Skip to main content

iSWoM: The Incremental Storage Workload Model Based on Hidden Markov Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7984))

Abstract

We propose a storage workload model able to process discrete time series incrementally, continually updating its parameters with the availability of new data. More specifically, a Hidden Markov Model (HMM) with an adaptive Baum-Welch algorithm is trained on two raw traces: a NetApp network trace consisting of timestamped I/O commands and a Microsoft trace also with timestamped entries containing reads and writes. Each of these traces is analyzed statistically and HMM parameters are inferred, from which a fluid input model with rates modulated by a Markov chain is derived. We generate new data traces using this Markovian fluid, workload model. To validate our parsimonious model, we compare statistics of the raw and generated traces and use the Viterbi algorithm to produce representative sequences of the hidden states. The incremental model is measured against both the standard model (parameterized on the whole dataset) and the raw data trace.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, L.E., Petrie, T.: Stastical Inference for Probabilistic Functions of Finite Markov Chains. The Annals of Mathematical Statistics 37, 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41, 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  4. Krough, A., Brown, M., Mian, S., Sjolander, K., Haussler, D.: Hidden Markov Models in Computational Biology. Journal of Molecular Biology, 1501–1531 (1994)

    Google Scholar 

  5. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology, 78–94 (1997)

    Google Scholar 

  6. Ashraf, J., Iqbal, N., Khattak, N.S., Zaidi, A.M.: Speaker Independent Urdu Speech Recognition Using HMM (2010)

    Google Scholar 

  7. Harrison, P.G., Harrison, S.K., Patel, N.M., Zertal, S.: Storage Workload Modelling by Hidden Markov Models: Application to Flash Memory. Performance Evaluation 69, 17–40 (2012)

    Article  Google Scholar 

  8. Florez-Larrahondo, G., Bridges, S., Hansen, E.A.: Incremental Estimation of Discrete Hidden Markov Models on a New Backward Procedure (2005)

    Google Scholar 

  9. Rabiner, L.R., Juang, B.H.: An Introduction to Hidden Markov Models. IEEE ASSP Magazine 3, 4–16 (1986)

    Article  Google Scholar 

  10. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  11. Chis, T.: Hidden Markov Models: Applications to Flash Memory Data and Hospital Arrival Times (2011)

    Google Scholar 

  12. Zhang, X., Riska, A., Riedel, E.: Characterization of the E-commerce Storage Subsystem Workload. In: Proceedings of Quantitative Evaluation of SysTems (2008)

    Google Scholar 

  13. RUBiS Implementation: http://rubis.objectweb.org/

  14. On-Line Transaction Processing (OLTP) Benchmark: http://www.tpc.org/tpcc

  15. Kumas, Z., Keeton, K., Becker-Szendy, R.: I/O Workload Characterization. In: CAECW 2001, before HPCA-7 (2001)

    Google Scholar 

  16. Transactional Web e-Commerce Benchmark: http://www.tpc.org/tpcw

  17. Chis, T., Harrison, P.G.: Incremental HMM with an improved Baum-Welch Algorithm. In: Proceedings of Imperial College Computing Student Workshop (2012)

    Google Scholar 

  18. Stenger, B., Ramesh, V., Paragois, N., Coetzee, F., Buhmann, J.M.: Topology free Hidden Markov Models: Application to background modeling. In: Proceedings of the International Conference on Computer Vision, pp. 297–301 (2001)

    Google Scholar 

  19. Keaton, K., Veitch, A., Obal, D., Wilkes, J.: I/O characterization of commercial workloads. In: CAECW 2000 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chis, T., Harrison, P.G. (2013). iSWoM: The Incremental Storage Workload Model Based on Hidden Markov Models. In: Dudin, A., De Turck, K. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2013. Lecture Notes in Computer Science, vol 7984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39408-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39408-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39407-2

  • Online ISBN: 978-3-642-39408-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics