Skip to main content

Efficient Steady State Analysis of Multimodal Markov Chains

  • Conference paper
Book cover Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7984))

Abstract

We consider the problem of computing the steady state distribution of Markov chains describing cellular processes. Our main contribution is a numerical algorithm that approximates the steady state distribution in the presence of multiple modes. This method tackles two problems that occur during the analysis of systems with multimodal distributions: stiffness preventing fast convergence of iterative methods and largeness of the state space leading to excessive memory requirements and prohibiting direct solutions. We use drift arguments to locate the relevant parts of the state space, that is, parts containing 1 − ε of the steady state probability. In order to separate the widely varying time scales of the model we apply stochastic complementation techniques. The memory requirements of our method are low because we exploit accurate approximations based on inexact matrix vector multiplications. We test the performance of our method on two challenging examples from biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  Google Scholar 

  2. Courtois, P.-J., Semal, P.: Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. Journal of the ACM 31(4), 804–825 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dayar, T., Hermanns, H., Spieler, D., Wolf, V.: Bounding the equilibrium distribution of markov population models. NLAA 18(6), 931–946 (2011)

    MathSciNet  MATH  Google Scholar 

  4. de Souza e Silva, E., Ochoa, P.M.: State space exploration in Markov models. SIGMETRICS Perform. Eval. Rev. 20(1), 152–166 (1992)

    Article  Google Scholar 

  5. Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Fast adaptive uniformization of the chemical master equation. In: Proc. of HIBI, pp. 118–127. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  6. Elowitz, M.B., Levine, M.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  7. Forger, D.B., Peskin, C.S.: Stochastic simulation of the mammalian circadian clock. PNAS 102(2), 321–324 (2005)

    Article  Google Scholar 

  8. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  Google Scholar 

  9. Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  10. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Larson, D.R., Singer, R.H., Zenklusen, D.: A single molecule view of gene expression. Trends in Cell Biology 19(11), 630–637 (2009)

    Article  Google Scholar 

  12. Lohmueller, J., Neretti, N., Hickey, B., Kaka, A., Gao, A., Lemon, J., Lattanzi, V., Goldstein, P., Tam, L.K., Schmidt, M., Brodsky, A.S., Haberstroh, K., Morgan, J., Palmore, T., Wessel, G., Jaklenec, A., Urabe, H., Gagnon, J., Cumbers, J.: Progress toward construction and modelling of a tri-stable toggle switch in e. coli. IET, Synthetic Biology 1(1.2), 25–28 (2007)

    Article  Google Scholar 

  13. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. PNAS 94, 814–819 (1997)

    Article  Google Scholar 

  14. Menz, S., Latorre, J., Schütte, C., Huisinga, W.: Hybrid stochastic–deterministic solution of the chemical master equation. Multiscale Modeling & Simulation 10(4), 1232–1262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, C.D.: Stochastic complementation, uncoupling markov chains, and the theory of nearly reducible systems. SIAM Review 31, 240–272 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Milias-Argeitis, A., Lygeros, J.: Efficient stochastic simulation of metastable Markov chains. In: CDC-ECE, pp. 2239–2244. IEEE (2011)

    Google Scholar 

  17. Munsky, B.: The Finite State Projection Approach for the Solution of the Master Equation and its Applications to Stochastic Gene Regulatory Networks. PhD thesis, University of California (June 2008)

    Google Scholar 

  18. Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004)

    Article  Google Scholar 

  19. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spieler, D., Wolf, V. (2013). Efficient Steady State Analysis of Multimodal Markov Chains. In: Dudin, A., De Turck, K. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2013. Lecture Notes in Computer Science, vol 7984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39408-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39408-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39407-2

  • Online ISBN: 978-3-642-39408-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics