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Abstract. Identifying artifacts or non-brain electrical signals in EEG time series 
is often a necessary but time-consuming preprocessing step, as many EEG 
analysis techniques require that the data be artifact free. Because of this, relia-
ble and accurate techniques for automated artifact detection are desirable in 
practice. Previous research has shown that coefficients obtained from autore-
gressive (AR) models can be used as feature vectors to classify among several 
different artifact conditions found in EEG. However, a statistical method for 
identifying significant AR features has not been presented. In this work we pro-
pose a method for determining the optimal AR features that is based on pena-
lized multinomial regression. Our results indicate that the size of the feature 
vector can be greatly reduced with minimal loss to classification accuracy. The 
features selected by this algorithm localize to specific channels and suggests a 
possible BCI implementation with increased computational efficiency than with 
using all available channels. We also show that the significant AR features pro-
duced by this approach correlate to known brain physiological properties. 

Keywords: Autoregressive (AR) model, Artifacts, Electroencephalography, 
classification, feature selection, multinomial regression, penalized regression, 
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1 Introduction 

In current EEG, the signal of interest is easily confounded by other biological sources 
of voltage, often stemming from muscle (EMG) or eye (EOG) movements. Great care 
is taken in laboratory settings to limit sources of artifacts, such as by having subjects 
limit any unnecessary movements or actions during the experiment, as these activities 
may confound the EEG activities of interest. After completing an experiment, re-
searchers still must remove artifacts in EEG signals to obtain a “clean” signal that can 
be further analyzed. This process often requires manual identification of artifact-
contaminated EEG, generally conducted by a panel of experts, which can be tedious 
and time-consuming, especially for large amounts of data. New applications of EEG 
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are being performed in more complex and realistic environments, where controlling 
the effects of artifacts is not feasible, such as in the detection of fatigue while driving 
[1]. Similarly, brain-computer interfaces (BCIs) are being developed for individuals 
who may have physical disabilities and as a means to improve performance in healthy 
individuals [2]. In these scenarios, traditional labor-intensive off-line analyses that 
require extensive computation to remove artifacts are not feasible. Thus, extending 
applications of EEG to more realistic scenarios will require automated artifact detec-
tion methods that are robust to both inter-subject and intra-subject variations.  

A common approach for the analysis of EEG signals is autoregressive (AR) model-
ing. Autoregressive models are linear models that relate signals to their past values. 
The coefficients of these models can characterize signal properties. Single-channel 
AR models relate signals to their own values, while multivariate models can model 
relationships between simultaneously-recorded time series. Useful characteristics of 
time series can be derived such as ordinary, partial or directed coherence [3, 4] and 
the direct transfer function (DTF) [5]. AR models are attractive representations in that 
they are compact and computationally efficient.  

One important feature of AR models is that the coefficients are invariant to scaling 
changes in the data, making AR approaches valuable in EEG analyses. AR modeling 
has been extensively used in EEG data analysis for feature extraction and classifica-
tion tasks [6], detection and classification of cardiac arrhythmias [7], and analysis of 
epilepsy data [8]. AR models have also been used for detecting artifacts in EEG sig-
nals. For example, Van de Velde et al  [9] used features such as the slope, signal 
variance and AR model coefficients to classify EEG segments into three artifact cate-
gories: None, Moderate and Severe.  

Our recent work [10] has shown that AR coefficients can be used alone to classify 
type-specific artifacts such as eye blinks and jaw movements. This method uses AR 
coefficients together with a support vector machine (SVM) classifier to distinguish 
among 8 different artifact conditions. While this is already a relatively efficient me-
thod, the high degree of correlation in the signals from neighboring channels and the 
close relationship of their resulting AR features exhibit a high degree of redundancy if 
all channels of a high-density cap are included. This suggests substantial room for 
streamlining the computation and very likely the hardware necessary for data acquisi-
tion. Channel elimination requires reliable methods for down-selecting channels, and 
the high degree of correlation among the features may make traditional feature selec-
tion techniques such as AIC (Akaike information criterion) or BIC (Bayesian infor-
mation criterion) unreliable.  There may also be situations where there are many 
more parameters than samples (the p >> N case), making this an ill-posed problem 
which cannot be solved using traditional methods. In addition to reasons of analysis, 
using fewer features has advantages for implementation in natural environments using 
portable EEG headsets, which usually have many fewer channels than high-density 
laboratory models. In this environment, processing must be done online and not all 
channels may be in full contact. Therefore it is valuable to investigate methods  
that can be used to select only the most important features for EEG signal classifica-
tion and to understand more clearly how information from different channel loci  
contribute to classification of different artifact types. 
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In this paper, we propose a method for determining significant signal features for 
artifact classification based on regularized multinomial regression. Multinomial re-
gression is an extension of logistic regression, where more than two response classes 
are present. We use the artifact classes found in [10] as the response levels while us-
ing the AR coefficients from EEG channels as the covariates in the model. Since the 
AR coefficients exhibit a high degree of multi-variable co-linearity, we use an elastic 
net penalization [11] of the standard maximum likelihood solution to determine the 
optimal features. This approach has been used successfully in situations where there 
are many more parameters than samples (p >> N) such as in microarray gene expres-
sion data and text classification [12]. The high degree of co-linearity can make the 
matrix inversions needed for standard maximum likelihood unreliable and inaccurate. 
Our results indicate that a significant reduction in the feature set size is possible with-
out loss in classification accuracy. 

2 Experimental Methods 

2.1 Experimental Setup 

The data used in this study was recorded using a 64-channel Biosemi ActiveTwo 
System and analyzed in a previous study [10]. A brief summary is given here. A total 
of seven participants performed a block of artifact-inducing facial and head move-
ments. All provided consent prior to participating, and methods were approved as 
required by U.S. Army human use regulations [13, 14]. The seven movements in-
cluded (abbreviations follow): clenching the jaw (JC); moving the jaw vertically 
(JM); blinking both eyes (EB); moving eyes leftward, then back to center (EL); mov-
ing eyes upwards, then back to center (EU); raising and lowering eyebrows (ME); and 
rotating head side-to-side (as in looking leftward), (RH). All movements were per-
formed sitting in front of a PC screen. The participants were instructed to perform 
each type of movement 20 times in concert with a consistently occurring tone. A 
baseline dataset was also recorded for each participant. Participants were told to look 
straight at the computer screen and to not move excessively in order to minimize 
muscle artifacts. We extracted 20 epochs of each artifact condition, plus 20 artifact-
free epochs from the baseline condition. Our total dataset consisted of 160 epochs, 20 
for each of 8 conditions for each of seven participants (see [10] for more details). 

3 Statistical Methods 

3.1 Autoregressive Models  

We use autoregressive (AR) model coefficients as features for artifact classification in 
EEG. Given a zero mean time series  ݖ௧, ݐ ൌ 1, … , ݊, an AR model of order p can be 
written as:  

௧ݖ  ൌ ∑ ௧ି௜ݖ௜ܣ ൅ ߳௧௣௜ୀଵ   (1) 
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where ܣ௜,, ݅ ൌ 1, … , ݌  are the AR model coefficients, and ߳௧~ܰሺ0, ଶሻߪ . The AR 
model estimates the signal characteristics by modeling the signal compared to the 
signal in the past p time points. In our analysis EEG channels are modeled individual-
ly using a second order AR model, and the AR coefficients are concatenated across 
channels to form the feature vector used for classification, resulting in a 128-
dimensional feature vector. We use the Burg method for fitting the AR coefficients 
[15]. 

3.2 Multinomial Regression with Elastic Net Penalization 

We treat the classification of artifact signals as a multinomial regression problem, 
where the artifact classes are the response levels, and the covariates are the AR 
coefficient features. Let ܻ א Թ be the response variable (consisting of artifact la-
bels) and ܺ א ԹC be the vector of AR coefficients (C = 128). Using the notation 
from [11], the multinomial regression model for the response variable G, having K 
> 2 levels, is: 

 Prሺܩ ൌ ݈|ܺሻ ൌ ௘ഁబ೗శ೉೅ഁ೗∑ ௘ഁబೖశ೉೅ഁೖೖ಼సభ   (2) 

where ݈ ൌ 1, … , -We fit this model using regularized multinomial maximum like .ܭ
lihood. Let ݌௟ሺݔ௜ሻ ൌ Prሺܩ ൌ ሻ and let ݃௜ݔ|݈ א ሼ1,2, … ,  ሽ be the ݅௧௛ response. Theܭ
penalized log-likelihood is: 

 maxሼఉబ೗,ఉ೗ሽభ಼ Թ಼ሺ೛శభሻא ቂଵே ∑ log௣೒೔ ሺݔ௜ሻ െ ߣ ∑ ఈܲሺߚ௟ሻ௄௟ୀଵே௜ୀଵ ቃ  (3) 

where ߣ is the penalty coefficient and: 

 ఈܲሺߚ௟ሻ ൌ ∑ ቂଵଶ ሺ1 െ ௟௝ଶߚሻߙ ൅ ௟௝|ሻቃ஼௝ୀଵߚ|ߙ   (4) 

is the elastic net penalty [11]. This penalty reduces to the ridge regression penalty 
when ߙ ൌ 0 (the standard ݈ଶ penalty) and the Lasso penalty when ߙ ൌ 1 (the stan-
dard ݈ଵ penalty). The Lasso penalty is a sparse penalty that forces many of the coeffi-
cients to be 0, with a small subset to be nonzero, while the ridge regression penalty 
shrinks the coefficients of highly correlated variables relative to each other. The pa-
rameter ߙ  controls the degree of homogeneity among the two penalties. Setting ߙ ൌ 1 െ ߳ for some small ߳ produces a sparse solution similar to Lasso as well as 
removing irregular behavior caused by a high degree of co-linearity among the cova-
riates. In our analysis we set ߙ ൌ .99 as we seek a sparse solution that is robust to 
high correlations among covariates. We use the GLMNET toolbox for MATLAB [11] 
to solve for the coefficients. The optimal ߣ  is found by using a grid search and  
maximizing the percentage of explained deviance (see [11] for more details).  
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3.3 Bootstrap Model Validation 

To verify the significance of the model parameters, we randomly partitioned our data 
into two sets, a training (60%) and testing (40%) set. The training set is used to fit the 
regularized multinomial model, while the testing set is used to validate the accuracy 
of the classification. We used B = 100 bootstrap samples and calculated the average 
accuracy across all the samples. Note that the significant covariates may change at 
each bootstrap iteration; therefore, in a separate analysis, the covariates that were 
significant in at least 75% of the bootstrap iterations were extracted and a ridge re-
gression model (ߙ ൌ 0) was used on only these covariates. A ridge regression model 
was used as high degree of co-linearity may still exist among these covariates.  

4 Results 

The results of our classification study are shown in Table 1. The first row within each 
subject grouping denotes the classification accuracies when using all available  
parameters in the data and using the radial basis function support vector machine 
(RBF-SVM) that was used in [10] for artifact classification. The results from this 
classification are taken as the baseline performance, which we compare our current 
methods against. The average classification accuracy over all subjects is 95.8% +/- 
2%. The second row denotes the classification accuracy from the elastic net penalty 
for the multinomial regression. The average performance in this case is not signifi-
cantly different than using the full feature vector with SVM (94.7% +/- 2.4%) while 
using significantly fewer parameters in the model (40.3). This result indicates that the 
AR feature vector is highly redundant and in fact the majority of features are not ne-
cessary to obtain the same classification accuracy. When using only the parameters 
that appeared in at least 75% of the bootstrap iterations (third row within subject), we 
see a slight reduction in accuracy of ~4-5%. A Kruskal Wallis ANOVA revealed only 
minimal evidence of a significant difference in the three classification probabilities 
(߯ଶ = 7.48, p < .03). Note that subject 7 saw no decrease in overall performance be-
tween the two models, while subjects 3 and 6 saw minimal reduction (3% or less). 

Figure 1 shows a channel plot of significant channels for all of the subjects in the 
analysis. The first plot (top left) denotes the standard configuration of the 64-channel 
Biosemi System (see Materials and Methods). Channels in red indicate that at least 
one of the two AR(2) coefficients was significant in at least 75% of bootstrap sam-
ples, while channels in blue indicate both the AR(2) coefficients were significant in at 
least 75% of bootstrap samples. We see that there is some degree of consistency 
across subjects, with channels located frontally significant, while a few channels 
around the edge of the cap are also consistently contributing to the discrimination. 

Figure 2 shows the classification performance for different criterion percentage 
values of the bootstrap models. The x-axis value at 0 denotes the classification  
percentage using the full feature vector (128 parameters) similar to the SVM-only 
classifier as in [10]. The bootstrap percentage value at 20 indicates that we use the 
parameters that occur in at least 20% of bootstrap models to build the multinomial 
regression. The two y-axes denote the percentage of the total number of parameters 
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used in the model (blue, left side, which varies by percentage criterion) and the result-
ing overall classification percentage (green, right side). For example, at the bootstrap 
percentage value of 20% (meaning parameters had to appear in at least 20% of the 
bootstrap models to be included for analysis), about 40% of the parameters were used 
(~54 parameters) while achieving a classification percentage of ~93%. While there is 
a dramatic drop in the percent of parameters remaining in the model, which tapers to a 
slower decline, we simultaneously see that the accuracy curve (green) remains fairly 
flat until after the 80% bootstrap percentage value, where a noticeable reduction (to 
about 83%) occurs. 

Table 1. Classification percentages for the elastic net regression models for classifying artifact 
conditions based on the average of 100 bootstrap models. Values in parentheses denote one 
standard deviation of the classification percentage. The first row within each subject denotes 
the average classification probabilities using all available parameters and using the SVM for 
classification. The second row denotes the average classification probability using elastic net 
penalization method, while the third row denotes the average classification probability only 
using parameters that were significant in >75% of the bootstrap models and using ridge 
regression to fit the multinomial model. The P column in the first row of each subject denotes 
the average number of significant parameters. Mean = average accuracy for all movements, JC 
= Jaw Clench, JM = Jaw Movement, EB = Eye Blink, EL = Eye Left Movement, EU = Eye Up 
Movement, ME = Move Eyebrows, RH = Rotate Head. 

Subj P Mean JC JM EB EL EU ME RH None 

1 

 

128 

38.7 

26 

96(1.8) 

95(2.4) 

91(3.6) 

99(2.8) 

99 (1.2) 

94(10.2) 

99(2.8) 

95(6.1) 

88(10.7) 

87(10.3) 

89(10.9) 

91(7.9) 

93(6.3) 

90(10.0) 

86(10.5) 

94(7.5) 

98(5.1) 

97(5.8) 

100(0) 

100(0) 

92(10.3) 

98(4.5) 

97(5.7) 

93(9.8) 

96(7.1) 

92(10.7) 

85(13.8) 

2 

 

 

128 

49.7 

24 

93(2.4) 

90(3.3) 

86(3.6) 

99(2.8) 

99 (3.2) 

99(2.1) 

92(7.3) 

84(13.8) 

77(14.4) 

100(0) 

98(3.7) 

98(4.3) 

97(5.5) 

92(8.3) 

90(11.8) 

86(10.6) 

90(10.9) 

81(14.5) 

89(7.3) 

89(8.5) 

86(10.3) 

88(10.3) 

75(13.3) 

84(13.3) 

89(12.3) 

84(12.3) 

75(14.7) 

3 

 

 

128 

35 

19 

97(2.3) 

98(1.6) 

95(2.1) 

100(0) 

95(7.3) 

99(2.1) 

89(10.1) 

94(9.4) 

90(9.4) 

100(0) 

99(2.1) 

99(2.4) 

100(0) 

100(0) 

98(5.2) 

92(8.3) 

100(0) 

84(8.6) 

100(0) 

99(1.2) 

98(4.2) 

97(6.8) 

96(5.8) 

95(6.4) 

96(6.1) 

100(0) 

94(6.5) 

4 

 

 

128 

37.9 

20 

94(3.6) 

94(2.8) 

89(3.6) 

100(0) 

99 (1.2) 

97(7.8) 

99(2.8) 

100(0) 

99(2.4) 

98(4.5) 

96(5.7) 

96(5.5) 

88(14.5) 

90(10.3) 

83(12.1) 

85(16.5) 

91(9.8) 

87(11.3) 

99(2.8) 

98(4.7) 

91(9.7) 

94(11.8) 

87(10.2) 

78(13.6) 

81(11.1) 

91(10.1) 

79(14.1) 

5 

 

 

128 

41.0 

23 

97(2.1) 

95(3.4) 

90(3.6) 

100(0) 

100(0) 

96(6.1) 

100(0) 

99(3.8) 

95(7.8) 

99(2.8) 

100(0) 

99(1.7) 

84(10.8) 

86(11.5) 

67(17.1) 

93(10.2) 

86(13.5) 

92(9.0) 

100(0) 

96(5.9) 

83(11.5) 

100(0) 

95(10.1) 

93(8.2) 

100(0) 

99(2.7) 

90(12.1) 

6 

 

 

128 

41.4 

26 

97(1.9) 

96(2.5) 

93(2.7) 

95(6.2) 

98(5.3) 

91(7.4) 

99(2.8) 

90(11.4) 

94(6.9) 

98(5.1) 

96(5.9) 

95(6.2) 

96(7.1) 

99(2.9) 

97(5.4) 

94(6.3) 

96(7.7) 

96(6.0) 

97(5.5) 

99(3.6) 

84(11.2) 

99(3.8) 

93(9.4) 

93(10.8) 

100(0) 

100(0) 

96(5.9) 

7 

 

 

128 

38.7 

27 

98(1.7) 

95(2.4) 

95(2.4) 

98(5.1) 

99 (1.2) 

97(5.2) 

95(7.4) 

95(6.1) 

94(7.2) 

93(6.2) 

89(10.9) 

84(12.3) 

99(2.8) 

90(10.0) 

95(6.2) 

100(0) 

98(5.1) 

91(9.2) 

97(5.5) 

100(0) 

97(6.1) 

100(0) 

97(5.7) 

100(0) 

100(0) 

92(10.7) 

100(0) 

 



332 V. Lawhern, W.D. Hairston, and K. Robbins 

 

Fig. 1. Plot of significant channels for all subjects in the study. The first plot depicts the 10-20 
channel orientation of a 64-channel Biosemi System. Channels with red stars indicate that at 
least one of the two AR(2) coefficients was significant in at least 75% of bootstrap samples, 
while channels with blue circles indicate both AR(2) coefficients were significant at this same 
criterion. 

 

Fig. 2. Plot of the average percentages of overall parameters and the classification percentage 
for different percentage of parameters observed in bootstrap models. The dashed green line 
denotes the classification accuracy, while the solid blue line denotes the percent of overall 
parameters used in the model.  
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5 Conclusion 

In this paper we have proposed a method for down-selecting the appropriate features 
necessary for accurate discrimination of EEG artifacts based on elastic net penalized 
regression models. The elastic net penalty applied to multinomial regression can ef-
fectively handle the high correlations and redundancy in the AR parameters and ap-
pears to be an effective general approach for feature selection in EEG analysis. In our 
analysis, using the elastic net penalty with multinomial regression effectively reduced 
the number of parameters by 60% without any loss in classification accuracy. The 
overall classification accuracy remained above 90% until we restricted the number of 
parameters to less than 20% of the overall parameters available (Fig 2). This indicates 
that a significant computational savings could be achievable if implemented in a BCI 
system. For example, data streamlining is critical in new wireless EEG headsets, 
where transmission bandwidth is limited by power. Although the high variability 
observed across subjects might limit the possibility of physically tailoring the channel 
locations to a specific user, one possible scheme might be to only record and broad-
cast data from the channels previously established to be most meaningful for that 
individual. Potential applications of this approach include monitoring subjects for 
artifact instances such as eye blink frequency and duration for detecting lapses in 
attention during experiments [16]. 

The results derived from artifact classification by the regularized multinomial re-
gression are corroborated by known brain physiological properties. For example, 
there were many frontal channels identified as being highly significant, which is ex-
pected given that these channels exhibit eye movement artifacts the most strongly. 
Meanwhile, there were also many significant channels located around the edges of the 
cap, while the majority of those in the center are less likely to significantly contribute 
to the discrimination. One possible reason for this is that muscle activations from the 
rotate head (RH) condition are picked up by the channels located near the neck. 
Channels near the ears are also significant in many subjects, as these channels are 
located near the jawline and pick up jaw clench and jaw movement artifacts. A few 
channels located at the top are most likely contributing to the model of the baseline 
condition, as these channels are minimally impacted by artifacts.   
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