
Big Data Begets Big Database Theory�

Dan Suciu

University of Washington

1 Motivation

Industry analysts describe Big Data in terms of three V’s: volume, velocity,
variety. The data is too big to process with current tools; it arrives too fast
for optimal storage and indexing; and it is too heterogeneous to fit into a rigid
schema. There is a huge pressure on database researchers to study, explain, and
solve the technical challenges in big data, but we find no inspiration in the
three Vs. Volume is surely nothing new for us, streaming databases have been
extensively studied over a decade, while data integration and semistructured has
studied heterogeneity from all possible angles.

So what makes Big Data special and exciting to a database researcher, other
for the great publicity that our field suddenly gets? This talk argues that the
novelty should be thought along different dimensions, namely in communication,
iteration, and failure.

Traditionally, database systems have assumed that the main complexity in
query processing is the number of disk IOs, but today that assumption no longer
holds. Most big data analysis simply use a large number of servers to ensure
that the data fits in main memory: the new complexity metric is the amount of
communication between the processing nodes, which is quite novel to database
researchers.

Iteration is not that new to us, but SQL has adopted iteration only lately,
and only as an afterthought, despite amazing research done on datalog in the
80s [1]. But Big Data analytics often require iteration, so it will play a center
piece in Big Data management, with new challenges arising from the interaction
between iteration and communication [2].

Finally, node failure was simply ignored by parallel databases as a very rare
event, handled with restart. But failure is a common event in Big Data manage-
ment, when the number of servers runs into the hundreds and one query may
take hours [3].

The Myria project [4] at the University of Washington addresses all three di-
mensions of the Big Data challenge. Our premise is that each dimension requires
a study of its fundamental principles, to inform the engineering solutions. In this
talk I will discuss the communication cost in big data processing, which turns
out to lead to a rich collection of beautiful theoretical questions; iteration and
failure are left for future research.

� This work was partially supported by NSF IIS-1115188, IIS-0915054 and
IIS-1247469.

D. Olteanu, G. Gottlob, and C. Schallhart (Eds.): BNCOD 2013, LNCS 7968, pp. 1–5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 D. Suciu

2 The Question

Think of a complex query on a big data. For example, think of a three-way join
followed by an aggregate, and imagine the data is distributed on one thousand
servers. How many communication rounds are needed to compute the query?
Each communication round typically requires a complete reshuffling of the data
across all 1000 nodes, so it is a very expensive operation, we want to minimize the
number of rounds. For example, in MapReduce [5], a MR job is defined by two
functions: map defines how the data is reshuffled, and reduce performs the actual
computation on the repartitioned data. A complex query requires several MR
jobs, and each job represents one global communication round. We can rephrase
our question as: how many MR jobs are necessary to compute the given query?
Regardless of whether we use MR or some other framework, fewer communication
rounds mean less data exchanged, and fewer global synchronization barriers. The
fundamental problem that we must study is: determine the minimum number of
global communication rounds required to compute a given query.

3 The Model

MapReduce is not suitable at all for theoretical lower bounds, because it allows
us to compute any query in one round: simply map all data items to the same
intermediate key, and perform the entire computation sequentially, using one
reducer. In other words, the MR model does not prevent us from writing a
sequential algorithm, and it is up to the programmer to avoid that by choosing
a sufficiently large number of reducers.

Instead, we consider the following simple model, called the Massively Parallel
Communication (MPC) model, introduced in [6]. There are a fixed number of
servers, p, and the input data of size n is initially uniformly distributed on the
servers; thus, each server holds O(n/p) data items. The computation proceeds
in rounds, where each round consists a computation step and a global com-
munication step. The communication is many-to-many, allowing a total reshuf-
fling of the data, but with the restriction that each server receives only O(n/p)
amount of data. The servers have unrestricted computational power, and un-
limited memory: but because of the restriction on the communication, after a
constant number of rounds, each server sees only a fraction O(n/p) of the input
data. In this model we ask the question: given a query, how many rounds are
needed to compute it? A naive solution that sends the entire data to one server
is now ruled out, since the server can only receive O(n/p) of the data.

A very useful relaxation of this model is one that allows each server to receive
O(n/p×pε) data items, where ε ∈ [0, 1]. Thus, during one communication round
the entire data is replicated by a factor pε; we call ε the space exponent. The
case ε = 0 corresponds to the base model, while the case ε = 1 is uninteresting,
because it allows us to send the entire data to every server, like in the MapReduce
example.



Big Data Begets Big Database Theory 3

4 The Cool Example

Consider first computing a simple join: q(x, y, z) = R(x, y), S(y, z). This can be
done easily in one communication round. In the first step, every server inspects
its fragment of R, and sends every tuple of the form R(a1, b1) to the destination
server with number h(b1), where h is a hash function returning a value between
1 and p; similarly, it sends every tuple S(b2, c2) to server h(b2). After this round
of communication, the servers compute the join locally and report the answers.

A much more interesting example is q(x, y, z) = R(x, y), S(y, z), T (z, y).
When all three symbols R,S, T denote the same relation, then the query com-
putes all triangles in the data1, a popular task in Big Data analysis [7]. Obviously,
this query can be computed in two communication rounds, doing two separate
joins. But, quite surprisingly, it can be computed in a single communication
round! The underlying idea has been around for 20 years [8,9,7], but, to our
knowledge, has not yet been deployed in practice. We explain it next.

To simplify the discussion, assume p = 1000 servers. Then each server can
be uniquely identified as a triple (i, j, k), where 1 ≤ i, j, k ≤ 10. Thus, the
servers are arranged in a cube, of size 10× 10× 10. Fix three independent hash
functions h1, h2, h3, each returning values between 1 and 10. During the single
communication round, each server sends the following:

– R(a1, b1) to the servers (h1(a1), h2(b1), 1), . . . , (h1(a1), h2(b1), 10)
– S(b2, c2) to the servers (1, h2(b2), h3(c2)), . . . , (10, h2(b2), h3(c2))
– T (c3, a3) to the servers (h1(a3), 1, h3(c3)), . . . , (h1(a3), 10, h3(c3))

In other words, when inspecting R(a1, b1) a server can compute the i and j
coordinates of the destination (i, j, k), but doesn’t know the k coordinate, and
it simply replicates the tuple to all 10 servers. After this communication step,
every server computes locally the triangles that it sees, and reports them. The
algorithm is correct, because every potential triangle (a, b, c) is seen by some
server, namely by (h1(a), h2(b), h3(c)). Moreover, the data is replicated only 10
times. The reader may check that, if the number of servers is some arbitrary
number p, then the amount of replication is p1/3, meaning that the query can
be computed in one communication round using a space exponent ε = 1/3.

It turns out that 1/3 is the smallest space exponent for which we can compute
q in one round! Moreover, a similar result holds for every conjunctive query
without self-joins, as we explain next.

5 Communication Complexity in Big Data

Think of a conjunctive query q as a hypergraph. Every variable is a node, and
every atom is an hyperedge, connecting the variables that occur in that atom.
For our friend R(x, y), S(y, z), T (z, y) the hypergraph is a graph with three nodes

1 The query q(x, y, z) = R(x, y), R(y, z), R(z, x) reports each triangle three
times; to avoid double counting, one can modify the query to q(x, y, z) =
R(x, y), R(y, z), R(z, x), x < y < z.



4 D. Suciu

x, y, z and three edges, denoted R,S, T , forming a triangle. We will refer inter-
changeably to a query as a hypergraph.

A vertex cover of a query q is a subset of nodes such that every edge contains at
least one node in the cover. A fractional vertex cover associates to each variable
a number ≥ 0 such that for each edge the sum of the numbers associated to
its variables is ≥ 1. The value of the fractional vertex cover is the sum of the
numbers of all variables. The smallest value of any fractional vertex cover is
called the fractional vertex cover of q and is denoted τ∗(q).

For example, consider our query q(x, y, z) = R(x, y), S(y, z), T (z, y). Any
vertex cover must include at least two variables, e.g. {x, y}, hence its value is 2.
The fractional vertex cover 1/2, 1/2, 1/2 (the numbers correspond to the vari-
ables x, y, z) has value 3/2 and the reader may check that this is the smallest
value of any fractional vertex cover; thus, τ∗(q) = 3/2. The smallest space ex-
ponent needed to compute a query in one round is given by:

Theorem 1. [6] If ε < 1 − 1/τ∗(q) then the query q cannot be computed in a
single round on the MPC model with space exponent ε.

To see another example, fix some k ≥ 2 and consider a chain query Lk =
R1(x0, x1), R2(x1, x2), . . . , Rk(xk−1, xk). Its optimal fractional vertex cover is
0, 1, 0, 1, . . . where the numbers correspond to the variables x0, x1, x2, . . . Thus,
τ∗(Lk) = �k/2�, and the theorem says that Lk cannot be computed with a space
exponent ε < 1− 1/�k/2�.

What about multiple rounds? For a fixed ε ≥ 0, let kε = 2�1/(1− ε)�; this is
the longest chain Lkε computable in one round given the space exponent ε. Let
diam(q) denote the diameter of the hypergraph q. Then:

Theorem 2. [6] For any ε ≥ 0, the number of rounds needed to compute q
within a space exponent ε is at least �logkε

(diam(q))�.

6 The Lessons

An assumption that has never been challenged in databases is that we always
compute one join at a time2: a relational plan expresses the query as a sequence of
simple operations, where each operation is either unary (group-by, selection, etc),
or is binary (join). We never use plans with other than unary or binary operators,
and never compute a three-way join directly. In Big Data this assumption needs
to be revisited. By designing algorithms for multi-way joins, we can reduce the
total communication cost for the query. The theoretical results discussed here
show that we must also examine query plans with complex operators, which
compute an entire subquery in one step. The triangle query is one example:
computing it in one step requires that every table be replicated p1/3 times (e.g.
10 times, when p = 1000), while computing it in two steps requires reshuffling
the intermediate result R(x, y), S(y, z), which, on a graph like twitter’s Follows
relation, is significantly larger than ten times the input table.

2 We are aware of one exceptions: the Leap Frog join used by LogicBlox [10].



Big Data Begets Big Database Theory 5

References

1. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

2. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The haloop approach to large-scale
iterative data analysis. VLDB J. 21(2), 169–190 (2012)

3. Upadhyaya, P., Kwon, Y., Balazinska, M.: A latency and fault-tolerance optimizer
for online parallel query plans. In: SIGMOD Conference, pp. 241–252 (2011)

4. Myria, http://db.cs.washington.edu/myria/
5. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.

In: OSDI, pp. 137–150 (2004)
6. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query process-

ing. In: PODS (2013)
7. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In:

WWW, pp. 607–614 (2011)
8. Ganguly, S., Silberschatz, A., Tsur, S.: Parallel bottom-up processing of datalog

queries. J. Log. Program. 14(1&2), 101–126 (1992)
9. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:

EDBT, pp. 99–110 (2010)
10. Veldhuizen, T.L.: Leapfrog triejoin: a worst-case optimal join algorithm. CoRR

abs/1210.0481 (2012)

http://db.cs.washington.edu/myria/

	Big Data Begets Big Database Theory
	Motivation
	The Question
	The Model
	The Cool Example
	Communication Complexity in Big Data
	The Lessons


