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Abstract. To use in the Rapid Serial Visual Presentation (RSVP) Key-
boardTM, a brain computer interface (BCI) typing system developed by
our group, we propose a robust classification method of handling non-
stationarity in the electroencephelography (EEG) data that is caused
by artifacts and/or sensor failure. Considering the effect of these non-
stationarities, we build a mixture data model to use as EEG evidence
in the fusion with an n-gram language model to develop a robust clas-
sification algorithm. Using Monte Carlo simulations on the pre-recorded
EEG data containing sections with or without intentionally generated
artifacts we compare the typing performances of non-robust and robust
classification methods in terms of speed and accuracy.
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1 Introduction

Locked-In Syndrome can isolate a person from those closest to them by tak-
ing away their ability to communicate. We focus on empowering those who are
totally locked in, without control of any muscle group or eye gaze, by offering
them a voice. Brain computer interfaces (BCIs) offer a promising avenue to do
this. Generally, BCIs are methods which extract a person’s intent through mea-
surement of internal body signals. A common method, as we employ here, is
to use the voltage of a person’s scalp measured through Electroencephelography
(EEG). EEG is a relatively cheap, portable, non-invasive way of measuring brain
waves.

There are a number of EEG brain-phenomena which have been used to classify
user intent. In motor imagery, a BCI system is designed to detect the signal
generated by imaging the movement of a body part [1]. Additionally a steady
state visually evoked potential (SSVEP) appears when a user is exposed to a
periodic visual stimulus. Exposing a user to flickering checkerboard patterns, the
induced SSVEP signals can be used to learn the user’s gaze position from the
frequency content of their brain waves [2].

Moreover, the EEG signals are sufficient for simple letter selection in the con-
text of a typing algorithm for people with total-LIS. P300 signal, an event related
potential (ERP) which occurs when a user is surprised by a circumstance, is com-
monly used for BCI spelling systems. P300 speller and Berlin BCI’s Hexo Spell
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are well known examples of such systems [3], [4]. Different than these systems,
in our approach, we utilize Rapid Serial Visual Presentation (RSVP), which
presents the stimuli on the same location of the screen with temporal separation.
The accuracy and speed of P300 typing systems suffer from low signal-to-noise
ratio (SNR), the presence of artifacts in the signal and sensor failure and other
effects that cause non-stationarity in the observed EEG signals. In this paper,
we focus on a method to mitigate the influence of this non-stationarity on the
typing performance.

The artifacts and/or sensor failure change the underlying distribution of the
EEG data obtained from a BCI system causing a change in the optimal stimuli
classification rule and degrading the system performance. Our goal is to develop a
classification rule that is robust to changes in the assumed data distributions. To
achieve this, we estimate the distribution of the data under different conditions,
and using this distribution we develop our classification rule.

The rest of the paper is as follows. In Section 2, we explain the RSVP
KeyboardTM, and then in Section 3, we develop the proposed robust classifi-
cation rule. In Section 4, we demonstrate our experimental results, and conclude
our discussion in Section 5.

2 RSVP KeyboardTM

The RSVP KeyboardTMconsists of four main components: visual presentation,
feature extraction, language modeling and the classifier used to select a symbol.

2.1 Visual Presentation

RSVP is a presentation technique in which visual stimuli are displayed as a tem-
poral sequence at a fixed location on the screen. An example screen snapshot
from the current RSVP Keyboard prototype is given in Figure 1.In the current
study, RSVP contains random permutations of the 26 letters in English alpha-
bet, a space symbol and a backspace symbol (a total of 28 symbols to choose
from). We use the term ”sequence” to mean a showing of all 28 symbols. If
repetition is needed, all symbols are repeated multiple times to improve classifi-
cation accuracy until a preset desired confidence level or a maximum number of
repetition is reached. The process of repetition of sequences to choose a single
symbol is named as an epoch. In an epoch, we make the assumption that the
user shows positive intent for a single symbol.

2.2 Feature Extraction

The feature extraction starts by extracting stimulus-time-locked bandpass fil-
tered EEG signals for each stimulus in the sequence. Since physiologically, the
most relevant signal components are expected to occur within the first 500ms
following the stimuli, the [0,500] ms portion of the EEG following each stimulus
is extracted. At this stage it is important to design bandpass filters whose group
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Fig. 1. RSVP Keyboard interface

delay does not shift the physiological response to outside this interval. A linear
dimension reduction is applied on the temporal signals using Principal Com-
ponent Analysis in order to to remove zero variance directions (i.e. zero-power
bands based on the estimated covariance). The final feature vector to be clas-
sified is obtained as a concatenation of the PCA-projected temporal signals for
each channel. Regularized Discriminant Analysis (RDA) [5] is used to further
project the EEG evidence into scalar-feature for use in fusion with language
model evidence.

RDA is a modification of quadratic discriminant analysis (QDA). QDA yields
the optimal minimum-expected-risk Bayes classifier under the assumption of
multivariate Gaussian class distributions. This classifier depends on the inverses
of covariance matrices for each class, which are estimated from training data. To
keep the calibration phase short few training samples are acquired - especially for
the positive intent class. Therefore, the sample covariance estimates may become
singular or ill-conditioned for high-dimensional feature vectors, which is the case
here. RDA applies shrinkage and regularization on class covariance estimates.
Shrinkage forces class covariances closer towards the overall data covariance as:

Σ̂C(λ) =
(1− λ)ΣC + λΣ̂

(1− λ)NC + λN̂
(1)

Where λ is the regularization parameter, ΣC , NC are the class covariance esti-
mate and number of samples for classes C ∈ {0, 1} respectively. C = 0 is the
non-p300 class. Σ̂, N̂ is the total covariance estimate and number of samples
over all classes. Regularization is administered as:

Σ̂C(λ, γ) = (1 − γ)Σ̂C(λ) +
γ

d
T r[Σ̂Cλ]I (2)

where γ is the regularization parameter, /texttr[.] is the trace function and d is
the dimension of the data vector.

After regularization and shrinkage, the covariance and mean estimates for
each class are used in generating a scalar feature that minimizes expected risk
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under the Gaussianity assumption of class distributions. This is the log-likelihood
ratio

δRDA(x) = log
fN(x; μ̂1, Σ̂1(λ, γ)π̂1

fN(x; μ̂0, Σ̂0(λ, γ)π̂0

(3)

where μc, π̂c are estimates of class means and priors respectively; x is the data
vector to be classified and fN(x;μ,Σ) is the pdf of a multivariate Gaussian
(normal) distribution.

2.3 Language Modeling

In letter-by-letter typing, we adopt an n-gram language models at the symbol
level. These models estimate the conditional probability of a letter given by the
n − 1 previously typed letters. In this study, a 6-gram model that is trained
using a one-million sentence (210M character) sample of the NY Times portion
of the English Gigaword corpus. Corpus normalization and smoothing methods
are described in [6]. Finally, we note that the backspace symbol is assumed to
have a constant conditional probability of 0.05 and the conditional probabilities
of the other symbols are normalized accordingly.

2.4 Classifier

Using the class conditional score and the language model probabilities in a naive
Bayes’ rule based fusion model, we compute the posterior probabilities of symbols
given all the evidence. We compute these probabilities for each symbol after every
sequence, and a decision is made if one symbol probability reaches a desired
confidence level or number of repetitions exceeds a predefined limit.

3 Robust Classifier

In the classifier, the class conditional score distributions are used assuming that
these distributions remain stationary during a typing session. However, possible
changes in the distribution of the EEG data, possibly due to artifacts or sensor
failure, should be incorporated in the score distribution. For example, as we
also explain in Section 4, we apply our method on artifact reduction assuming
artifacts as possible reasons for changes in the distribution. We introduce a
variable a which describes the artifact class of a particular trial. Artifact classes
include a control group (no artifacts present), eye blink, jaw movement and
smiling. For use in the language model fusion, we compute the score conditional
distributions for the mixed conditional score distribution as

P (δRDA(x)|c) = ΣiP (δRDA(x)|c, ai)P (ai) (4)

where, i is the artifact index, c = 0 or 1 is the class label, P (ai) is the prior for
artifact ai. For each class and artifact P (δRDA(x)|c, ai) is computed using (2.2).
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4 Experiments

Four healthy operators participated in this study. For each subject, four RSVP
sessions with pre-designated targets were performed using a 16-channel
g.USBamp and g.Butterfly electrodes (g.Tec, Graz, Austria) in one sitting. The
second session was the control session, while the first, third and fourth sessions
had the subjects produce intentional jaw movement, eye blinks, and face muscle
artifacts, respectively. Subjects continued to attend to the RSVP presentation
during all sessions. This data is used to build and test robust and non-robust
fusion models using 10-fold cross validation as explained in Section 3

We perform Monte Carlo simulations on multiple pre-recorded calibration
data sets to build kernel density estimates (KDEs) of the RDA score distribution
for target symbol present and not-present conditions.

We select ten different sentences and aim to spell a phrase in each sentence
(called the copy phrase task). Task difficulty is determined by requiring each
letter of the target phrase to have a likelihood ratio against the highest likelihood
competing non-target letter within a specified interval: (1) Hard: (0.3,0.5], (2)
Very hard: (0,0.3].

In summary, we model typing performance by building a distribution of RDA
scores from real training data under different artifact conditions. This model
is then simulated typing 10 sentences 15 times to compare the performances
of robust and non-robust classifiers. We report our results in terms of typing
accuracy and duration (total seconds per word completion), see Figures 2 and 3.
For reference, we include the area under the curve (AUC) values for each subject
under all artifact conditions in 1.

Table 1. AUC values

Subject 1 Subject 2 Subject 3 Subject 4

No-Artifact .7644 .8298 .6488 .8103
Jaw Movement .6079 .8026 .6370 .6527

Smile .7105 .8423 .6506 .7023
Eye Blink .6561 .7641 .4710 .7373

4.1 Typing Accuracy

As can be noted in Figure 2, typing accuracy changes dramatically between sub-
jects. In the simulation, as with other trials we’ve performed, subject 3 struggles
to produce accurate classifications. Additionally, we note that robust classifica-
tion consistently outperforms non-robust methods. The performance advantage
of our method is correlated to the magnitude of the difference in AUC between
the control and artifact classes. In other words, the stronger the drop in AUC
when an artifact is introduced (Table 1), the greater the performance benefit of
using robust fusion.
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Fig. 2. Accuracy vs artifact type

4.2 Typing Duration

From Figure 3, we immediately notice that the robust case typically types faster
than the non-robust case. Additionally, considering the AUC values from Table 1
and the results from Figure 3, we notice that higher AUC values offer quicker
typing performance. Both these effects share a common motivation. The typing
system repeats sequences until a sufficiently high confidence threshold is reached.
Accurate typing, because of robust methods or high user AUC, will yield fast
typing.

Fig. 3. Typing duration vs artifact type
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5 Conclusions

We designed a robust classification method for ERP detection in a BCI typing
paradigm. We tested the proposed method on the RSVP KeyboardTM, which is
an in-house BCI typing system. Considering the possible changes in the EEG
data, we developed a mixture density model for class conditional EEG evidence
to use in the fusion with n-gram language model. To compare the robust and non-
robust classification methods, using pre-recorded calibration data, we simulated
the performance of four subjects typing 10 sentences 15 times and reported
results on accuracy and speed of their typing.

Each of our simulations was run under a single artifact class (rather than a
mixture of multiple classes). When implemented with a true mixture of arti-
fact classes we observed nearly identical results between robust and non-robust
methods. We suggest this is due to the ability of our classifier to accumulate
additional EEG evidence when an input doesn’t reach the confidence threshold.
In the true mixture case, where artifacts aren’t very frequent, the classifier is
bound to receive useful information during the following sequences. For further
analysis, we are interested in examining the cause of mis-classified symbols. We
hypothesize that the risk in artifacts is not readily seen in their prior distribu-
tion as artifacts frequently occur in bursts during operation. Future artifact class
models which are conditioned on previous artifact classes, allowing for bursts of
artifacts to occur while still keeping artifact priors at reasonable levels, will be
studied.
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