
 

A.A. Ozok and P. Zaphiris (Eds.): OCSC/HCII 2013, LNCS 8029, pp. 395–404, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Supporting Distributed Search in Virtual Worlds 

Hiep Luong, Dipesh Gautam, John Gauch, Susan Gauch, and Jacob Hendricks 

University of Arkansas Fayetteville, AR 72701, U.S.A 
{hluong,dgautam,jgauch,sgauch,jhendric}@uark.edu 

Abstract. As three-dimensional (3D) environments become both more preva-
lent and more fragmented, the need for a data crawler and distributed search 
service will continue to grow. By increasing the visibility of content across vir-
tual world servers in order to better collect and integrate the 3D data, we can al-
so improve the efficiency and accuracy of crawling and searching by avoiding 
both the crawling of unchanged regions and the downloading unmodified ob-
jects that already exist in our collection. This helps to lower bandwidth usage 
during content collection and indexing, and for a fixed amount of bandwidth, 
maximizes the freshness of the collection. This paper presents a new services 
paradigm for virtual world crawler interaction that is co-operative and exploits 
information about 3D objects in the virtual world. By analyzing redundant in-
formation crawled from virtual worlds, our approach decreased the amount of 
data collected by crawlers, kept search engine collections up to date, and pro-
vided an efficient mechanism for collecting and searching information from 
multiple virtual worlds. 

Keywords: Virtual World, Distributed Search, Data Crawling, Bandwidth. 

1 Introduction 

Search engines revolutionized the way we discover information in the World Wide 
Web. It seems natural that search would also vastly improve how we can discover and 
use information hidden in virtual worlds. Hence we have a need for virtual world 
crawlers, programs that automatically collect object data from virtual world servers. 
This object data is often text embedded in texture images, note cards, and chat mes-
sages that is triggered by avatar proximity or action. This means that a virtual world 
crawler must ‘touch’ the object before collecting its information. In other words, 
crawlers are expected to move around and approach objects in a region being ex-
plored. Traveling in a region, a crawler may encounter objects that have already been 
collected by previous crawls. When a crawler collects redundant object data, a craw-
ler needlessly consumes bandwidth. 

Our goal in this work was to explore a more efficient and exhaustive method of 
collecting content from virtual worlds. In this paper, we investigate the potential 
bandwidth savings that a collaborative crawling approach could achieve. In addition, 
this collaborative approach could be used to direct a crawler to a list of unvisited  



396 H. Luong et al. 

 

regions or a region in the virtual world that has a high rate of change. We developed a 
focused crawler allowing us to collect data from Second Life and/or OpenSimulator 
virtual worlds. Once we gathered the data, we explored how frequently content 
changes in different regions and built a model of the rate of change in virtual worlds. 
With this model in mind, we have proposed an architecture that could allow the craw-
ler to collect new or unvisited objects in a virtual world. Our empirical experiments 
using data from Second Life servers have shown that proper management of data 
redundancy based on our proposed architecture can decrease bandwidth traffic. 

In this paper, we begin with a summary of related work on crawling data in virtual 
worlds. Then, we introduce our crawler architecture and present methods to evaluate 
data redundancy and bandwidth consumption savings during the crawling process. 
Next, we report our experimental results for this approach and discuss the impact of 
our work. The final section presents conclusions and discusses our ongoing and future 
work in this area. 

2 Related Work 

This section describes related work on crawling data in virtual world and efforts to 
support crawlers in exploring objects in 3D environment. 

Crawlers for the WWW aim to collect exhaustive, fresh content from the WWW 
while minimizing bandwidth utilization. Cooperative crawlers incorporate methods 
that exploit information about web pages such as creation dates, update dates, file size 
and request frequency for each object of a website [2]. In [3], Chandramouli et al. 
designed a collaborative architecture in which web servers combine information from 
web logs and the file system to keep track of page creation, deletion, and modifica-
tion. This information was available to web crawlers via a web service. They showed 
that, with this collaborative architecture, the crawler could discover new and valuable 
pages with reduced server traffic. 

Interoperation among several virtual world environments remains a major chal-
lenge. The lack of interoperation on several current and possibly future virtual worlds 
is the main constraint on the growth of virtual worlds. Several researchers have been 
working to mitigate this constraint. Bell et al. [1] introduced VWRAP (Virtual World 
Region Agent Protocol) which addresses the problem of interoperability for a family 
of current and future virtual worlds, while [8] proposed an architecture and protocol 
for decentralizing multiuser virtual environments in which multiuser applications can 
exchange user agents and assets. 

Among the current virtual worlds, Second Life1  and OpenSimulator (OpenSim)2 
are the two most active worlds and have the most subscribers. There are two existing 
search services for Second Life and broader virtual worlds. The official Second Life 
search relies on the internal content database and does not extend to emulator worlds. 
The second service appears to rely on a combination of avatar crawlers and indirect 
database access for OpenSimulator worlds. OpenSimulator worlds can be connected 
                                                           
1  http://secondlife.com/ 
2  http://opensimulator.org/wiki/Main_Page 



 Supporting Distributed Search in Virtual Worlds 397 

 

to by any Second Life client, but can also be hosted separately and combined into ad 
hoc grids to form separate virtual worlds.  

There has been some work on exploring virtual worlds. Researchers have created a 
framework to collect avatar-related data using Linden Scripting Language (LSL) [10]. 
In [8], a crawler is used to collect spatial data of a user in Second Life in order to 
reveal relationships between behavior of real world humans and avatars in the virtual 
world. 

Crawling data in virtual worlds is an essential task for the development of a distri-
buted search service for 3D environments. Eno et al. ([4], [5] and [7]) demonstrated 
that virtual worlds could be effectively crawled with an autonomous agent that be-
haves like a normal human. They emulated a client protocol with an intelligent crawl-
ing agent to mimic normal user behavior. Their crawler   navigates a region through 
an expanding spiral survey path[4]. In other work [6], Eno et al. examined landmarks 
and the picks to analyze the link between the regions. Their results showed that re-
gions in the virtual world are linked similarly in pages of the flat web. Although they 
primarily studied regions within Second Life, they detected evidence of existence of a 
denser link structure on virtual world sites hosted in OpenSimulator. 

In other work, Varvello et al. [9] analyzed Second Life’s scalability, popularity, 
staleness of objects and quality of the user experience based on counting the objects 
in various regions at different points of time. However, staleness may not be accurate-
ly assessed merely by counting the number of objects. In our work, not only did we 
take the number of edited objects at different points of time into account, but we also 
compared the identities of the objects to get a count of unique objects. In this paper 
we focus on calculating the bandwidth required when regions are repeatedly crawled 
completely, including the collection of stale objects, and contrast that with the band-
width needed by a collaborative architecture modeled on [3], a web service that pub-
lishes information about the virtual world’s updates to the crawler. 

3 Our Approach 

Our goal is to estimate the amount of redundant data collected by a traditional crawler 
that repeatedly revisits regions and downloads all of the objects it can access. To do 
this, we developed a crawler that visited sample regions and analyzed the data col-
lected, week by week, to identify any changes within that region. We then estimate 
the amount of data redundancy in this collection and describe a new architecture that 
would avoid the collection of redundant data, reducing bandwidth and the time neces-
sary to update a search service’s database. This section describes our virtual world 
crawler and the methods we used to identify redundant data as well as potential 
bandwidth consumption savings. 

3.1 Overview 

This section describes an overview of our proposed architecture that would support 
search across distributed virtual worlds by incorporating a collaborative crawler.  



398 H. Luong et al. 

 

We have developed a search engine collection system that includes a knowledge 
base and indexing programs to store the collected data in addition to crawler software 
that gathers the content collection. The content collection is done by a set of virtual 
world client emulators interacting with the virtual world servers such as Second Life, 
OpenSim, etc. As the content is discovered, it is added to both a metadata database 
and an inverted index structure for query retrieval.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Proposed System Architecture Overview 

Unlike the web service paradigm proposed by [3] for flat web, we propose the de-
velopment of a web service for each virtual world server such that each server shares 
object metadata in XML format with a collaborative crawler (Fig. 1.). The crawler 
then exploits this metadata information to identify the objects that have been added or 
modified since its last visit and focus on collecting only those objects. As another 
benefit, if the metadata also includes information about deleted objects, the crawler 
can remove those from the search engine’s content collection, increasing the collec-
tion’s accuracy. The crawler can also save metadata about the rate of change per re-
gion so that future crawls can target fast-changing regions more frequently. 

As a first step to this, we developed a traditional crawler that visits regions and 
downloads all of the objects it can find. By repeatedly visiting sample regions, we 
develop a model of the rate of change of objects in different regions (additions, mod-
ifications, and deletions) so that we can estimate the potential benefits of our pro-
posed architecture. 

3.2 Collaborative Crawling in Virtual Worlds 

We have developed collaborative crawler agents designed to collect user-generated 
content in Second Life and related virtual worlds. The crawling system architecture 
contains different components that are dedicated to crawling, coordination, and sto-
rage tasks. Specifically, the server manager starts the crawling tasks by assigning 
specific regions to crawl for individual agents. Then, it keeps track of completed and 

VW 
 Server 

VW 
 Server 

VW 
 Server 

Search 

Service 

Content  

Collection 

Web 

Service

Crawler 

Metadata 

Crawler 
Web 

Service

Web 

Service



 Supporting Distributed Search in Virtual Worlds 399 

 

queued regions as well as the status of the crawler in each region. The coordination 
layer consists of a server management program that coordinates individual crawlers 
and includes components for duplicate detection and queue management for the entire 
virtual world. Once the data is collected from each region, it is saved by the storage 
layer that includes both database storage and searchable index storage for the archi-
tecture [4]. 

When a crawler instance is assigned to explore data from a specific region, it will 
attempt to teleport to that region. When the crawler agent teleports successfully to a 
region, it begins storing object positions as they are automatically sent from the serv-
er. Scripts associated with objects are triggered when the crawler agent begins moving 
around the region to come into close proximity or touch the object. 

Though more objects were discovered when the crawler agent moves near the ob-
ject, the number of objects collected did not improved significantly with navigating 
the region when compared to the number of objects collected while standing at the 
landing area of the region. So, instead of navigating the region of interest, we sent the 
crawler to the landing area and let it to rotate around. For our preliminary experiment, 
we have selected 100 different regions from Second Life virtual world and let our 
crawler harvest data from these regions over several weeks. The data crawled were 
stored in the database. 

3.3 Data Redundancy 

The main issue for any information crawler is avoiding the collect of data that has 
already been downloaded. This creates unnecessary Internet traffic and wastes search 
engine resources during page collection and indexing. 

In the virtual worlds, given the increased time necessary to physically navigate the 
3D environment, it is particularly important to avoid collecting redundant data and to 
prioritize collecting the newly added objects or modified objects. We calculate the 
data redundancy collected by traditional crawling techniques by counting the common 
objects between two crawler collections, divided by the total number of unique ob-
jects collected by either crawl. ܴܦ ൌ ܥܶܥܷ  כ 100 

where UC is the number of unchanged objects which are crawled in a region, and TC 
is total number of objects crawled from that region. The average data redundancy is 
calculated using the average UC and TC values over all regions that are crawled. 

3.4 Bandwidth Consumption Saving 

In this section, we present a measure that estimates the potential savings in bandwidth 
consumed by the crawler using the proposed architecture. The bandwidth consump-
tion savings metric is defined as follows: 



400 H. Luong et al. 

 

ܵܤ ൌ ܥܶ  െ ܥܶܥܷ כ 100 

with UC and TC are defined in the above section. This bandwidth consumption sav-
ing value represents the percentage of savings that a crawler can achieve by avoiding 
the collection of redundant data.  

4 Experiments 

Our crawler has the task of interacting with the virtual world environment to collect 
content. It has been built using the OpenMV library available from Open Metaverse. 
This C# library provides the Second Life client emulation functionality necessary to 
connect to a Second Life server, move around, and interact with other objects or ava-
tars. Multiple instances of the crawler connect to the virtual world at one time, coor-
dinating their activities through the Server Controller. We have designed a test scena-
rio that would determine the effectiveness of our crawler and help us characterize 
different classes of objects that are found in Second Life regions.  

4.1 Data Collection 

Our first task was to select regions to crawl. Initially, a list of regions is obtained by 
configuring our crawler to teleport to random Second Life regions from a seed region. 
From 300 regions selected from Second Life servers, we calculated the normalized 
number of objects crawled and the normalized time rate of collecting objects from 
each region (Fig. 2). The smallest regions took only a few minutes to be crawled 
while the largest regions required several hours to visit. Most of the regions among 
the 300 took from 6 to 12 minutes to crawl. In order to experiment with average sized 
regions, we excluded 100 regions including smallest and largest regions, and random-
ly selected half of the remaining 200 regions to obtain our final set of 100 regions. 

In order to see how effectively the crawler captures objects in the virtual world, we 
launched the crawler with the same input parameters four times in four consecutive 
weeks. We started the crawler in a fixed time of the week (Thursday at 9:00AM) and 
saved data crawled for each week. Among 100 experimental regions, there were 3 
regions from which the crawler was unable to collect objects; therefore we report our 
results over 97 regions. Table 1 shows a summary of data crawled over four weeks. 
For each snapshot, we report the total number of objects crawled. We then compare 
object records from consecutive crawls and calculate the number of objects added, 
deleted, modified and unchanged during each snapshot. Notice that the number of 
objects added and the number of objects deleted are relatively consistent from snap-
shot to snapshot, and are roughly 33% as large as the total number of objects crawled. 
The number of objects with modified attributes is also consistent from snapshot to 
snapshot, but these values are less than 2% of the total number of objects. Finally, the 
number of unchanged objects is roughly 66% of the number of objects crawled. 



 Supporting Distributed Search in Virtual Worlds 401 

 

 

Fig. 2. Selection Second Life regions for experiments 

Table 1. Data collection from 4 weeks 

 #Objects 
crawled 

#Objects 
added 

#Objects 
deleted 

#Objects 
modified

#Objects 
unchanged 

Week 1 snapshot 490,850       0 0 0 0 
Week 2 snapshot 486,294 157,492 162,048 5,627 323,175 
Week 3 snapshot 481,313 154,860 159,841 8,074 318,379 
Week 4 snapshot 449,729 136,653 168,237 8,293 304,783 

4.2 Evaluation 

Data Redundancy. Our goal with this experiment was to get a sense of how much 
redundant information is collected during each region crawl. Fig. 3 represents the data 
redundancy reported over four weeks. The DR_W2 curve shows the data redundancy 
between weeks 1 and 2. Similarly, the DR_W3 and DR_W4 curves show the redun-
dancy between weeks 2 and 3, and between weeks 3 and 4. In all three cases, the  
redundancy values for each region have been sorted in decreasing order. Fig. 4 com-
bines the data redundancy over four weeks, plotting the average data redundancy for 
each region crawled over the 4-week experiment. Notice that the median value for 
data redundancy is roughly 66%, which is consistent with the data in Table 1. 

For each crawl, we also calculated the number of new objects that are created, the 
number of objects deleted, and the number of objects that are modified. In Table 2 we 
illustrate how the total number of objects changed is distributed in each week. 
TC_W2 is the total number of objects changed between week 1 and 2 for selected 
regions. Similarly, TC_W3 and TC_W4 are the total number of objects changed be-
tween week 2 and 3, and between week 3 and 4 respectively. We present the main 
percentile values at the 25th, 50th and 75th positions in order to see how the number 
of objects varies over four weeks. 

Bandwidth Savings. A main advantage of our approach is its ability to analyze the 
data redundancy and decrease the amount of bandwidth used by crawlers. Fig. 5 
represents the average bandwidth consumption saving for the whole data collection 
over four weeks. 

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
Regions

normalized 
number of 
objects

normalized 
crawling 
time rate 
per region



402 H. Luong et al. 

 

 
Fig. 3. Data Redundancy over 4 weeks 

 
Fig. 4. Average Data Redundancy 

 

Fig. 5. Average Bandwidth Saving 

Table 2. Percentile of number of objects changed over 4 weeks 

Percentile TC_W2 TC_W3 TC_W4 

25th 4,138 4,119 4,072 
50th 1,815 2,012 2,172 
75th 1,324 1,213 1,287 

5 Discussion 

After investigating the data collected from our four weekly crawls of 100 regions of 
Second Life we have analyzed in detail the number of objects added, deleted and 

0% 

100% 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 
Regions 

Data Redundancy over 4 weeks 

Data Redundancy_W2 Data Redundancy_W3 
Data Redundancy_W4 

0%

50%

100%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Regions

Average Data Redundancy

Average_Data Redundancy

 

0% 

100% 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 
Regions 

Average Bandwidth Saving 

Average BD Savings 



 Supporting Distributed Search in Virtual Worlds 403 

 

modified in each region. Using this information, we calculated the bandwidth savings 
that would be provided by our proposed architecture. Table 3 shows a summary of the 
25th, 50th, and 75th percentile values of bandwidth saving over four weeks. These 
values are very consistent from week to week.  The bandwidth savings for the 25th 
percentile region averaged 48.50%, which indicates that roughly ½ of the objects in 
these regions remain unchanged from week to week.  The 50th percentile region had 
an average bandwidth saving of 31.70%, which is a significant drop from the 25th 
percentile region.  Finally, the 75th percentile region only had a bandwidth saving of 
16.37%, which is only 1/3 of the 25th percentile value. 

Table 3. Percentile of bandwidth savings over 4 weeks 

Percentile Saving Week 2 Saving Week 3 Saving Week 4 Average Saving 

25th 45.86% 46.31% 49.70% 48.50% 
50th 29.61% 30.14% 31.45% 31.70% 
75th 15.16% 14.89% 16.50% 16.37% 

 
According to our investigation, the crawler seemed to collect redundant data over 

the weeks because many of the objects in a virtual world, objects like chairs, trees, 
towers and buildings, are static. On the other hand, the crawler failed to collect certain 
data, particularly data pertaining to dynamic objects. Dynamic content such as sand 
boxes, avatar outfits, billboards and some robots may appear at a place and time only 
to disappear at another time. Similarly, when the crawler moves, some objects are 
missed because they are far away from the crawler avatar, not in the range of visibili-
ty. Of course another reason that the crawler failed to collect data about some object 
is that the object has actually been removed from the region. 

6 Conclusions 

The goal of our research was to implement and validate an intelligent crawler that 
collects data from virtual worlds. We have demonstrated that crawler performance 
can be significantly enhanced in terms of bandwidth consumption savings. Our ap-
proach to reduce bandwidth usage was to avoid redundant object collection. 

We have shown that there is typically a considerable amount of data redundancy in 
crawling virtual worlds. This can lead to unnecessary bandwidth usage if this redun-
dant data is collected by a crawler. Our approach was empirically tested using data we 
collected from Second Life servers that contain different kinds of objects in virtual 
worlds. The experimental results showed that our approach’s ability to analyze the 
data redundancy in crawling potentially helps to reduce resource consumption of the 
collection process by downloading only unvisited and newly added content.  

Our future work includes research into appropriately weighting objects and using 
interactive content that could guide the crawler to collect more useful object data, 
while avoiding previously collected objects. We also plan to extend the search func-
tion with flexible input parameters to create search service more appropriate for vir-
tual world environments. 



404 H. Luong et al. 

 

Acknowledgements. This research is supported by the NSF grant number 1050801 - 
III: EAGER: Mapping Three-Dimensional Virtual Worlds. 

References 

1. Bell, J., Dinova, M., Levine, D.: VWRAP for virtual worlds interoperability [Standards]. 
IEEE Internet Computing 14(1), 73–77 (2010) 

2. Buzzi, M.: Cooperative Crawling. In: Proceedings of First Latin American Web Congress 
(LA-WEB 2003), pp. 209–211. IEEE Computer Society, Washington, DC (2003) 

3. Chandramouli, A.: A co-operative web services paradigm for supporting crawlers. Ph.D. 
dissertation, Univ. of Kansa, Lawrence, KS, USA (2007) 

4. Eno, J.: An Intelligent Crawler For A Virtual World. Ph.D. dissertation, Univ. of Arkansas, 
Fayetteville, AR, USA (2010) 

5. Eno, J., Gauch, S., Thompson, C.: Intelligent Crawling in Virtual Worlds. In: Proceedings 
of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and In-
telligent Agent Technology (WI-IAT 2009), vol. 3, pp. 555–558. IEEE Computer Society, 
Washington, DC (2009) 

6. Eno, J., Gauch, S., Thompson, C.: Linking Behavior in a Virtual World Environment. In: 
Proceedings of the 15th International Conference on Web 3D Technology (Web3D 2010), 
pp. 157–164. ACM, New York (2010) 

7. Eno, J., Gauch, S., Thompson, C.: Searching for the Metaverse. In: Spencer, S.N. (ed.) 
Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology 
(VRST 2009), pp. 223–226. ACM, New York (2009) 

8. La, C.A., Michiardi, P.: Characterizing User Mobility in Second Life. In: Proceedings of 
the First Workshop on Online Social Networks (WOSN 2008), pp. 79–84. ACM, New 
York (2008) 

9. Varvello, M., Picconi, F., Diot, C., Biersack, E.: Is there life in Second Life? In: Proceed-
ings of the 2008 ACM CoNEXT Conference (CoNEXT 2008), Article 1, p. 12. ACM, 
New York (2008) 

10. Yee, N., Bailenson, J.N.: A method for longitudinal behavioral data collection in second 
life. Presence: Teleoper. Virtual Environ. 17(6), 594–596 (2008) 


	Supporting Distributed Search in Virtual Worlds
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Overview
	3.2 Collaborative Crawling in Virtual Worlds
	3.3 Data Redundancy
	3.4 Bandwidth Consumption Saving

	Experiments
	4.1 Data Collection
	4.2 Evaluation

	5 Discussion
	6 Conclusions
	References




