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Abstract. In order for autonomous robots to succeed as useful teammates for 
humans, it is necessary to examine the lens through which human users view, 
understand, and predict robotic behavior and abilities. To further study this, we 
conducted an experiment in which participants viewed video segments of a ro-
bot in a task-oriented environment, and were asked to explain what the robot 
was doing, and would likely do next. Results showed that participants’ per-
ceived knowledge of the robot increased with additional exposures over time; 
however participant responses to open-ended questions about the robot’s beha-
vior and functions remained divergent over multiple scenarios. A discussion of 
the implications of apparent differences in human interpretation and prediction 
of robotic behavior and functionality is presented. 
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1 Introduction 

Advances in technology will enable robotic systems with greater intelligence and 
autonomy. In order for robots and other intelligent systems to succeed as useful 
teammates for humans, it is necessary to examine the impact of increased decision 
making capability of robots on individuals that interact with these systems [1]. Hu-
mans currently interact with robots in civilian and military contexts.  However, in the 
current settings, the human largely decides the actions that are to be taken by the ro-
bot and initiates their execution via teleoperation [2]. In contrast, when robots are able 
to select and execute actions on their own, the burden falls upon the human to under-
stand and interpret the behaviors and intention of robots. Human understanding of 
robots is, and will continue to be, further obscured by issues of robot reliability and 
human perceptions of trust, respectively [3]. In this document, we illustrate the influ-
ence of human understanding of robots within a Human-Robot Interaction (HRI) sce-
nario, using results from an exploratory laboratory study in which novice users were 
tasked with observing, interpreting, and predicting robotic behavior. 

While technology aspires to endow robots with mental models, there will also be 
an increased need for humans to hold an accurate mental model of the robot’s mental 
model (i.e., understanding of the information/means by which robotic systems arrive 
at decisions and carry out actions). Mental models are the knowledge structures by 
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which humans organize information, and provide the mechanisms by which humans 
can explain system behavior and intention, as well as anticipate future behavior [4]. 
Variation in the scope and level of detail of mental models occur at the individual 
level, and the usefulness of a mental model depends on the manner in which it is ap-
plied to the situation at-hand. [5]. Therefore, mental models drive HRI [6]. The prob-
lem is that the level of sophistication of robot intelligence will likely be irrelevant if a 
human cannot understand how, what, or why the robot is acting in a certain manner.  

Correct, accurate mental models of robots can be actively cultivated, for example, 
through design and training [7]. However, training is just one way to support accurate 
user mental models of robots, and it is not a panacea for haphazard design. Instead,  
multiple stakeholders must participate in the development of a user’s mental model 
[8]. Whether intentional or unplanned, engineers, for example, specifically influence a 
user’s mental model of a robot through their choices regarding physical characteristics 
[9], communication aspects [10], and robotic movement [11]. However, individuals 
perceive and react to robots in unique ways [12].  Additionally, humans have a pro-
pensity to apply social stereotypes to technological systems [13]. Therefore, the same 
robot’s decision and action may be interpreted differently across users. 

Similarly, mental models are naturally evolving systems that develop and change 
with experience.  Through interaction, an individual will continuously modify his or 
her mental model in order to achieve and effective outcome [8]. This will be of par-
ticular importance for cultivating accurate mental models of robots for novice users, 
without necessitating extensive training.  Since novice mental models of robots tend 
to be inaccurate and overly presumptuous [10], opportunities for interaction and ac-
climation will be important for fostering mental models that are true and correct re-
presentations of system capabilities and limitations.  

The purpose of the investigation reported in this paper was to gain a better under-
standing of the scope and type of knowledge structures that humans, who had limited 
HRI experience, hold of robotic teammates; and to study the degree to which these 
knowledge structures can change with exposure to a robotic teammate. In addition, 
we examined differences in human interpretation of robotic behavior and intention. 
The results of this study highlight important considerations for the development of 
decision making capabilities of robotic teammates, especially in terms of designing 
for ease of human understanding of robotic behavior.  

2 Method 

This study was part of a larger data collection effort that included an investigation of 
mental model priming, previously held attitudes towards robots, and different  
techniques through which mental models might be assessed. For this paper, we specif-
ically sought to examine the following hypothesis: 

─ Hypothesis: Over time, as participants are exposed and acclimated to their robotic 
partner, they report higher scores on a self-reported perceived mental model meas-
ure that pertains to knowledge of their team (self and robot), their task, their 
equipment, and the interaction between members of their team.  
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2.1 Measures 

Mental Model Survey. This survey contained a series of questions regarding the 
degree to which participants had perceived knowledge of the task, team, team interac-
tion, and equipment that was shared between the participant and a robotic entity. 
These questions were generated to be representative of the four types of mental mod-
els shared in teams as proposed by Mathieu and colleagues [14]. As such, the Mental 
Model Survey contained four subscales which included perceived knowledge of task, 
perceived knowledge of team, perceived knowledge of team interaction, and per-
ceived knowledge of equipment. Participants utilized a 7-point Likert-type scale to 
indicate their responses to each item. Higher scores represented higher self-
assessments of perceived knowledge of the item in question. Example items include, 
“The robot has knowledge of likely outcomes of this task” and “I understand this 
technology.”  

Free-Response Items. Participants were asked to respond to several free-response 
items intended to gain a better understanding of differences in mental model interpre-
tation of a simulated robotic teammate. Free-response questions were intended to 
probe participant mental models for their ability to explain system behavior, describe 
system functioning, and predict system actions. Example free-response items included 
“How would the robot signal to the Soldier that it has spotted something?,” “If the 
robot did find something, what action(s) would it take next?,” “What was the meaning 
of the gesture made by the robot at the end of the video?,” “How would the robot 
signal that it has spotted something?,” and “What would the robot do next?” 

2.2 Participants 

Fifty-one undergraduate students from a large southeastern university participated in 
this study. Participants’ ages ranged from 18-31 years (M = 20.09 years, SD = 2.88). 
Participants were recruited through the university’s research participation system and 
were offered credit in return for their participation.  

2.3 Simulation Environment 

Participants observed a series of video clips captured from the RIVET (Robotic Inter-
active Visualization & Exploitation Technology) computerized simulation, developed 
by General Dynamics Robotic Systems (GDRS). RIVET was built upon the Torque 
game engine, features a world editor, and contains a number of pre-configured envi-
ronments, character models, and vehicles. The RIVET software allows multiple play-
ers to enter into a virtual environment and operate a variety of simulated unmanned 
ground and aquatic platforms. Additionally, the simulation environment can be net-
worked with hardware in the loop (HITL) to evaluate sensor algorithms and software 
code.  

Videos were created using a two-player, man-behind-the-curtain configuration. It 
was important to capture video clips from the perspective of an observer, rather than 
from the viewpoint of the robot. The player-observer viewpoint was intended to  
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simulate that of a Soldier working with an autonomous robot in an urban environ-
ment. Another player controlled the actions of a robot (a Talon-type robot, in this 
investigation) who executed a series of navigation and inspection and reconnaissance 
tasks, either alone or in the presence of civilians. Video was captured using a COTS 
product, Fraps, which captures video from a specified computer desktop window. The 
average length of each video clip was one minute.  

2.4 Procedure 

After reviewing informed consent documents, participants completed a demographic 
questionnaire that contained general biographical information including familiarity 
with and attitudes towards computers, robots, and video games. However, these 
measures were a part of another study component that is not reported here.  

After these preliminary activities, participants were provided a training presenta-
tion that presented the over-arching narrative for the videos they would be viewing, 
and familiarized the participant with the robot they were about to see. After viewing 
the training, participants completed the Mental Model Survey.  

Participants then watched a series of 12 videos, broken up into two blocks. Each 
video depicted a human–robot team in which the robot was autonomously performing 
a series of inspection or reconnaissance-like tasks in an urban environment. For ex-
ample, one video clip was presented with the introduction, “the robot was instructed 
to search the surrounding area for explosive materials.” For each video, the actions of 
the robot were congruent with the narrative (i.e., it did not inexplicably crash into a 
wall).  Participants, however, were asked to interpret the individual motions and ges-
tures made by the robot in the free-response survey.  

Block order was counter-balanced between participants; videos within each block 
were randomized across all participants. The videos in each block differed in whether 
or not civilians were present while the robot was working. For each of the 12 videos 
(six in each block), participants were asked to carefully pay attention to the video, and 
then completed three open-ended, short-answer questions concerning their under-
standing of the robot, including what it was doing, (functionally) how it completed the 
work, and what it might do next. A smaller subset of these questions consisted of 
situational awareness items, designed to identify a participant’s engagement (or lack 
thereof). After each block, participants again completed the Mental Model Survey. 
Finally, participants were debriefed and thanked for their time.  

3 Results 

3.1 Mental Model Development 

A one-way, repeated measures ANOVA was conducted to compare self-reported 
perceived knowledge of their robotic partner across three periods of time. The mental 
model measure was administered: immediately following training, after viewing the 
first block of videos depicting the robotic teammate, and after viewing the second 
block of videos depicting the robotic teammate. There was a significant main effect 
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for time, Wilks’ Lambda = 0.696, F(1, 51) = 10.936, p < .0005, multivariate partial 
eta squared = .304. A post hoc analysis with Bonferroni correction was conducted to 
determine whether a significant difference in reported knowledge of the robotic 
teammate was present each time perceived knowledge was measured, or if significant 
differences were present only at specific measurement opportunities. The test for 
simple effects revealed that there was a statistically significant increase in self-
reported, perceived knowledge of the robotic teammate after viewing the second 
block of videos depicting the robotic teammate in the task environment (M =21.67, 
SD = 3.52), t(51) = 4.37, p <.0005. In addition, there was a statistically significant 
increase in self-reported, perceived knowledge of the robotic teammate between when 
the participants received the training (M = 20.42, SD = 3.08) and after viewing the 
second block of videos depicting the robotic teammate in the task environment 
(M=21.67, SD = 3.52), t(51) = 3.20, p = .002 (see Table 1).  

Table 1. Table of post hoc contrasts, means, and standard deviations 

Contrast Repeated Measure Mean Standard  
Deviation Sig. 

Pair 1 MMS post training 
MMS post video block 1 

20.42 
20.57 

3.08 
3.12 

.703 

Pair 2 MMS post video block1 
MMS post video block 2 

20.57 
21.67 

3.12 
3.52 

.000* 

Pair 3 MMS post training 
MMS post video block 2 

20.42 
21.67 

3.08 
3.52 

.002* 

Note: MMS = Mental Model Survey. 
*Statistically significant at p < .017. P value adjusted for Bonferroni correction.  

3.2 Interpretation and Prediction of Robot Behavior 

A qualitative analysis was conducted to examine apparent differences in perceived 
knowledge of a robotic teammate as indicated by the free-response items. An inde-
pendent rater was used to look for thematic similarities across all participants for each 
of the free response items. Results could not confirm a specific hypothesis. However, 
the analysis did reveal that participants had thematically different understanding of 
robotic behavior. For example, in response to the item that asks, “What was the mean-
ing of the gesture the robot made at the end of the video?,” 14 of the participants 
made a thematic response that the gesture was intended to indicate that the area being 
searched was safe/no dangerous material had been found. Ten of the participants had 
a thematic response that indicated the opposite; the gesture made by the robot was an 
indication to the Soldier that the area was unsafe/that hazardous materials had been 
found. Nine participants provided responses that indicated that they were unsure of 
meaning of the gesture or that the gesture was related to indicating something else 
like finding an object (without specific reference to safety) or the robot had finished 
its task. A sample of additional questions and corresponding thematic results are re-
ported in Table 2.  
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Table 2. Sample of interpretations and predictions of the robot‘s behavior and functions 

 Free-response question 

Video description 
Thematic cate-
gory 

Characteristic responses 

A suspicious object was reported in an alley near the market place. The robot was instructed 
to located the item and report back to the Soldier. 

 How would the robot signal to the Soldier that it has spotted some-
thing? 

 Arm movement ”Robot will raise arm.” 

 Light “Robot will turn on light indicating something has 
been found.” 

 Sound “Robot will produce a noise.” 

 Electronic re-
port 

“Robot will message through radio.” 

The robot was instructed to perform a routine inspection of the marketplace booths before 
civilians arrive, then report back to the Soldier. 

 What was the meaning of the gesture* the robot made at the end of the 
video?(*Note to reader: up and down movement of manipulator arm) 

 Safe “Robot was nodding that the way was clear.” 

 Unsafe “Robot was nodding that something dangerous had 
been found.” 

 Neutral  
(Item found) 

“It was reporting that something was identified.” 

 Unsure “I do not know what the gesture meant.” 

The robot is instructed to perform a thorough investigation of a burnt out car for traces of 
explosive material to determine the cause of the damage. 

 Describe the equipment the robot uses to detect explosive materials. 

 Arm “Robot can use arm to touch and maneuver objects.” 

 Camera on arm “Robot has a camera on the top of its arm to look 
for explosives.” 

 Sensor equip-
ment 

“The robot has a chemical scanner on its top of its 
body.” 

 Unsure “I am unsure how the robot would do this.” 

The robot is tasked with navigating to and inspecting barrels for explosive materials in an 
alley of a small village. After inspecting the barrels the Robot must return to the Soldier and 
await further orders. 

 At what distance is the robot able to detect explosive materials? 

 Close “Probably close, like 3-5 feet away.” 

 Far “A far enough distance to be away from a blast.” 

 Unsure “I don’t really know.” 
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4 Discussion 

The hypothesis was partially supported, as results revealed a significant main effect 
for time on change in reported knowledge of the robotic teammate. An examination of 
the simple effects revealed that there was a significant difference in reported mental 
models between time 1 (immediately post training) and time 3 (following viewing all 
of the videos). In addition, there was a significant difference in reported knowledge of 
the robotic teammate between time 2 (after viewing the first block of videos) and time 
3 (after viewing the second block of videos). This finding lends support for the impor-
tance of experience when forming mental models of robotic teammates.  

For example, while participants’ reported that their knowledge of the robotic 
teammate steadily increased over time, the difference between their perceived know-
ledge post-training (i.e., but before viewing any videos) and after viewing one block 
of videos was small and non-significant (see Table 1). That is, there was no signifi-
cant effect for the order in which the two blocks of views were presented. Only after 
viewing the robotic teammate in both blocks of videos, which presented the teammate 
performing tasks in two different contexts (i.e., civilians present while the team was 
working and civilians not present while the robot was working), was there a signifi-
cant difference in self-reported knowledge of the robotic teammate. This may indicate 
that familiarizing the human partner to the robot in multiple contexts is important to 
developing a clear understanding to the robot.   

The data suggests that subjective self-assessment of participant mental models in-
crease over time, as participants see the robot performing a wide variety of tasks in 
different contexts. However, this did not imply that mental models between partici-
pants were similar. For example, when asked how a Talon robot might inform a  
Soldier that it encountered an IED, participant responses varied greatly. Some partici-
pants applied anthropomorphic stereotypes and social rules to the robot (e.g., it should 
wave its arm; it should nod). Differences in the expected method of communication 
were also observed across participants (e.g., it would produce a noise to inform the 
Soldier it found something). These expectations were also used to reason about the 
robot’s performance on the task (e.g., I am assuming it checked everything along  
the path it was instructed to check; the open garage was obvious, it should have 
looked there), as well as how the robot would act in the future. 

5 Conclusion 

This research highlights a number of important considerations for the development of 
high-autonomy, intelligent robots. Specifically, an individual’s perceived understand-
ing of a robotic system increases given additional robotic exposures in different con-
texts. However, it is important to recognize the difference between the richness of 
understanding and accuracy of understanding. Different individuals may be similarly 
confident in their knowledge of the robot, but arrive at vastly different conclusions 
about its function and performance; with each conclusion being an equally valid  
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interpretation of the robot’s behavior (e.g., “it signaled that it detected something” vs. 
“it signaled that it did not detect anything”). 

Secondly, given a task-oriented human–robot team, the ability of an autonomous 
robot to complete the task is only part of the overall solution. It is important to con-
sider additional functions such as: How will the robot indicate the task has been com-
pleted? How will the user know if the robot cannot complete the task? What should 
the robot do if it becomes stuck or damaged? What information should the human 
expect to provide to the robot? And, what information should the human expect to 
receive from the robot?  

Finally, it is safe to assume that individuals, specifically designated to be robot 
handlers, will receive adequate training to mitigate the effect of potentially ambiguous 
robot behavior. However, robots will be expected to operate among other team mem-
bers, bystanders, and even hostile forces for which specialized training will be mi-
nimal or non-existent. It is therefore necessary to consider those cases in which the 
intention of robot behavior should be transparent, opaque, or even deceptive, depend-
ing upon the circumstances of the operational environment.  

We continue to investigate the role of human understanding within HRI, in order to 
provide designers useful input for the development of robotic systems that are com-
patible with the knowledge and understanding of their human counterparts.  
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