbrock, J.O., Wigdor, D.: Typing on flat glass: examining ten-finger
expert typing patterns on touch surfaces. In: Proceedings of the International Conference
on Human Factors in Computing Systems, CHI 2011, pp. 2453–2462 (2011)

6. Hartmann, B., Morris, M.R., Benko, H., Wilson, A.D.: Augmenting interactive tables
with mice & keyboards. In: Proceedings of the 22nd Annual ACM Symposium on User
Interface Software and Technology, UIST 2009, pp. 149–152. ACM (2009)

7. Morris, M.R., Lombardo, J., Wigdor, D.: Wesearch: supporting collaborative search and
sensemaking on a tabletop display. In: Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, CSCW 2010, pp. 401–410. ACM (2010)

8. Tuddenham, P., Davies, I., Robinson, P.: Websurface: An interface for co-located
col-laborative information gathering. In: Proceedings of the ACM International Confe-
rence on Interactive Tabletops and Surfaces, ITS 2009, pp. 181–188. ACM (2009)

9. Klinkhammer, D., Nitsche, M., Specht, M., Reiterer, H.: Adaptive personal territories for
co-located tabletop interaction in a museum setting. In: Proc. of the ACM International
Conference on Interactive Tabletops and Surfaces, ITS 2011, pp. 107–110. ACM (2011)

10. Dippon, A., Echtler, F., Klinker, G.: Multi-touch Table as Conventional Input Device.
In: Stephanidis, C. (ed.) Posters, Part II, HCII 2011. CCIS, vol. 174, pp. 237–241.
Springer, Heidelberg (2011)

11. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 257–286 (1989)

12. Fredkin, E.: Trie Memory. CACM 3(9), 490–499 (1960)

	Collaborative Smart Virtual Keyboardwith Word Predicting Function
	1 Introduction
	2 Related Work
	3 Proposed System
	3.1 Overview of the System
	3.2 Touch Event Detection with a Kinect
	3.3 Word Prediction nd an Correction

	4 Experimental Results
	4.1 Finding Optimal Values of
	4.2 Estimating the Accuracy of Virtual Keyboard
	4.3 Estimating the Efficiency of Word Prediction Based on Word Frequency
	4.4 Estimating the Accuracy of Word Correction Based on Word Frequency and Neighborhood Characters

	5 Conclusions
	References

