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Abstract. We analyze next generation cellular networks, offering con-
nectivity to mobile users through LTE as well as WiFi. We develop a
framework based on the Markovian agent formalism, which can model
several aspects of the system, including the dynamics of user traffic and
the allocation of the network radio resources. In particular, through a
mean-field solution, we show the ability of our framework to capture
the system behavior in flash-crowd scenarios, i.e., when a burst of traffic
requests takes place in some parts of the network service area.

1 Introduction

One of the most evident and urgent challenges in the field of communication
networks today is coping with the exponential growth of the wireless data traffic:
the average smartphone is expected to generate 2.6 GB of traffic per month by
2016, with a global mobile data traffic that is slated to increase 18–fold by that
time [4]. To accommodate such high data-traffic loads, new technologies, such
as Long-Term Evolution (LTE), have been introduced to increase the capacity
of cellular networks.

The fast uptake of mobile data services, however, indicates that these solu-
tions are not sufficient to meet the intense user demand in many high-density
settings all over the world. Thus, a new trend, usually referred to as mobile data
offloading, has emerged. That is, while the cellular infrastructure will continue
to provide essential wide-area coverage and support for high-mobility users, it
will be complemented with WiFi hotspots, toward which data traffic should be
offloaded whenever possible [9, 13].

Such a scenario calls for a new access network architecture, composed of base
station units (BSs) that may host several radio interfaces, hence provide Internet
connectivity to mobile users through different communication technologies (e.g.,
LTE and WiFi) [5, 2]. Beside meeting the users demand, this network paradigm
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will imply low real-estate and deployment costs, as well as low upgrading and
security costs, thus saving the operators millions of dollars in captial and oper-
ational expensitures (CAPEX/OPEX).

It is important to stress that wireless communication technologies, like LTE
and WiFi, are already mature, and that commercial products implementing the
aforementionwd paradigm are available on the market, e.g., [2, 1]. What is miss-
ing, however, is the definition of algorithms to make the above access network
work efficiently. In particular, the functionalities of the system should be opti-
mized so as to support the huge amount of data that wireless users are expected
to consume/generate, while meeting the requirements in terms of quality of ser-
vice, energy consumption and cost.

In this paper, we focus on the above aspect and develop a framework for
the analysis of different policies regulating the Internet connectivity of mobile
users. Specifically, we consider that the network service area is covered by a
number of BSs, each of them hosting both an LTE and a WiFi radio interface.
A user can connect to the Internet through either technologies, provided that
enough radio resources are available to serve the user. Typically, widely popular
communication devices, such as smartphones, implement a simple connectivity
policy, which is known as “WiFi first”: a user always connects to a WiFi hotspot
when available. The rational behind this choice is that WiFi connectivity is much
less costly than the cellular one: through WiFi the per-byte cost of data transfers
can be reduced by 70% per one estimate [3]. However, WiFi may offer a much
slower data transfer than LTE, especially when several users are accessing the
same hotspot, or the radio propagation conditions are not favourable because of
the user mobility or the presence of obstacles [12, 15, 5]. This clearly motivates
the need for a framework that allows to evaluate various connection policies,
beside “WiFi first”.

In the following, we make a first step toward the solution of this issues.
Specifically, we propose an analytical model and show how mean-field analysis
can be successfully applied to the study of the system dynamics. We remark
that a similar study carried out through simulation would imply very long com-
putation times, as each communication node in the network (either user or BS)
would have to be equipped with two radio interfaces, each of which would require
different models representing the signal propagation as well as the node protocol
stack.

2 Network scenario and mobile Internet technologies

We consider a urban area (typically characterized by high user density) and
covered by an LTE cellular network. The network system is composed of several
BSs, each of them covering an area that we will be referred as coverage area.
Colocated with the LTE interface, there is a WiFi radio (IEEE 802.11a/g/n), so
as to implement a hostspot whose coverage coincides with that provided by the
LTE technology.



Modeling LTE and WiFi with Agent Based Mean-Field 3

We only consider data transfers, such as content dowloading or video stream-
ing, as voice calls cannot be supported through LTE. Also, we focus on downlink
data transfers (from the BS to the users) since traffic is typically highly asym-
metric, with a large amount of data flowing from the Internet towards the users.
Clearly, users that are under the coverage of more than one BS, can access any
of them, although with different quality of service. In particular, it is fair to
assume that the link quality increases as the distance between a user and a BS
decreases, and that the better the link quality, the higher the transmission rate
that the link end points can use. Furthermore, we consider that the users will
not significantly move while receiving a data transfer from the Internet.

For clarity, before presenting the model we developed, we summarize the
main characteristics of the two technologies that are at the basis of our analysis.

WiFi. The WiFi technology is specified by the IEEE 802.11 standard. It al-
lows for the implementation of a wireless local network (WLAN) or hotspot,
composed of an access point (AP) and user communication devices. Users that
are connected to a hotspot can download/upload traffic from/to the Internet, or
exchange traffic between each other; all traffic however is handled by the AP. In
order to transmit data over the wireless channel, users and AP employ a totally
distributed scheme, namely, a carrier sense multiple access (CSMA) technique
enhanced with a collision avoidance mechnism. In a nutshell, whenever a net-
work node wishes to transfer data, it senses the channel. If idle, it will transmit;
otherwise, it defers its transmission by a random time. Clearly, the higher the
traffic load within the WLAN, the higher the data latency and the probability
that two or more transmissions start at the same time and, thus, fail. It is easy to
show that, on the long run, such a channel access scheme provides equal access
opportunities to all nodes (both users and AP).

Furthermore, it is important to note that at the physical layer the nodes may
use different transmission speeds (i.e., data rates), depending on the propagation
conditions between the sender and the intended receiver: the higher the packet
error probability that a node experiences, the lower the rate it uses to transmit
its data. As an example, in the “a” version of the 802.11 standard 8 values of data
rate are possible, ranging from 6 up to 54 Mb/s. It follows that the transmission
time of the data packets will depend on both the packet size and the rate used
by the sender to transmit toward the intended recepient. This aspect may have
severe consequences on the throughput experienced by the users connected to
the same hotspot. Indeed, as noted in [14], “slower” senders occupy the channel
longer preventing others from transmitting. Since the WiFi technology provides
equal channel access opportunities to all nodes, as the number of slow senders
increases, the fast ones will be able to transmit less often thus experiencing a
low throughput even if they can employ a high data rate.

Finally, we remark that different frequency channels can be used by the WiFi
technology. Again, with reference to the 802.11a standard, 8 disjoint channels
around 2.4 GHz are available, and each hotspot can select one among these
frequency bands. Typically, nearby hotspots employ different channels so as to
avoid co-channel interference.
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LTE. The LTE cellular technology is marketed as 4G and is already available in
several regions, such as Australia, North America, and Scandinavian countries.
Thanks to the use of multiple antennas at the transmitter and receiver, it im-
plements multiple-input-multiple-output (MIMO) trasnmission techniques, i.e.,
the simultaneous transmissions of a number of flows as high as the number of
antennas available at the communication end points. The transmission speed is
therefore significantly higher than in the previous cellular technologies, and, in
principle, it can reach up to 300 Mb/s in downlink (from the BS to the users)
and 50 Mb/s in uplink (from user to BS). Current implementations, however,
allow for much lower data rates, leading to a throughput of up to 30 Mb/s in
downlink and of about 14 Mb/s in uplink.

As in most of the previous cellular technologies, a frequency division duplex
(FDD) technique is used for data transmission: two separate frequency channels,
say of 1.4 MHz each, are used for uplink and downlink traffic, respectively. Also,
within an area covered by a BS, the access to the uplink channel is controlled by
the BS itself, which schedules the user transmissions. Focusing on the downlink
direction, an orthogonal frequency division multiple access (OFDMA) technique
is employed, jointly with a time division scheme. Indeed, the downlink frequency
channel is divided into several narrow-band subchannels. Disjoint subsets of such
channels are then used by the BS to simultaneously transmit towards different
users. Each subchannel is 15-MHz wide and each subset is composed of 12 sub-
channels. Time is divided into frames that are 10ms long; each of them is further
divided into 10 subframes. In the following, we consider the usage of a subset
of 12 subchannels for a 1-ms duration (i.e., a subframe) as the granularity used
by the BS to allocate radio resources to a data flow, i.e., the so-called Physical
Radio Block (PRB). We remark that the BS may allocate one or more PRBs to
transmit at the same time towards the same user. Also, as in the case of the WiFi
APs, LTE interfaces at neighboring BSs should use different frequency channels
so as to avoid interference.

3 Modelling LTE and WiFi technologies

As outlined above, the system under study is composed of two main types of
communication nodes, interacting with each other: users and BSs. The spatial
distribution of such nodes plays a critical role, as a user can access a BS only
if its position is within the coverage area of that BS. These peculiariries of the
system prevent the use of standard state-space modeling techniques, such as
Queueing Networks, Stochastic Petri Net, or Process Algebras, since all of them
would suffer from the problem of state-space explosion.

In this work, we therefore resort to a technique based on the Markovian
Agent formalism [10], and exploits the Mean Field Analysis [6, 7]. In particular,
our approach leverages the methodology presented in [8] to compute the model
solution.
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Fig. 1. An example of the ring topology under study.

3.1 Network topology and model

To simplify the presentation, we consider a network with ring topology, com-
posed of N geographical areas, hereinafter called locations and denoted by
L0, . . . , LN−1. Given the topology, each location Li has two neighboring loca-
tions, Li−1 and Li+1, where the generic pedex i has to be intended as imodN .
At the center of each location Li, there is a BS, denoted by BSi (i = 0, . . . , N−1),
whose coverage area extends over three locations, namely, Li, Li−1 and Li+1.
It follows that users located within Li can access BSi, or equivalently, BSi−1

and BSi+1. Fig. 1 shows an example of the ring topology used in our model,
for N = 8. In particular, circles represent the locations L0, . . . , L7, while each
dotted ellipse corresponds to the coverage area of a BS.

We call agent a portion of the model that describes the behavior of the
communication nodes within a given location Li. Specifically, we talk about
user or BS agent depending on whether an agent refers to the behavhior of the
users or of the BS. We then define as access group i (also denoted by AGi) the
the set of users that access the network using BSi.

All users agents have exactly the same structure and include the same states,
as shown in the left side of Fig. 2. Following the definition given in [8], the agents
in the different locations correspond to different agent classes, all deriving from
the same metaclass. As depicted in the figure, each agent is composed of 7 states.
The first six account for the particular technology that a user is using to access
the Internet (namely, LTE or WiFi), while the last state is used to count the user
connection attempts that fail due to the unavailability of radio resources. The
location from which the technology is accessed is denoted by the following labels:
local for the BS in the location the user agent refers to, and cw and ccw for the BS
in, respectively, the clockwise and the counter-clockwise neighboring location. In
particular, we consider BSi+1 and BSi−1 being, respectively, the clockwise and
counter-clockwise neighbors of BSi. Finally, the label Loss denotes the state
counting the service requests that have not been accomodated. The interaction
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Fig. 2. Mean-field models of a user agent (left) and of a BS agent (right).

among the users is determined by the transition rates, which are functions of the
number of users in the each state of the local and of the neighboring locations.
Since the transition rates are the key element of the model, they will be described
in depth in Section 3.2.

Similarly to the user agent, we define another metaclass to describe the BS
status. Again, each BS agent corresponds to a class deriving from the same
metaclass. Thus, all BS agents have the same struture: they include two states,
each counting the number of allocated radio resources, one for WiFi and the other
for LTE (as illustrated in the right side of Fig. 2). Note that by radio resources we
mean frequency channels in WiFi and PRBs in LTE. The incoming/outcoming
arcs account for the dynamic allocation of BS radio resources.

Fig. 3 further clarifies the relationship among user agents, locations, and
access groups. Recall that each access group AGi (i = 0, 1, 2 in the figure) refers
to the set of users accessing BSi, while each agent includes the possible states
taken by users located within Li. For instance, AG1 includes states that belong to
three different agents (each denoted by a different color), as BS1 can be accessed
by users that are in L0, L1 and L2. Thus, AG1 contains those states of the three
user agents that correspond to the usage of radio resource handled by BS1 (e.g.,
for the agent referring to L0: WiFi cw and LTE cw).

3.2 Functional rates

The interaction among the agents is determined by the transition rates; in this
section we present the functions that allow to compute their values.

With regard to the BS agents, the control of the resource allocation at each
BS is described through the rates q1, q2, q3 and q4. In the following, we will
consider a static resource allocation, hence we set the above rates to the same
constant value.

The evolution of a user agent through the model states is determined by the
values assigned to the following rates (see also Fig. 2):
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Fig. 3. Relation among user agents, locations, and access groups; different user agents
are denoted by different colors.

– Arrival of users requests (r1);

– Service of requests (r2, r3 and r4 for WiFi; r5, r6 and r7 for LTE);

– WiFi switching from the local BS to a neighboring one (r8, r9);

– WiFi switching to LTE (r10, r11 from neighboring BSs to the local one; r14,
r15, r18, r19 for neighbouring BSs);

– Loss of requests (r12, r13);

– Upgrading: WiFi switching from a neighboring BS to the local one (r16, r17),
and technology switching from LTE to WiFi (r20, r21, r22).

Below, we introduce the main concepts and, in few cases, also the equations that
we used to derive the rates. The computation details are reported in Table 1,
where the following notations are exploited:
I1(condition) = 1 if condition is true, 0 otherwise
I2(a, b) = 1 if a > b, 0.5 if a = b, 0 if a < b 4

and where n
[i]
τ−j denotes the number of users in τ − j state of the user agent

referring to location Li, with j ∈ {local, cw, ccw} and τ ∈ {WiFi, LTE}.
Next, we describe all the possible events that trigger a transition between

two states of the user agent, and the corresponding rates. Note that for what
concern technology switching criteria, we model a specific system behavior based
on arbitrary rules which can be easily refined to study more complex dynamics.

4 To improve the smoothness of the solution, in the experiments we used for I2(·) the
Sigmod function defined as follows:

I2(a, b) =
1

1 + eα(b−a)

with α very large (we used α = 100).
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Arrivals. We denote by λi(t) the number of requests per second generated
by users in location Li; note that such parameter has both a spatial and a time
dependency. For the generic user agent referring to location Li, we set r1 = λi(t).
Clearly, the request rates are not affected by the system status. While deriving
our results, we will generate a burst of requests in location subsets, in order to
observe the network response.

Services The WiFi service rates, to be assigned to r2, r3 and r4, are derived
through the following formula:

σ
[i]
WiFi =

µWiFi × n
[i]
WiFi−resources

n
[i]
WiFi−local + α(n

[i−1]
WiFi−cw + n

[i+1]
WiFi−ccw)

(1)

where:

– µWiFi is the WiFi throughput (connection speed) when there is only one
user accessing the interface;

– n
[i]
WiFi−resources is the number of WiFi resources available at BSi;

– n
[i]
WiFi−local is the number of users in Li accessing the WiFi interface at BSi;

– n
[i−1]
WiFi−cw is the number of users in location Li−1 that access the WiFi

interface at BSi, i.e., at their clockwise (cw) BS;

– n
[i+1]
WiFi−ccw is the number of users in location Li+1 that access the WiFi

interface at BSi, i.e., at their counter-clockwise (ccw) BS;
– α ≥ 1 is a factor taking into account the throughput reduction due to far-

away users accessing the WiFi interface at BSi; such far-away users are those
in locations Li−1 and Li+1.

In particular, we have: r2 = σ
[i−1]
WiFi, r3 = σ

[i]
WiFi and r4 = σ

[i+1]
WiFi.We remark that

the factor α is necessary in order to account for the anomaly effect typical of the
WiFi technology, as mentioned in Section 2.

Let us call σ
[i]
LTE(j) the LTE service rate assigned to a user in Lj accessing

BSi. For i = 0, . . . , n−1, we have r5 = σ
[i−1]
LTE (i), r6 = σ

[i]
LTE(i) and r7 = σ

[i+1]
LTE (i).

The LTE service rate, can be defined as:

σ
[i]
LTE(j) =

µi,j
LTE × n

[i]
LTE−resources

n
[i]
LTE−local + n

[i−1]
LTE−cw + n

[i+1]
LTE−ccw

(2)

where:

– µi,j
LTE is the LTE throughput (connection speed) corresponding to one radio

resource assigned from BSi to a user accessing from Lj . Note that in LTE
a radio resource is assigned exclusively to one user, however, depending on
the radio propagation conditions, the user can employ a higher or a lower
transmission rate. This motivates the dependency of the parameter on the
user location (Lj), as the farther away the user is, the lower its connection
speed;
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– n
[i]
LTE−resources is the number of LTE channels at the local BS (BSi);

– n
[i]
LTE−local is the number of users in Li accessing the LTE interface at BSi;

– n
[i−1]
LTE−cw is the number of users in location Li−1 that access the LTE inter-

face at BSi, i.e., at their clockwise (cw) BS;

– n
[i+1]
LTE−ccw is the number of users in location Li+1 that access the LTE in-

terface at BSi, i.e., at their counter-clockwise (ccw) BS.

WiFi switching to neighbouring BSs. The switching from local to a neigh-
bouring WiFi interface is forced if the local service rate r3 drops below the min-
imum threshold (µmin). The neighbouring BS with the lowest load is selected
(r8, r9), if the two locations have the same load the destination is randomly
selected between them. The latency due to the interface switching is denoted by
1/µBS−Sw.

Switching from neighboring WiFi to local LTE. When the WiFi service
rate in neighboring BSs drops below a minimum threshold (µmin), the users
attempt to migrate to the LTE interface of the local BS (transitions with asso-
ciated rates r10 and r11). Indeed, although connectivity through LTE is more
costly, we expect that users are willing to pay a higher price provided that they
can obtain a sufficient connection speed. The transition success depends on the
actual load of the local LTE interface; in particular, the following condition must
hold:

n
[i]
LTE−local + n

[i−1]
LTE−cw + n

[i+1]
LTE−ccw < n

[i]
LTE−resources ×B × γmin (3)

where n
[i]
LTE−local, n

[i−1]
LTE−cw, n

[i+1]
LTE−ccw and n

[i]
LTE−resources are defined as above,

while B is number of 1-ms time intervals (subframes) for each LTE frequency
subset (see Section 2), and γmin is the utilization threshold of LTE resources at
a BS. The user migration takes place (with a latency due to the to technology
switch, 1/µτ−Sw) if the utilization level of the LTE resources at the target BS
is under γmin. This avoids overloading the LTE interface and, thus, the need to
move traffic flows back again to neighboring WiFi interfaces after some time.

Switching from WiFi to LTE at neighboring BSs. The switch from neigh-
boring WiFi to local LTE can fail if condition (3) is false. In this case, users may
try to move towards an LTE interface at a neighboring BS. The switch is suc-
cessful if either one of the neighboring BSs exhibits a utilization level of their
LTE resources lower than γmin. If both BSs can accomodate the user, the rate
function selects the BS with the lower LTE load. In case of a tie, the destina-
tion BS is randomly selected. At last, we recall that this algorithm is used for
deriving r14, r15, r18 and r19.

Loss of requests. A user data request fails when it cannot be accomodated
at any BSs (using either LTE or WiFi), i.e., there are no resources available.
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Specifically, when the WiFi service rate is below the µmin threshold, the function
for rates r12 and r13 verify the condition (3) for the LTE interface at the local
as well as at the neighboring BSs. If the condition is always false, the request
cannot be accomodated and the number of request failures is incremented.

Upgrade. The upgrading to the local WiFi interface can take place from that
at neighbouring BSs as well as from the LTE interface at either local or neigh-
bouring BSs. Specifically, when rate r3 is beyond a given threshold (µmax), the
users can migrate to the local WiFi interface. Note that such a transition indeed
represents an upgrade since using the (non-overloaded) WiFi inteface at the lo-
cal BS implies high speed connectivity at low cost. The time required by the
transition depends on the type of switch that is performed, i.e., the technology
does not change but the BS does (1/µBS−Sw for r16 and r17) or the technology
(and possibly the BS) changes (1/µτ−Sw for r20, r21 and r22).

4 Analysis and numerical results

The model proposed in Section 3 is solved using the techniques described in [8].
In particular, the model of the agent presented in Fig. 2 is used to determine,
for each location Li, two matrices and a vector: the transition matrix C[i], the
death matrix D[i] and the birth vector b[i]. The resulting matrices and vectors
are as follows:

C[i] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−() r17 0 r15 r10 r19 r13
r9 −() r8 0 0 0 0
0 r16 −() r18 r11 r14 r12
0 r21 0 −() 0 0 0
0 r20 0 0 −() 0 0
0 r22 0 0 −() 0
0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D[i] = diag

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r4
r3
r2
r5
r6
r7
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b[i] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1
0
0
0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T

(4)

Matrix C[i] must be an infinitesimal generator: all its rows must sum up to
zero. To simplify the presentation, we have used the notation “−()” to identify
the sum of the other elements in the row, changed of sign. The row represents,
respectively, the following states of the agent:WiFi−ccw,WiFi−local, WiFi−
cw, LTE−ccw, LTE− local, LTE−cw, Loss. Note that, since the Loss state is
absorbing, the corresponding row is zero. The number of users in a given state is

collected in a row vector n[i] = |n[i]
WiFi−ccw, . . . , n

[i]
Loss|, and the evolution of the

system is computed by solving the following equations5, one for each location Li

(i = 0, . . . , n− 1):
dn[i]

dt
= n[i]

(
C[i] −D[i]

)
+ b[i]. (5)

5 Note that all vectors and matrices depend on time. However, we have omitted the
time dependency in order to simplify the notation.
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Table 1. Rate functions

Rates Functions

r1 λi(t)

r2 σ
[i−1]
WiFi

r3 σ
[i]
WiFi

r4 σ
[i+1]
WiFi

r5 σ
[i−1]
LTE

(i)

r6 σ
[i]
LTE

(i)

r7 σ
[i+1]
LTE

(i)

r8 µτ−Sw × I1(σ
[i]
WiFi

< µmin)×

I2(σ
[i+1]
WiFi−local

, sigma
[i−1]
WiFi−local

)

r9 µτ−Sw × I1(σ
[i]
WiFi

< µmin)×

I2(σ
[i−1]
WiFi−local

, sigma
[i+1]
WiFi−local

)

r10 µτ−Sw × I1(σ
[i−1]
WiFi

< µmin)×

I1(n
[i]
LTE−local

+ n
[i−1]
LTE−cw

+ n
[i+1]
LTE−ccw

< n
[i]
LTE−resources

× B × γmin)

r11 µτ−Sw × I1(σ
[i+1]
WiFi

< µmin)×

I1(n
[i]
LTE−local

+ n
[i−1]
LTE−cw

+ n
[i+1]
LTE−ccw

< n
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Equation (5) can be solved using a suitable numerical algorithm. In our work, we
have used the Runge-Kutta with adaptive step-size control discretization method
[16].
Note that some rates include indicator functions that can cause problems to the
mean field technique. In current experiments we found that the introduction
of sigmoid functions instead of indicators is enough to obtain accurate results.
However more general approaches based on higher moment approximations such
as [11] can provide better results at the expense of greater number of equations.

4.1 Results: Scenario with request burst in one BS

Here, we show the ability of the proposed framework to capture the system
dynamics. We consider the topology in Fig. 1 and represent a flash crowd traffic
scenario in location L1. To this end, we set λi(t) = 2 requests/s, ∀t ∈ [0, 100],
for i ̸= 1, and λ1(t) = 12 when t ∈ [0, 60) and λ1(t) = 2 when t ∈ [60, 100];
this corresponds to a request burst affecting L1 for 60% of the observation time.
Recall that the radio resource allocation at the BSs is static, and that all BSs
have the same number of WiFi and LTE resources available.

Fig. 4 highlights the impact of the above flash crowd traffic scenario on the
load level of the different BSs and on the service provided by the network system.
Specifically, the plots depict, for every location, the temporal evolution of the
number of user agents in each state. Fig. 4(a) refers to L1 (i.e., the location
affected by the request burst), Fig. 4(b) refers to the neighboring locations L2

and L0, Fig. 4(c) represents the behavior of the users in L3 and L7, and finally
Fig. 4(d) reflects the situation of the users in all the remaining locations. Note
that, due to the ring shape of the topology and the considered traffic scenario,
the users in locations L0 and L2 exhibit the same behavior (except for the fact
that cw and ccw states are inverted); the same observation holds for the pairs
(L3,L7) and (L4,L6), as well as for L5, L4 and L6. Thus, for simplicity, in the
following we will refer only to L1, L2, L3 and L4.

To ease the discussion of the results, in the plots we added vertical lines to
indicate the following main events that take place in the system.
Event A: Because of the high traffic load, local WiFi resources at BS1 saturate
(red line in Fig. 4(a)). As a consequence, the local service rate drops below µmin

and the users migrate toward the neighboring WiFi intefaces (see the overlap-
ping blue and green lines in Fig. 4(a), and the red line in Fig. 4(b)).
Event B: Also the neighboring WiFi resources (e.g., BS2) saturate (see, e.g.,
blue and green lines in Fig. 4(a)), and users in L1 start accessing the Internet
through the local LTE resources (purple line). Also, since at BS2 all WiFi re-
sources are allocated to users in L1, the users in L2 migrate to the neighboring
(clock-wise) WiFi interface, i.e., BS3 (green line in Fig. 4(b), and red line in Fig.
4(c)).
Event C: In L1 the local LTE saturates (purple line in Fig. 4(a)) and users
start using LTE resources at neighboring BSs (light blue and gray lines).
Event D: All resources at BS1, as well as those in neighboring BSs that can be
accessed by users in L1, are saturated. As a consequence, requests start to be
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Fig. 4. Transient evolution of the user agents in locations L0, . . . , L7. Main events are
represented by vertical lines.

dropped (black line in Fig. 4(a)). For representation purposes, the curve repre-
senting the number of losses is truncated; it actually increases till the request
burst in L1 ends (event G), reaching a total of 135 dropped requests over the
whole observation time. We remark that such high losses could be avoided if a
dynamic resource allocation were implemented in the system.
Events E: All radio resources at BS2 are allocated to serve local users and those
in L1; the WiFi resources are saturated at BS3 too. It follows that users in L2

start accessing the Internet through LTE at BS3 (light blue line in Fig. 4(b));
in addition, there are some oscillations in the use of the WiFi resources at BS1
(blue line in Fig. 4(b)).
Events F: The situation arised in correspondence of event C persists. The WiFi
quality of service at BS3, however, further degrades, hence those users in L2 that
were accessing the BS3 WiFi resources move back to their local LTE (purple line
in Fig. 4(b)).
Events G: The request burst in L1 ends, thus the traffic load at all BSs start
to decrease. BS2 continues to serve the remaining requests by using both WiFi
(whose load increases, see the red line in Fig. 4(b)) and LTE resources.
Events H: The decrease of the traffic load in L1 allows the handover from LTE
(purple, light blue and gray lines, in Fig. 4(a)) to WiFi (red line). Note also that,
as the backlog of requests is served by BS1, the load of the local WiFi resources
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(red lines) settles at the same value as that exhbited by the other BSs (namely,
0.5, which is consistent with the generation rate of 2 requests per second).

5 Conclusions and future work

We presented an analytical framework based on the Markovian agent formalism,
which models next generation cellular networks. We envisioned a system where
base stations can provide Internet connectivity through the LTE as well as the
WiFi technology, and we highlighted how our framework can model the different
dynamics of the system reflecting the user traffic. By solving the model through
a mean-field based methodology, we also showed that the framework can well
capture the system behavior in flash-crowd scenarios.

Future work will focus on the model validation through simulation, as well
as on the study of dynamic resource allocation strategies and of user connectiv-
ity policies. Metrics such as throughput, latency, user energy consumption and
number of served requests will be evaluated. Furthermore, the model will be
extended to account for user mobility during data transfers.
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