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Abstract. Building a general-purpose, real-time active vision system
completely based on biological models is a great challenge. We apply a
number of biologically plausible algorithms which address different as-
pects of vision, such as edge and keypoint detection, feature extraction,
optical flow and disparity, shape detection, object recognition and scene
modelling into a complete system. We present some of the experiments
from our ongoing work, where our system leverages a combination of
algorithms to solve complex tasks.

1 Introduction

The problem of understanding complex visual scenes has been tackled from two
main directions: computational approaches from computer vision, and the study
and imitation of biological vision systems. Scene understanding systems attempt
to provide the best explanation of the observed scene in terms of a semantic,
meaningful description of low-level image data, typically by describing scene
objects and relations between them. They combine different vision algorithms
and use top-down and bottom-up processing in order to solve what is known to
be an NP-complete problem [1]].

It is known that primate brains solve this problem with apparent ease, so the
study of biological vision has played an important role since the beginnings of
computer vision and the insights from neurological observations have resulted
in many biologically inspired algorithms addressing sub-problems of scene un-
derstanding, primarily in the fields of object recognition and robotics. However,
to our knowledge there is no vision system combining many different aspects
of vision into an integrated and comprehensive biologically plausible system for
active real-time vision. In this paper, we present our work towards such a sys-
tem and provide examples of our system solving a number of different vision
problems. We concentrate on the system architecture and algorithms working in
combination. More detailed descriptions of individual methods can be found in
our previous publications.

2 Related Work

There is a wealth of scene understanding systems roughly divided into four major
streams: grammars [2-4], blackboard architectures |5, |6], probabilistic models
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[719], and artificial intelligence methods based on ontologies and description
logics |10H12]. Some systems perform active vision tasks by controlling cameras
[13].

Many biologically-inspired algorithms for solving sub-tasks of the complete
vision problem have been proposed, particularly for feature extraction and early
vision |14, [15], attention [16], and object recognition, with hierarchies based on
Gabor responses [17], convolutional nets |18], and a number of connectionist ar-
chitectures [19-21]. Recently, complete plausible models of the ventral (object
recognition) pathway have appeared, based on the HMAX model [22]. Mod-
ern robotics has also embraced biological algorithms, with biologically-inspired
SLAM algorithms [23, 124], obstacle avoidance, and complete robotic architec-
tures [25]. Attempts to build a comprehensive biologically plausible system have
focussed on dynamic field-based models of different aspects of vision [26] and
cognitive robots [25]. A good comparative summary of computer vision and bi-
ological vision is given in [27].

3 System Overview

Figure [ gives an overview of our system, which is a simplified model of the
mammalian brain (for an excellent overview of different visual processing path-
ways we refer to [28]). All modules share information in the form of maps of
neural activations (population codes) which excite or inhibit neuron populations
within each module. In the rest of this section, we briefly describe individual
modules of our system. For more detailed information on individual algorithms,
we refer to our previous publications.

3.1 Early Vision

Early vision refers to cortical areas V1 and V2, which perform low-level process-
ing and provide input for both the ventral and dorsal pathways. We do not yet
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Fig. 1. Overview of our biologically-inspired active vision system. The top path mod-
els the dorsal pathway (localisation, motion and attention), bottom path the ventral
pathway (recognition). Grey text indicates corresponding cortical areas.
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Fig. 2. Filter kernels in V1. From left to right: even simple cell, odd simple cell, single-
stopped cell, double-stopped cell, tangential inhibition cell, radial inhibition cell.
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model earlier processing in the retina and the lateral geniculate nucleus, notably
the non-standard retinal ganglion cells.

For our V1 model, we use a multi-scale adaptation of Heitger’s work [29]. Sim-
ple cells are modelled as complex Gabor filters, with a cosine-based real part,
and a sine-based imaginary part. Complex cells are modelled by the magnitude
of the simple cell responses, while the phase contains important information for
disparity processing. We apply simple and complex cells at multiple scales (dif-
ferent Gabor wavelengths) and eight orientations. Complex cells are the basis
for line/edge and keypoint detection. Line and edge detection is performed at
locations where the complex cell response is maximum along the filter orienta-
tion. If at such a location one of the two components of the simple cell filter
contains a zero crossing and the other one is maximum or minimum, an event
is detected. There are four possible combinations of zero crossing and extrema,
corresponding to four types of events: positive line, negative line, positive edge
and negative edge. For each detected event, we keep the event type and the
orientation of the strongest complex cell response.

For keypoint extraction, we use models of end-stopped cells. Single-stopped
and double-stopped cells are modelled as a mixture of Gaussians, which respond
to line/edge terminations and corner/blob-like features. We apply two types
of inhibition to suppress responses along lines and edges. An overview of the
cell models is given in Fig. Bl and example results in Fig. Bl For a detailed
mathematical model, we refer to [29]. At V2 level, we extract curve segments
based on Gestalt principles of good continuity, extract symmetries and group
low-level events into simple descriptors.

We have three implementations of our V1 model. The CPU version is com-
petitive with computational interest point detectors like SIFT and SURF, while
the two GPU versions (based on CUDA and OpenCL) easily run in real time.

3.2 Segmentation and Attention

The dorsal “where” pathway deals with attention, localisation, and tracking of
scene objects. We have three modules implementing various functions of the dor-
sal pathway: shape-based image pre-segmentation, stereo disparity and optical
flow. These three modules interact in order to produce a rough layout of the scene
and guide the attention of the slower ventral pathway for object recognition.
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Fig. 3. Results of our V1 model. From left to right: input image, complex cell response
(one orientation), detected edges, and detected keypoints, all at one scale.
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Fig. 4. Disparity Energy Model. Left: an image from the Middlebury dataset. Middle:
depth image (ground truth). Right: Depth map produced by our algorithm.

Symmetry and Shape Modelling. We use two methods for detecting salient
shapes in images. We model a set of symmetry cells which are active where line
and edge segments with compatible orientations are detected at equal distances
from the cells. It is known from biology that there are strong cell activations
around symmetry axes. We also model a set of salient line and edge segment cells
at V2 and V3. Shape grouping cells tuned selective to a set of common geometric
shapes are activated when specific segments and symmetry axes are detected at
equal distances. Strong activations of populations of these cells correspond to
detected shapes. Gestalt-like grouping of salient boundaries is used as an aid for
segmentation, attention, and local gist.

Disparity. We use a combination of two main biological disparity estimation
algorithms. Some disparity information is available as left-right phase difference
of simple cell responses in V1. Early phase-based disparity models gave poor
results around discontinuities because the phase of Gabor responses is different
for different types of lines and edges @], but phase can provide exact disparities
at line and edge locations as long as the line/edge type is considered during
phase calculation. We combine this early phase-based wireframe model with a
Disparity Energy Model which works well with large regions. Our DEM consists
of about 8000 binocular cells trained using random dot stereograms (see Fig. ).

Optical Flow. Tracking corner-like features has a long history in computer
vision ﬂ3_1|] Our method builds on end-stopped cell responses from V1 @] A
circular descriptor is calculated for each keypoint by examining simple cell re-
sponses around the keypoint and classifying the keypoint as a K, L, T or +
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Fig. 5. Recognition performance on Caltech 101 as a function of classification time.
Good performance is obtained even at 50 frames per second.

junction. Each keypoint activates the cells of the same class in its neighbour-
hood so they fire if the same type of keypoint is detected in the following frame.
A scale-space tree of keypoints is constructed to group keypoints into objects
moving in the same direction, providing rough object segmentation and tracking.

3.3 Recognition

The ventral “what” pathway is in charge of recognition and categorisation. It
acts both for extracting the global gist of a scene (scene categorisation) and for
accurate recognition of individual objects once a potential object position has
been focused on. Complex hierarchical features are extracted but much of the
localisation is lost in higher areas like the inferotemporal cortex.

The most influential computational model of the ventral pathway is HMAX
[22] in which simple and complex cells are alternated several times, leading to
the extraction of stable features. We follow a slightly different approach. We
extract keypoints at many scales and extract descriptors around these regions.
We then use a Naive Bayes Nearest Neighbour classification algorithm [33] for
approximating a MAP classifier. The NBNN classifier only uses a similarity mea-
sure, summation and thresholding, which can all be performed by neurons. Our
previous work has shown that by using our cortical keypoints instead of a dense
descriptor grid, we can significantly cut down on the amount of needed data
while maintaining state-of-the-art categorisation performance (see Fig. (). At
the moment, our algorithm uses the SIFT descriptor, which is not completely
biologically plausible, but we are currently working on using HMAX-based fea-
tures constructed from our V1 outputs.

3.4 Short-Term Visual Memory

Our visual system is capable of maintaining a vivid visual description of the
scene across saccades and head movements (or pan and tilt action of a stereo
camera). This ego-centric representation is somewhere between low-level features
and a full semantic scene model (which is maintained in world coordinates).
While image representation in V1 is completely retinotopic, there is evidence for
a representation which is stable across saccades in higher cortical regions [34].
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Fig. 6. Panoramic image stitched from 30 camera views. Our V1 keypoints were used
together with SIFT descriptors.

Since saccades and movements are inherent in an active vision system, we build
a stable representation of V1/V2 responses by stitching together images from
different camera views into a panoramic whole (Fig. []). Since our V1 features
are based on wavelets, we can reconstruct the original image with reasonable
accuracy from keypoints, lines and edges, so the stitched representation acts as
short-term visual memory. Currently, we use standard computational stitching
methods with our biological keypoints, but we are working on a fully biological
algorithm. We use this intermediate ego-centric memory for robot localisation.
Since we are using a pan and tilt unit and not an omni-directional camera (in
order to more closely approximate primate vision), locating landmarks requires
camera movement and a stable representation is needed to self-localise and esti-
mate a mapping between the current view and the 3D scene model.

3.5 Long-Term Memory and High-Level Reasoning

Our 3D world model is object-based and represented in a 3D coordinate sys-
tem. For each detected object, we store the position (determined by disparity
and triangulation from the short-term visual memory), size, class, shape, pri-
mary colours and possibly other features. Each object is updated as the scene
changes. In the near future, we will extend this simple model with a biologically
motivated dynamical-field represenation ﬂﬁ] For autonomous robots, we also
use a dynamical 2D spatial map of obstacles which is actively updated (using
reinforcement learning) and fades with time (see Fig. [@).

High-level reasoning is currently limited to a simple path-finding algorithm in
the 3D scene used for our visual SLAM experiments, but we are actively working
on sequence learning and task planning. Our 3D model could theoretically be
combined with any computational reasoning system such as [|ﬁ|] to infer new
information, but reasoning and inference in primates is a field of active research
with many unknowns.

3.6 Additional Modules

Non-visual cues can play an important role in active vision, so our system cur-
rently also includes two additional modules. The first one is a biological model
for binaural sound source localisation, which can detect the direction from which
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a sound is coming and make a rough guess at the object class. The second mod-
ule is a dynamical model of the mammalian vestibular system which models
head direction cells in the hippocampus in order to estimate the heading direc-
tion based on gyroscope readings and can estimate travelled distance based on
accelerometer readings.

4 Experiments

Benchmarking generic vision systems is known to be difficult due to a large
number of possible scenarios and the work-in-progress nature of most systems.
Thus, instead of detailed benchmarks of individual modules, we show our system
being used in a number of different scenarios, illustrating the versatility of the
system and the ability to leverage different visual processes. The focus is on
complex tasks which must be solved by a combination of different modules.

4.1 Real-Time Pose and Gesture Recognition

Figure [ shows our system detecting and recognising hand gestures in real time.
The process begins with the extraction of keypoints, lines and edges (early vi-
sion), followed by biologically-inspired optical flow for grouping moving objects
together (dorsal stream). Grouped objects are then processed in turn by our ob-
ject recognition module (ventral stream). The system can successfully distinguish
between 5 hand gestures and 5 head gestures at several frames per second.

4.2 Disparity-Based Scene Segmentation

Segmentation of objects in cluttered and textured environments is very diffi-
cult, and object detection using sliding windows is expensive. We can apply our
system for real-time object recognition in a common robotic table-top scenario
(Fig. B). We start by extracting V1 responses from a complete image (early vi-
sion), followed by depth estimation using the Disparity Energy Model (dorsal
stream). Disparity produces a rough segmentation corresponding to objects. We
then zoom onto each object in turn (foveation), extract keypoints again using our
V1 model (early vision), and then perform object recognition using our model
(ventral stream). Objects were learned from several views beforehand, but online
learning is easy with our approach. The 3D scene model is updated with the size,
location, and classes of the detected objects after each frame. Apart from the
Disparity Energy Model which is currently being optimised, the system runs in
real time.

Fig. 7. Optical flow for object detection
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Fig. 9. Robot navigation and SLAM. Left: robot’s environment. Right: dynamic world
map. Grey areas are detected obstacles which fade with time. Coloured rectangles are
detected landmarks overlaid on top of the obstacle map. The yellow line shows the
robot’s path.

4.3 Vision-Based SLAM

We have updated our robot SLAM algorithm to make full use of the proposed
system. The robot can navigate in a simplified environment and look for known
objects and use them as landmarks. The process uses coarse-scale V1 keypoints
(early vision) to construct a complexity map and guide attention to promising
regions (dorsal stream). These regions are then processed sequentially by the
object recognition system (ventral stream). The floor is not strongly textured,
so areas with many keypoints are assumed to be objects or obstacles. Relative
sizes and positions of the recognised landmarks are used to self-localise in world
coordinates. A dynamical 2D obstacle map is updated in real time, while land-
marks and their coordinates are kept in a separate, object-oriented represenation.
Figure [ illustrates the process.

5 Discussion

We have presented a biologically motivated and plausible system for active vision
which combines state-of-the-art biological models into a coherent whole. We have
tried to maintain a biological representation as much as possible, with interfaces
between modules modelled as maps of neural activations.

Despite years of research on complex computer vision systems, combining
different algorithms remains a difficult and unresolved challenge. In the field
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of biological vision research, this problem is even more pronounced, with a lot
of work going into understanding specific areas of the visual cortex, but with
little research into combining existing algorithms into a complete vision system.
We believe that such work is important, both for understanding the complex
interplay between vision subsystems, and for creating practical vision systems.

The system presented in this paper is work in progress. We have evaluated
our system in several scenarios and shown that it is capable of solving complex
problems which require a combination of visual processes, but there are still
many challenges on the road to a complete biological active vision system. Our
current work focuses on making all parts of the system biologically plausible and
the migration to a larger robot platform which will allow for more challenging
experiments in less constrained environments.
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1CT-2009.2.1-270247 NeuralDynamics and the Portuguese FCT under the grant
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