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Abstract. The authors propose a table-top with virtual keyboards for  
multi-users to work in a collaborative environment. The proposed system has 
two main modules: a system for virtual keyboards with touch event detection 
from depth data of a Kinect and a word predicting module based on the idea of 
Hidden Markov Model and Trie data structure. The system can replace physical 
keyboards, improve the accuracy of a virtual keyboard, and increase the typing 
speed of users. Our experimental results show that our system archives an accu-
racy of 94.416% with the virtual keyboard, saves 11-22% of keystrokes, and 
corrects 89.02% of typing mistakes. 
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1 Introduction 

Human-computer interaction (HCI) plays an important role in the evolution of  
computing society. Researches in the field of interaction between users and computers 
aim to enhance the comfort, ergonomics, and portability as well as to save time for 
users. To efficiently assist users in various activities in daily life, HCI not only  
provides useful utilities for single users to interact with computing systems but also 
collaboration environment for multiple users to work together.  

Text-based data entry is one of the most common tasks in most applications. Thus 
different types of keyboards have been developed to enhance the usefulness and com-
fort for users. Inspired by the augmenting interactive table system with mice and  
keyboards of Hartmann [6], we propose a collaborative smart virtual keyboard system 
with word predicting function. Our proposed system uses a regular projector to project 
over an arbitrary relatively-flat surface the images of multiple virtual keyboards and a 
Kinect to capture depth information for touch event detection. Multiple users can now 
work together on a single large area, e.g. a desk, using only virtual devices. Further-
more, the layout, language, and size of any virtual keyboards can be visually  
customized to save extra cost for real physical devices to meet users’ various needs.  

Besides, the word predicting function is designed to support users to increase the 
typing speed and correct typing mistakes quickly. We use a dictionary stored in a 
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prefix tree (Trie [12]) to save memory and to increase processing speed. The dictio-
nary contains both words and their frequencies in the same category, e.g. sports,  
education, politics, etc. There are two parts of this function: predicting the words that 
a user intends to type and correcting words that a user mistyped. The operations of 
these parts are based on word frequencies in a trained dictionary and the prefix cha-
racters that a user has just typed. Experimental results show that our virtual keyboard 
system achieves the accuracy of 94.42% in keystrokes detection, the word prediction 
can save 10-20% keystrokes, and the word correction can eliminate up to 80-90% 
mistakes when users type text data with the same topic as that of the used dictionary. 

The content of the paper is as follows. In Section 2, the authors briefly review the 
approaches in HCI, especially in developing table top and virtual keyboards.  
Our proposed system and experimental results are presented in Section 3 and 4  
respectively. Conclusions are discussed in Section 5. 

2 Related Work 

Interactive surfaces of different materials, technologies, and sizes have become popu-
lar means of interaction between users with computing devices and systems. While 
touch screens are suitable for small and medium sized devices, such as tablets, mobile 
devices, ATM machines, etc., tabletops are more applicable for economic and large 
sized interactive surfaces.  

Different approaches have been proposed to develop various models of tabletops, 
such as using laser to detect and localize touch events [1], using single or multiple 
traditional cameras to detect hands and fingers’ actions with or without mark-
ers/gloves [2], using sensors of multi-touch surfaces to perform interaction [10]. With 
the appearance of depth-sensing technology and depth cameras such as Kinects, vi-
sion-based methods for tabletop interaction can take a further step with extra useful 
information of depth data. Wilson uses depth data as touch sensor and can determine 
interaction points by using a depth camera [3]. In this paper, we follow this new trend 
to develop our smart virtual keyboard with depth data captured from a Kinect. 

Among with tabletops, applications that support multi-user work or collaboration 
are also a topic of concern. A multi-user web browser system is proposed to support 
multiple people to search and to watch the same webpages simultaneously [8]. Klink-
hammer et. al. develop a system that enables many people to share information, data 
while working on the same interactive surface [9]. WeSearch system is proposed to 
enable a group of up to four members to use a web browser at the same time on a 
tabletop [7]. Especially, Hartmann et. al. propose eight interaction methods that are 
used in a working desk that supports interactions with real keyboards and mice [6]. 
This motivates our inspiration to develop our system. However, we take a further 
step. Our system does not require any physical input devices, e.g. keyboards, mice. 
Users interact through virtual devices projected by a projector over any relatively-flat 
surface and touch events are detected from depth data captured from a Kinect. There-
fore, keyboard layouts and languages can be customized easily. 

Beside applications of tabletops and supports for collaboration, the efficiency  
in typing on virtual keyboards is also a practical demand. Findlater et. al. propose a 
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method to evaluate an adaptive personalized virtual keyboard layout to improve  
typing on a touch-screen [4]. Wigdor et. al. examine the hand patterns in touch-typing 
on a flat surface to suggest a new design for touch screen keyboards [5]. In this paper, 
our approach is to perform word prediction and correction using word frequencies in a 
dictionary containing words in the same category. This approach has many advantag-
es. Different dictionaries can be built by training large data from online articles of the 
same topic from the Internet. The frequencies of words can be combined with the 
neighborhood keys to correct mistyped words. 

3 Proposed System 

This section shows the main components and operations of our smart virtual keyboard 
with word prediction and correction. The overview of our system is presented in  
Sec. 3.1. The operations of Kinect are described in Sec.3.2. Finally, Sec.3.3 shows  
the operations of word prediction function including the data structure to store a  
dictionary and our proposed methods to predict words from prefixes. 

3.1 Overview of the System 

(a) Overview 

 
(b) Main components 

Fig. 1. Overview and architecture of the system 

Figure 1 illustrates the overview and main components of our proposed system. A 
user interacts with a virtual keyboard displayed on an non-touch interactive surface. 
In our system, the interactive surface and the Kinect are in fixed positions during an 
interaction process. A projector is used to project images of multiple virtual key-
boards, texts, and multimedia information on demand. A single computer is used to 
processed all keystrokes from multiple users and other functions. These functions are 
divided into two subcomponents: touch detection and word prediction. 

Touch detection: A Kinect device is used to continuously capture depth images on 
the interactive surface. The computer receives depth information to detect touched 
points on virtual keyboards and generates appropriate keyboard events. Finally, the 
projector shows the image of virtual keyboards and typed texts. The role of Kinect in 
this component is described in detail in Sec.3.2. 
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Word prediction: this subcomponent is designed to enhance the accuracy of touch 
detection and to increase typing speed. When a prefix is typed, the system suggests 
appropriate words to the user. The use of data structure to store a dictionary and our 
proposed methods to predict words are presented in Sec.3.3. 

3.2 Touch Event Detection with a Kinect 

In this part, we present the use of a Kinect in touch detection. First, a background 
image is trained to estimate the main interaction plane. It should be noticed that the 
interaction plane is not required to be perfectly flat. Any fixed, relatively flat surface 
can be used as the interaction plane.  

Then, when users start using the system, query images of depth data are computed 
periodically to detect touched points. However, when computing the background 
image and query images, due to the instability of Kinect depth data, the depth infor-
mation in an image should be denoised on consecutive frames by a median filter. 

Background estimation: A background image contains only depth data of the inter-
active surface. Therefore, the computation of the background image must be done on 
many continuous frames at the beginning of an interaction process. Let N1 be the 
number of depth frames used in training the background, I(x, y) be the value of a pixel 
(x, y) in an image I, IB be the background image and , , …,  be the frames 

that are used to compute IB. We estimate the background image with the following 
formula: , median , ; 1,  

Computing query images: Suppose the process starts at the s-th frame. Let N2 be the 
number of consecutive depth frames used to compute a query image. The i-th query 
image (i >0), denoted by IQ is computed from the frame  – 1 ·  to the frame  ·  –  1 by the following formula:  , median , ;   – 1 · , · 1   

Finding the points that are near the interactive surface: Depending on its real 
distance DP to Kinect, a point P in a depth image is classified into one of the three 
classes: inside, near, and far point. The depth value at a pixel is the distance from 
Kinect to the plane that contains the pixel and is perpendicular to the viewing direc-
tion of Kinect. Let D’ be the distance from Kinect to the plane containing P. D’>DP 
means that P is inside the interactive surface. This is certainly a noise data because 
Kinect and the surface are assumed to be stable. Therefore, if D’>DP, we reset D’=DP  
to eliminate noise. Finally, we have D’≤ DP, . 

Let ∆ , ∆ min ∆  |  and ∆ max ∆  | .  
We define the set of near points | ∆ ∆ ∆ . With the same 

value of Δmax, the smaller value of Δmin causes more noise data between Δmin and Δmax. 
Otherwise, the larger value of Δmin makes the touch events generated earlier. With the 
same value of Δmin, if Δmax is larger, the noise between Δmin and Δmax is higher. Other-
wise, the time interval of a touch event is shorter and a touch event is more likely to 
be missed. The experiment to choose Δmin and Δmax is presented in Sec.4.1. 
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 | | 1 .  

• Finding a prefix v = v1v2…vk in S 

When not using Trie, the system iterates through every word or binary searches the 
wordlist to find v. The complexity of these operations are | |. |u |  and log | | . |u |  respectively. When using Trie, the system starts from root r and 
visits child nodes until v is found or cannot visit more. The complexity is then |u | . Therefore, using Trie can reduce searching time of a prefix. 

• Adding a new word v = v1v2…vk to S 

When not using Trie, the complexity to insert v at position i in alphabetical order is | ||u | . When using Trie, the system finds a prefix of v. Then, it iterates through 
every remaining position to add new child nodes. The complexity of this is |u | . 
Therefore, the adding time is faster. 

In conclusion, the use of Trie to store dictionaries has three advantages: smaller 
capacity, faster time to search and add words. That is the reason of our choice to use 
Trie to perform main functions for word prediction and correction in our system. 

Hidden Markov Model (HMM) [11] has the following elements: 

− A finite number, denoted by N, of states in the model. At each clock time, t, a new 
state is entered based upon a transition probability distribution which depends on 
the previous state. 

− After each transition is made, an observation output symbol is produced according 
to a probability distribution which depends on the current state. This probability 
distribution is held fixed for the state regardless of when and how the state is en-
tered. There are thus N such observation probability distributions which, of course, 
represent random variables or stochastic processes. 

All of those elements are formally defined in the following:  

T = length of the observation sequence 
N = number of states in the model 
M = number of observations 
Q = {q1, q2, . .. ,qN}, states 
V = {V1, V2, ... ,VM,}, observations 
A = {aij}, aij = Pr(qj at t + 1 | qi at t), state transition probability distribution  
B = {bj(k)}, bj(k) = Pr(vk at t | qj at t), observation probability distribution in state j 
π = {πi}, πi = Pr(qi at t =1), initial state distribution 

Prediction based on frequencies of prefixes: When a user types a prefix s, a com-
plete word ui that has the prefix s and has the highest probability is suggested. Let 

 be the frequency of s. The probability of ui is defined as follow: |  
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Prediction based on finger position and keyboard layout: Let s = s1s2…sm be the 
typed prefix, the system suggests the list of prefixes u = u1u2…um  that has the high-
est probability. The suggestions of prefixes u depends on two criteria: 

─ The frequency of u in a dictionary. 
─ The neighborhood characters of si (for i ≤ m) is the set H(si) of characters b such 

that the keys of si and b are identical or share a common part in key borders. For 
example, in a standard US keyboard,  the keys E, R, F, C, X ,S are neighborhoods 
of D. These keys b have the nearest distances from their centers to the center of 
key si. Therefore, we choose this set as a criterion. Let Pt(si, b) be the probability 
that a user actually wants to type b instead of si. We assign Pt (si, b) = r% when si ≠ 
b. Pt(si, si) changes depending on r and |H(si)|. 

Let σ(u, i) = u1u2…ui. The application of  hidden Markov model is as follows: 

− The states are the prefixes σ(u, i) (i ≤ m) that exist in the dictionary and ui is a 
neighborhood of si. 

− The observations of the current state σ(u, i) (i < m) is the set H(si+1). 
− Transition probability distribution A: if i < j, σ(u, i) is a prefix of σ(u, j). We have: ,  , , ,,  

− Observation probability distribution B: given the state u’ = σ(u, i) (i < m) and 
H(si+1) are the observations. We have: , ,   where  

− Initial state distribution πu: Let P be the set of all prefix in the dictionary, we have: ∑  

− The probability of an observation series u1u2...um is: 

+ For m = 1, we have ,  ,  ,  

           ,  where Ø is the empty string. 
+ For m > 1, we have: … , 1 , , 1  

,  , , ,  , ,, ,  

4 Experimental Results 

In this section we present four experiments. The experiment in Sec.4.1 determines the 
optimum values of Δmin and Δmax for touch detection. Sec.4.2 measures the accuracy 
of our virtual keyboard with the chosen values of Δmin and Δmax in Sec.4.1. The expe-
riments in Sec.4.3 and Sec.4.4 are to evaluate the efficiency of word prediction based 
on word frequencies and the accuracy of word correction based on both word fre-
quencies and neighborhood characters. These experiments are performed on the sys-
tem using CPU core i7 2.2Ghz, 6GB RAM. 
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4.1 Finding Optimal Values of Δmin and Δmax 

This experiment is to find the optimum values of Δmin and Δmax to achieve the highest 
precision in touch detection. For experiments in this section and Sec.4.2, Kinect is 
kept at a distance of 0.8m from the surface. 26 square regions with the same size of 
1.5cm × 1.5cm are selected to be the virtual keys corresponding to 26 alphabet cha-
racters from ‘a’ to ‘z’. The data consists of 1800 depth frames in 640×480 resolution. 
The first 300 frames are used to train the (3D) background. Touching action is per-
formed at arbitrary regions in the remaining frames. The accuracy is determined as 
the proportion between the number of error frames and the total number of used 
frames. From the experiment, we choose Δmin = 10mm and Δmax = 13mm. 

4.2 Estimating the Accuracy of Virtual Keyboard 

The purpose of this experiment is to measure the accuracy of our virtual keyboard 
with the optimum parameters Δmin and Δmax determined in Sec.4.1. The data consists 
of 10 strings with 154 characters in total. For each string, we type 5 times to the vir-
tual keyboard. The accuracy of each typing time is the percentage of correct touch 
events. After typing all of 10 strings, we calculate the average accuracy of five times 
over all strings. Table 1 shows the results. 

Table 1. Accuracy of virtual keyboard in 5 typing times 

Test Result 
1 94.156% 
2 94.805% 
3 92.208% 
4 94.805% 
5 96.104% 

Average 94.416% 

From Table 1, we conclude that our system archives the average accuracy of 
94.416% in touch detection of our virtual keyboard. 

4.3 Estimating the Efficiency of Word Prediction Based on Word Frequency 

In this experiment, the efficiency of word prediction is measured by the percentage of 
keystrokes that users can save when they type texts in the same topic as that of the 
current dictionary. We measure two methods: offline –word frequencies are fixed; 
and online – the word frequencies are updated gradually after each time a user types a 
word. A dictionary containing words and their frequencies is built from 100 articles in 
a single topic (e.g. business, technology, health, etc). 100 other articles in the same 
topic are selected to test the system. Each article in the training set and test set has 
2000-6000 words. The result is illustrated in Figure 3. 
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Fig. 3. Percentage of saved keystrokes when applying two methods (online and offline) of word 
prediction based on word frequencies 

From the experimental results, we conclude that with the same text and topic, when 
the number of typed words is small, the accuracy of two methods do not have much 
difference. When the number of words increases, the efficiency of online method 
becomes higher. On average, users can save 11.61% keystrokes with offline method 
and 22.19% with online method. 

4.4 Estimating the Accuracy of Word Correction Based on Word Frequency 
and Neighborhood Characters 

This experiment aims to measure the accuracy of system to correct typing mistakes of 
users based on the frequencies of words in the same specific topic and the neighbor-
hoods of the typed characters. Let Perror be the probability that a character is mistyped 
to a neighborhood character, we measure the percentage Pfix of corrected mistakes 
after using our method. A dictionary are built from 40 articles in a single topic and 40 
other articles are used as testcases. Each article has 2000-6000 words and the total 
number of characters is 85627. Recall the Sec.3.3, we choose Pt(a, b) = 5% if a ≠ b. 
The result of this experiment is in Figure 4. 

 

Fig. 4. Result of the efficiency of word correction using word frequencies and neighborhood 
characters 

From the experimental result, we conclude that using word frequencies and neigh-
borhood characters to correct typing mistakes can solve 89.02% on average of these 
mistakes when typing in the same topic. This percentage decreases when the initial 
error rate increases. 
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5 Conclusions 

We propose to develop a table top with smart virtual keyboards for multiple users to 
work in a collaborative environment. To eliminate noise in Kinect, we use a median 
filter in both background training and touch event detection. The virtual keyboard 
system can be apply over any relatively flat area with the accuracy of 94.416%. The 
position, layout, and language of each virtual keyboard can be customized easily.  

Besides, the accuracy of our virtual keyboard is enhanced by word predicting func-
tion that learns from both train data and user profile to suggest and correct the typed 
words quickly. This feature helps users to save up to 11-22% of keystrokes and cor-
rect 89.02% mistakes in typing documents in the same topic with the dictionary.  

We are currently develop further features for our tabletop environment and  
improve the system to apply on any types of surfaces (curve, sphere, etc). Besides 
various dictionaries are being built for different topics and categories, even for  
programming languages (e.g. C++, Pascal, C#). 
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