

Edinburgh Research Explorer

Querying Big Social Data

Citation for published version:
Fan, W 2013, Querying Big Social Data. in Big Data: 29th British National Conference on Databases,
BNCOD 2013, Oxford, UK, July 8-10, 2013. Proceedings. vol. 7968, Springer Berlin Heidelberg, pp. 14-28.
https://doi.org/10.1007/978-3-642-39467-6_5

Digital Object Identifier (DOI):
10.1007/978-3-642-39467-6_5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Big Data

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-642-39467-6_5
https://doi.org/10.1007/978-3-642-39467-6_5
https://www.research.ed.ac.uk/en/publications/818ac2a6-e48a-4bcd-aeee-0faab2f92d40

Querying Big Social Data

Wenfei Fan�

University of Edinburgh and Beihang University

Abstract. Big data poses new challenges to query answering, from com-
putational complexity theory to query evaluation techniques. Several
questions arise. What query classes can be considered tractable in the
context of big data? How can we make query answering feasible on big
data? What should we do about the quality of the data, the other side
of big data? This paper aims to provide an overview of recent advances
in tackling these questions, using social network analysis as an example.

1 Introduction

Big data refers to data that cannot be processed or analyzed using traditional
processes or tools, e.g., when the volume of data is “big” such as in PetaByte
(PB, 1015 bytes) or ExaByte (EB, 1018 bytes). As an example, let us consider
social networks, which are typically modeled as graphs. In such a graph, a node
denotes a person, carrying attributes such as label, keywords, blogs, comments,
rating. Its edges indicate relationships such as marriage, friendship, co-work,
advise, support and recommendation. Social graphs are often “big”. For example,
Facebook has more than 1 billion users with 140 billion links1.

Big data introduces challenges to query answering. As an example, consider
graph pattern matching, which is commonly used in social network analysis.
Given a social graph G and a pattern query Q, graph pattern matching is to find
the set M(Q,G) of all matches for Q in G, as illustrated below.

Example 1. Consider the structure of a drug trafficking organization [30], de-
picted as a graph pattern Q0 in Fig. 1. In such an organization, a “boss” (B)
oversees the operations through a group of assistant managers (AM). An AM su-
pervises a hierarchy of low-level field workers (FW), up to 3 levels as indicated by
the edge label 3. The FWs deliver drugs, collect cash and run other errands. They
report to AMs directly or indirectly, while the AMs report directly to the boss. The
boss may also convey messages through a secretary (S) to the top-level FWs as
denoted by the edge label 1. A drug ring G0 is also shown in Fig. 1 in which
A1, . . . , Am are AMs, while Am is both an AM and the secretary (S).

To identify all suspects in the drug ring, we want to find matches M(Q0, G0)
for Q0 in G0. Here graph pattern matching is traditionally defined as follows:

� Fan is spported in part by EPSRC EP/J015377/1, UK, the RSE-NSFC Joint Project
Scheme, and the 973 Program 2012CB316200 and NSFC 61133002 of China.

1 http://www.facebook.com/press/info.php?statistics

B . . .A1

B

WW W

W W W

W W

Am
Q0

AM

FW

3

3

1
S

G
S 0

Fig. 1. Drug trafficking: Pattern and social graphs

(1) subgraph isomorphism [35]: M(Q0, G0) is the set of all subgraphs G′ of G0

isomorphic to Q0, i.e., there exists a bijective function h from the nodes of Q0 to
those of G′ such that (u, u′) is an edge in Q0 iff (h(u), h(u′)) is an edge in G′; or

(2) graph simulation [28]: M(Q0, G0) is the maximum binary relation S ⊆
VQ×V , where VQ and V are the set of nodes in Q0 andG0, respectively, such that

– for each node u in VQ, there exists a node v in V such that (u, v) ∈ S, and
– for each pair (u, v) ∈ S and each edge (u, u′) in Q, there exists an edge

(v, v′) in G such that (u′, v′) ∈ S. �

No matter whether graph pattern matching is defined in terms of subgraph
isomorphism or graph simulation, it involves data-intensive computation when
graph G is “big”. To develop effective algorithms for computing the set M(Q,G)
of matches for Q in big G, we need to answer the following questions.

(1) What query classes are tractable on big data? A class Q of queries is tradi-
tionally considered tractable if there exists an algorithm for answering its queries
in time bounded by a polynomial (PTIME) in the size of the input, e.g., a social
graph and a pattern query [1]. That is, Q is considered feasible if its worst-case
time complexity is PTIME. For graph pattern queries, it is NP-complete to de-
termine whether there exists a match for Q in G when matching is defined with
subgraph isomorphism, and it takes O(|Q|2 + |Q||G| + |G|)2 time to compute
M(Q,G) with graph simulation [21]. As will be seen shortly, however, PTIME or
even linear-time algorithms are often beyond reach in the context of big data!
This suggests that we revise the traditional notion of tractable queries, so that
we can decide, given Q, whether it is feasible to evaluate the queries of Q on big
data.

(2) How can we make query answering feasible on big data? When a query class
Q is not tractable on big data, we may be able to transform Q to an “equivalent”
class Q′ of queries that operate on smaller datasets. That is, we reduce the big
data for Q to “small data” for Q′, such that it is feasible to answer the queries
of Q. When querying big data, one often thinks of MapReduce [7] and Hadoop2.
Nevertheless, MapReduce and Hadoop are not the only way to query big data.
We will see that this is the case for graph pattern matching with simulation.

2 http://hadoop.apache.org/

(3) In the context of big data it is often cost-prohibitive to compute exact answers
to our queries. That is, algorithms for querying big data are often necessarily in-
exact. This is particularly evident when we want to find matches for our patterns
in big social graphs based on subgraph isomorphism. Hence we may have to settle
with heuristics, “quick and dirty” algorithms which return feasible answers. To
this end, we naturally want approximation algorithms, i.e., heuristics which find
answers that are guaranteed to be not far from the exact answers [6, 36]. How-
ever, traditional approximation algorithms are mostly PTIME algorithms for NP
optimization problems (NPOs). In contrast, we need approximation algorithms
for answering queries on big data rather than for NPOs, even when the queries
are known in PTIME, such that the algorithms are tractable on big data.

(4) When we talk about the challenges introduced by big data, we often refer
to the difficulty of coping with the sheer size of the data only. Nonetheless, the
quality of the data is as important and challenging as its quantity. When the
quality of the data is poor, answers to our queries in the data may be inaccurate
or even incorrect! Indeed, one of the dimensions of big data is its veracity, “as 1
in 3 business leaders don’t trust the information they use to make decisions”3.
Referring to Example 1, poor data may lead to false accusation against innocents
or letting go of real drug dealers. Already challenging even for “small” relational
data, data quality management is far more difficult for big data.

This paper provides an overview of recent advances in tackling these ques-
tions. We present a revision of tractable query classes in the context of big
data [10] (Section 2), and a set of effective techniques beyond MapReduce for
graph pattern matching with simulation [12–17, 27] (Section 3). We revisit tra-
ditional approximation algorithms for querying big data [5] (Section 4). Finally,
we highlight the need for studying the quality of big data (Section 5).

2 Tractable Query Classes on Big Data

We start with an examination of query evaluation on big data, including but not
limited to graph pattern matching. To develop algorithms for answering a class
Q of queries on big data, we want to know whether Q is tractable, i.e., whether
its queries can be evaluated on the big data within our available resources such
as time. Traditionally Q is considered (a) “good” (tractable) if there exists a
PTIME algorithm for evaluating its queries, (b) “bad” (intractable) if it is NP-
hard to decide, given a query Q ∈ Q, a dataset D and an element t, whether
t ∈ Q(D), i.e., t is an answer to Q in D; and (c) “ugly” if the membership
problem is EXPTIME-hard. This is, however, no longer the case when it comes
to big data.

Example 2. Consider a dataset D of 1PB. Assuming the fastest Solid State
Drives (SSD) with disk scanning speed of 6GB/s4, a linear scan of D will take at

3 http://www-01.ibm.com/software/data/bigdata/
4 http://www.fastestssd.com/featured/

ssd-rankings-the-fastest-solid-state-drives/#pcie

http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/#pcie
http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/#pcie

least 166,666 seconds or 1.9 days. That is, even linear-time algorithms, a special
case of PTIME algorithms, may no longer be feasible on big data! �

There has been recent work on revising the traditional computational complex-
ity theory to characterize data-intensive computation on big data. The revisions
are defined in terms of computational costs [10], communication (coordination)
rounds [20, 25], or MapReduce steps [24] and data shipments [2] in the MapRe-
duce framework [7]. Here we focus on computational costs [10].

One way to cope with big data is to separate offline and online processes.
We preprocess the dataset D by, e.g., building indices or compressing the data,
yielding D′, such that all queries of Q on D can be evaluated on D′ online effi-
ciently. When the data is mostly static or when D′ can be maintained efficiently,
the preprocessing step can be considered as an offline process with a one-time
cost.

Example 3. Consider a classQ1 of selection queries. A queryQ1 ∈ Q1 on a relation
D is to find whether there exists a tuple t ∈ D such that t[A] = c, where A is an
attribute ofD and c is a constant. A naive evaluation of Q1 would require a linear
scan ofD. In contrast, we can first build aB+-tree on the values of theA column in
D, in a one-time preprocessing step offline. Thenwe can answerall queriesQ1 ∈ Q1

onD inO(log|D|) time using the indices. That is, we no longer need to scanDwhen
processing each query inQ1.WhenD consists of 1PBof data, we can get the results
in 5 seconds with the indices rather than 1.9 days. �

The idea has been practiced by database people for decades. Following this,
below we propose a revision of the traditional notion of tractable query classes.

To be consistent with the complexity classes of decision problems, we consider
Boolean queries, such as Boolean selection queries given in Example 3. We rep-
resent a class Q of Boolean queries as a language S of pairs 〈D,Q〉, where Q is
a query in Q, D is a database on which Q is defined, and Q(D) is true. In other
words, S can be considered as a binary relation such that 〈D,Q〉 ∈ S if and only
if Q(D) is true. We refer to S as the language for Q.

We say that a language S of pairs is in complexity class CQ if it is in CQ to
decide whether a pair 〈D,Q〉 ∈ S. Here CQ may be the sequential complexity
class P or the parallel complexity class NC, among other things. The complexity
class P consists of all decision problems that can be solved by a deterministic
Turing machine in PTIME. The parallel complexity class NC, a.k.a. Nick’s Class,
consists of all decision problems that can be solved by taking polynomial time
in the logarithm of the problem size (parallel polylog-time) on a PRAM (parallel
random access machine) with polynomially many processors (see, e.g., [18, 22]).

Π-Tractable Queries. Consider complexity classes CP and CQ. We say that a
class Q of queries is in (CP,CQ) if there exist a CP-computable preprocessing
function Π and a language S′ of pairs such that for all datasets D and queries
Q ∈ Q,

– 〈D,Q〉 is in the language S of pairs for Q if and only if 〈Π(D), Q〉 ∈ S′, and
– S′ is in CQ, i.e., the language S′ of pairs 〈Π(D), Q〉 is in CQ.

Intuitively, function Π(·) preprocesses D and generates another structure D′ =
Π(D) offline, in CP. After this, for all queries Q ∈ Q that are defined on D,
Q(D) can be answered by evaluating Q(D′) online, in CQ. Here CP indicates the
cost we can afford for preprocessing, and CQ the cost of online query processing.
Depending on D′ = Π(D), we may let CQ be P if D′ is sufficiently small such
that PTIME evaluation of Q(D′) is feasible, i.e., if Π(D) reduces big data D to
“small data” D′. Otherwise we may choose NC for CQ, in parallel polylog-time.

We use ΠT0
Q to denote the set of all (P,NC) query classes, referred to as the set

of Π-tractable query classes, i.e., when CP is P and CQ is NC. We are particularly
interested in ΠT0

Q for the following reasons. (a) As shown in Example 3, parallel
polylog-time is feasible on big data. Moreover, NC is robust and well-understood.
It is one of the few parallel complexity classes whose connections with classical
sequential complexity classes have been well studied (see, e.g., [18]). Further, a
large class of NC algorithms can be implemented in the MapReduce framework,
which is widely used in cloud computing and data centers for processing big
data, such that if an NC algorithm takes t time, than its corresponding MapRe-
duce counterpart takes O(t) MapReduce rounds [24]. (b) We consider PTIME
preprocessing feasible since it is a one-time price and is performed off-line. In
addition, P is robust and well-studied [18]. Moreover, by requiring that Π(·)
is in PTIME, the size of the preprocessed data Π(D) is bounded by a polyno-
mial. When PTIME is too big a price to pay, we may preprocess D with parallel
processing, by allocating more resources (e.g., computing nodes) to it than to
online query answering. Here we simply use PTIME for CP to focus on the main
properties of query answering with preprocessing.

Example 4. As shown in Example 3, query class Q1 is in ΠT0
Q. Indeed, function

Π(·) preprocesses D by building B+-trees on attributes of D in PTIME. After
this, for any (A, c) denoting a query in Q1, whether there exists t ∈ D such that
t[A] = c can be decided in O(log|D|) time by using the indices Π(D). �

Making Query Classes Π-Tractable. Many query classes Q are not Π-
tractable. For instance, unless P = NC, we are not aware of any NC algorithm
for graph pattern matching even when matching is defined in terms of graph
simulation. Nonetheless, some Q that is not in ΠT0

Q can actually be transformed
to a Π-tractable query class by means of re-factorizations, which re-partition
the data and query parts of Q and identify a data set for preprocessing, such
that after the preprocessing, its queries can be subsequently answered in parallel
polylog-time.

More specifically, we say that a class Q of queries can be made Π-tractable if
there exist three NC computable functions π1(·), π2(·) and ρ(·, ·) such that for
all 〈D,Q〉 in the language S of pairs for Q,

– D′ = π1(D,Q), Q′ = π2(D,Q), and 〈D,Q〉 = ρ(D′, Q′), and
– the query class Q′ = {Q′ | Q′ = π2(D,Q), 〈D,Q〉 ∈ S} is Π-tractable.

Intuitively, π1(·) and π2(·) re-partition x = 〈D,Q〉 into a “data” part D′ =
π1(x) and a “query” part Q′ = π2(x), and ρ is an inverse function that restores
the original instance x from π1(x) and π2(x). Then the data part D′ can be
preprocessed such that the queries Q′ ∈ Q′ can then be answered in parallel
polylog-time. We denote by ΠTQ the set of all query classes that can be made
Π-tractable.

A form of NC-reductions �NC
fa is defined for ΠTQ, which is transitive (i.e., if

Q1 �NC
fa Q2 and Q2 �NC

fa Q3 then Q1 �NC
fa Q3) and compatible with ΠTQ (i.e., if

Q1�NC
fa Q2 andQ2 is in ΠTQ, then so isQ1). The following results are known [10]:

– NC ⊆ ΠT0
Q ⊆ P.

– Unless P = NC, ΠT0
Q ⊂ P, i.e., not all PTIME queries are Π-tractable.

– There exists a complete query class Q for ΠTQ under �NC
fa reductions, i.e.,

Q is in ΠTQ and moreover, for all query classes Q′ ∈ ΠTQ, Q′ �NC
fa Q.

– All query classes in P can be made Π-tractable by transforming them to a
query class in ΠTQ via �NC

fa reductions.

3 Graph Pattern Matching in Big Social Data

We now study how to compute matches M(Q,G) for a pattern Q in a big
social graph G. We focus on matching defined in terms of graph simulation
in this section, which is widely used in social data analysis such as detecting
social communities and positions [4, 33]. As remarked earlier, it takes O(|Q|2 +
|Q||G|+ |G|)2 time to compute M(Q,G) [21], a prohibitive cost when G is big.
Nonetheless, we can leverage a variety of techniques commonly used by database
people to reduce G to G′ of smaller size via preprocessing, such that M(Q,G′)
can subsequently be computed effectively for all patterns Q. Combinations of
these techniques outperform direct implementation of simulation algorithms in
MapReduce.

We first introduce a revision of graph simulation [28] for social data analysis
(Section 3.1). We then present a set of matching techniques (Sections 3.2–3.6).

3.1 Bounded Simulation: Graph Simulation Revisited

Recall Example 1: we want to identify suspects involved in a drug ring by com-
puting matches M(Q0, G0) for pattern Q0 in graph G0. However, observe the
following. (1) Nodes AM and S in Q0 should be mapped to the same node Am

in G0, which is not allowed by a bijection. (2) The node AM in Q0 corresponds
to multiple nodes A1, . . . , Am in G0. This relationship cannot be captured by a
function from the nodes of Q0 to the nodes of G0. (3) The edge from AM to FW in
Q0 indicates that an AM supervises FWs within 3 hops. It should be mapped to a
path of a bounded length in G0 rather than to an edge. Hence, neither subgraph

isomorphism (for (1)–(3)) nor graph simulation (for (3)) is capable of identify-
ing the drug ring G0 as a match of Q0. These call for revisions of the notion of
graph pattern matching to accurately identify sensible matches in real-life social
graphs.

To cope with this, a revision of graph simulation is proposed in [12], referred
to as bounded simulation. To present this, we start with some notations.

Graphs and Patterns. A data graph is a directed graph G = (V,E, fA), where
(a) V is a finite set of nodes; (b) E ⊆ V × V , in which (v, v′) denotes an edge
from v to v′; and (c) fA(·) is a function that associates each v in V with a tuple
fA(v) = (A1 = a1, . . . , An = an), where ai is a constant, and Ai is referred to as
an attribute of v, written as v.Ai, carrying, e.g., label, keywords, blogs, rating.

A pattern query is defined as Q = (VQ, EQ, fv, fe), where (a) VQ is a finite
set of nodes and EQ is a set of directed edges, as defined for data graphs; (b)
fv(·) is a function defined on VQ such that for each node u, fv(u) is the predicate
of u, defined as a conjunction of atomic formulas of the form A op a; here A
denotes an attribute, a is a constant, and op is one of the comparison operators
<,≤,=, �=, >,≥; and (c) fe(·) is a function defined on EQ such that for each
edge (u, u′) in EQ, fe(u, u

′) is either a positive integer k or a symbol ∗.
Intuitively, the predicate fv(u) of a node u specifies a search condition. We say

that a node v in a data graph G satisfies the search condition of a pattern node u
in Q, denoted as v ∼ u, if for each atomic formula ‘A op a’ in fv(u), there exists
an attribute A in fA(v) such that v.A op a. We will allow an edge (u, u′) in Q to
be mapped to a path ρ in a data graph G, and fe(u, u

′) imposes a bound on the
length of ρ. An example data graph (resp. pattern) is G0 (resp. Q0) of Fig. 1.

Bounded Simulation. We now present bounded simulation. A data graph G
matches a pattern Q via bounded simulation, denoted by Q�B

simG, if there exists
a binary relation S ⊆ VQ × V , referred to as a match in G for Q, such that

– for each node u ∈ VQ, there exists a node v ∈ V such that (u, v) ∈ S;
– for each pair (u, v) ∈ S, (a) v ∼ u, and (b) for each edge (u, u′) in EQ,

there exists a path ρ from v to v′ in G such that (u′, v′) ∈ S, len(ρ) > 0
and moreover, len(ρ) ≤ k if fe(u, u

′) = k. Here len(ρ) is the number of edges
on ρ.

Intuitively, (u, v) ∈ S if (1) node v in G satisfies the search condition specified
by fv(u) in Q; and (2) each edge (u, u′) in Q is mapped to a path ρ from v to v′

in G (len(ρ) > 0), such that v, v′ match u, u′, respectively; and moreover, when
fe(u, u

′) is k, it indicates a bound on the length of ρ, i.e., v is connected to v′

within k hops. When it is ∗, ρ can be a path of an arbitrary length greater than 0.
For pattern Q0 and graph G0 given in Fig. 1, Q0�B

simG0: a match S0 in G0

for Q0 maps B to B, AM to A1, . . . , Am, S to Am, and FW to all the W nodes.

As experimentally verified in [12], bounded simulation is able to accurately
identify a number of communities in real-life social networks that its traditional
counterparts fail to catch. In addition, the following is known.

Theorem 1 [12]: For any pattern Q = (VQ, EQ, fv, fe) and graph G =
(V,E, fA), (1) there exists a unique maximum match M(Q,G) in G for Q, and
(2) M(Q,G) can be computed in O(|V ||E|+ |EQ||V |2 + |VQ||V |) time. �
As opposed to subgraph isomorphism, bounded simulation supports (a) simula-
tion relations rather than bijective functions, (b) search conditions based on the
contents of nodes, and (c) edge-to-path mappings instead of edge-to-edge. Graph
simulation is a special case of bounded simulation, by only allowing simple pat-
terns in which (a) node labels are the only attributes, and (b) all the edges are
labeled with 1, i.e., edge-to-edge mappings only. In contrast to the NP-hardness
of subgraph isomorphism, the complexity of bounded simulation is in PTIME,
comparable to that of graph simulation since in practice, |Q| � |D|.

There have also been revisions of (bounded) simulation by, e.g., incorporating
edge relationships [11] and imposing locality and duality on match relations [27].

3.2 Distributed Query Processing with Partial Evaluation

Although graph pattern matching with (bounded) simulation is in PTIME, when
a social graph G is big, the cost of computing M(Q,G) is still prohibitive. To
cope with the sheer size of G, we next present a set of approaches to computing
M(Q,G) on big G. The key idea of these approaches is to reduce G to smaller
G′ via preprocessing, such that graph pattern matching in G′ is feasible.

We start with distributed query processing, based on partial evaluation. Par-
tial evaluation has proven useful in a variety of areas including compiler gener-
ation, code optimization and dataflow evaluation (see [23] for a survey). Intu-
itively, given a function f(s, d) and part of its input s, partial evaluation is to
specialize f(s, d) with respect to the known input s. That is, it conducts the part
of f(s, ·)’s computation that depends only on s, and generates a partial answer,
i.e., a residual function f ′(·) that depends on the as yet unavailable input d.

This idea can be naturally applied to distributed graph pattern matching.
Consider a pattern Q posed on a graph G that is partitioned into fragments
F = (F1, . . . , Fn), where Fi is stored in site Si. We compute M(Q,G) as follows.

(1) The same query Q is posted to each fragment in F .
(2) Upon receiving Q, each site Si computes a partial answer of Q in fragment

Fi, in parallel, by taking Fi as the known input s while treating the fragments
in the other sites as yet unavailable input d.

(3) A coordinator site Sc collects partial answers from all the sites. It then
assembles the partial answers and finds M(Q,G) in the entire graph G.

The idea has proven effective for evaluating reachability queries defined in terms
of regular expressions, which are a special case of pattern queries [15].

Theorem 2 [15]: On a fragmentation F of graph G, reachability queries Q can
be answered (a) by visiting each site once, (b) in O(|Fm||Q|2 + |Q|2|Vf |2) time,

and (c) with O(|Q|2|Vf |2) communication cost, where Fm is the largest fragment
in F and Vf is the set of nodes in G with edges to other fragments. �
That is, (1) the response time is dominated by the largest fragment in F , instead
of the size |G| of G; (2) the total amount of data shipped is determined by
the size of the query Q and how G is fragmented, rather than by |G|, and (3)
the performance guarantees remain intact no matter how G is fragmented and
distributed. As opposed to MapReduce [7], this approach does not require us to
organize our data in 〈key, value〉 pairs or re-distribute the data. Moreover, it has
performance guarantees on both response time and communication cost.

When G is not already partitioned and distributed, one may first partition G
as preprocessing, such that the evaluation of Q in each fragment is feasible.

3.3 Query Preserving Graph Compression

Another approach to reducing the size of big graph G is by means of compressing
G, relative to a class Q of queries of users’ choice, e.g., graph pattern queries.
More specifically, a query preserving graph compression for Q is a pair 〈R,P 〉,
where R(·) is a compression function, and P (·) is a post-processing function. For
any graph G, Gc = R(G) is the compressed graph computed from G by R(·),
such that (1) |Gc| ≤ |G|, and (2) for all queries Q ∈ Q, Q(G) = P (Q(Gc)). Here
P (Q(Gc)) is the result of post-processing the answers Q(Gc) to Q in Gc.

That is, we preprocess G by computing the compressed Gc of G offline. After
this step, for any query Q ∈ Q, the answers Q(G) to Q in the big G can be
computed by evaluating the same Q on the smaller Gc online. Moreover, Q(Gc)
can be computed without decompressing Gc. Note that the compression schema
is lossy: we do not need to restore the original G from Gc. That is, Gc only
needs to retain the information necessary for answering queries in Q, and hence
achieves better compression ratio than lossless compression schemes.

For a query class Q, if Gc can be computed in PTIME and moreover, queries
in Q can be answered using Gc in parallel polylog-time, perhaps by combining
with other techniques such as indexing, then Q is Π-tractable.

The effectiveness of the approach has been verified in [14], for graph pattern
matching with (bounded) simulation, and for reachability queries a special case.

Theorem 3 [14]: There exists a graph pattern preserving compression 〈R,P 〉
for bounded simulation, such that for any graph G = (V,E, fA), R(·) is in
O(|E| log |V |) time, and P (·) is in linear time in the size of the query answer. �
This compression scheme reduces the sizes of real-life social graphs by 98% and
57%, and query evaluation time by 94% and 70% on average, for reachability
queries and pattern queries with (bounded) simulation, respectively. Better still,
compressed Gc can be efficiently maintained. Given a graph G, a compressed
graph Gc = R(G) of G, and updates ΔG to G, we can compute changes ΔGc

to Gc such that Gc ⊕ΔGc = R(G⊕ΔG), without decompressing Gc [14]. As a
result, for each graph G, we need to compute its compressed graph Gc once for
all patterns. When G is updated, Gc is incrementally maintained.

3.4 Graph Pattern Matching Using Views

Another technique commonly used by database people is query answering using
views (see [19, 26] for surveys). Given a query Q ∈ Q and a set V of view defini-
tions, query answering using views is to reformulateQ into another query Q′ such
that (a) Q and Q′ are equivalent, i.e., for all datasetsD, Q and Q′ have the same
answers in D, and moreover, (b) Q′ refers only to V and its extensions V(D).

View-based query answering suggests another approach to reducing big data
to small data. Given a big graph G, one may identify a set V views (pattern
queries) and materialize the set M(V , G) of matches for patterns of V in G, as a
preprocessing step offline. Then matches for patterns Q can be computed online
by usingM(V , G) only, without accessing the original big G. In practice,M(V , G)
is typically much smaller than G, and can be incrementally maintained and
adaptively adjusted to cover various patterns. For example, for graph pattern
matching with bounded simulation, M(V , G) is no more than 4% of the size
of G on average for real-life social graphs G. Further, the following has been
shown [17].

Theorem 4 [17]: Given a graph pattern Q and a set V of view definitions, (1)
it is in O(|Q|2|V |) time to decide whether Q can be answered by using V ; and if
so, (2) Q can be answered in O(|Q||M(V , G)|+ |M(V , G)|2) time. �
Contrast these with the complexity of graph pattern matching with bounded
simulation. Note that |Q| and |V | are sizes of pattern queries and are typically
much smaller than G. Moreover, |M(V , G)| is about 4% of |G| (i.e., |V |+ |E|) on
average. As verified in [17], graph pattern matching using views takes no more
than 6% of the time needed for computing M(Q,G) directly in G on average.

3.5 Incremental Graph Pattern Matching

Incremental techniques also allow us to effectively evaluate queries on big data.
Given a pattern Q and a graph G, as preprocessing we compute M(Q,G) once.
When G is updated by ΔG, instead of recomputing M(Q,G⊕ΔG) starting from
scratch, we incrementally compute ΔM such that M(Q,G⊕ΔG) = M(Q,G)⊕
ΔM , to minimize unnecessary recomputation. In real life, ΔG is typically small:
only 5% to 10% of nodes are updated weekly [31]. When ΔG is small, ΔM is
often small as well, and is much less costly to compute than M(Q,G⊕ΔG).

The benefit is more evident if there exists a bounded incremental matching
algorithm. As argued in [32], incremental algorithms should be analyzed in terms
of |CHANGED| = |ΔG| + |ΔM |, the size of changes in the input and output,
which represents the updating costs that are inherent to the incremental problem
itself. An incremental algorithm is said to be semi-bounded if its cost can be
expressed as a polynomial of |CHANGED| and |Q| [13]. That is, its cost depends
only on the size of the changes and the size of pattern Q, independent of the size
of big graph G. A semi-bounded incremental algorithm often reduces big graph
G to small data, since Q and |CHANGED| are typically small in practice.

Theorem 5 [13]: There exists a semi-bounded incremental algorithm, in
O(|ΔG|(|Q||CHANGED| + |CHANGED|2)) time, for graph pattern matching de-
fined in terms of bounded simulation. �
In general, a query class Q can be considered Π-tractable if (a) preprocessing
Q(D) is in PTIME, and (b) Q(D⊕ΔD) can be incrementally computed in parallel
polylog-time. If so, it is feasible to answer Q in response to changes to big data D.

3.6 Top-k Graph Pattern Matching

In social data analysis we often want to find matches of a designated pattern
node uo in Q as “query focus” [3]. That is, we just want those nodes in a social
graph G that are matches of uo in M(Q,G), rather than the entire set M(Q,G)
of matches for Q. Indeed, a recent survey shows that 15% of social queries are to
find matches of specific pattern nodes [29]. This is how graph search5 of Facebook
is conducted on its social graph. Moreover, it often suffices to find top-k matches
of uo in M(Q,G). More specifically, assume a scoring function s(·) that given a
match v of uo, returns a non-negative real number s(v). For a positive integer
k, top-k graph pattern matching is to find a set U of matches of uo in M(Q,G),
such that U has exactly k matches and moreover, for any k-element set U ′ of
matches of uo, s(U

′) ≤ s(U), where s(U) is defined as Σv∈Us(v). When there
exist less than k matches of uo in M(Q,G), U includes all such matches.

This suggests that we develop algorithms to find top-k matches with the early
termination property [8], i.e., they stop as soon as a set of top-k matches is found,
without computing the entire M(Q,G). While the worst-case time complexity
of such algorithms may be no better than their counterparts for computing the
entire M(Q,G), they may only need to inspect part of big G, without paying the
price of full-fledged graph pattern matching. Indeed, for graph pattern matching
with simulation on real-life social graphs, it has been shown that top-k matching
algorithms just inspect 65%–70% of the matches in M(Q,G) on average [16].

4 Approximation Algorithms for Querying Big Data

Strategies such as those given above help us make the evaluation of some queries
tractable on big data. However, it is still beyond reach to find exact answers
to many queries in big data. An example is graph pattern matching defined in
terms of subgraph isomorphism: it is NP-complete to decide whether there exists
a match. As remarked earlier, even for queries that can be answered in PTIME, it
is often too costly and infeasible to compute their exact answers in the context
of big data. As a result, we have to evaluate these queries by using inexact
algorithms, preferably approximation algorithms with performance guarantees.

Previous work on this topic has mostly focused on developing PTIME approx-
imation algorithms for NP-optimization problems (NPOs) [6, 18, 36]. An NPO A
has a set I of instances, and for each instance x ∈ I and each feasible solution

5 http://www.facebook.com/about/graphsearch

y of x, there exists a positive score m(x, y) indicating the quality measure of
y. Consider a function r(·) from natural numbers to (1,∞). An algorithm T is
called a r-approximation algorithm for problem A if for each instance x ∈ I, T
computes a feasible solution y of x such that R(x, y) ≤ r(|x|), where R(x, y) is
the performance ratio of y w.r.t. x, defined as follows [6]:

R(x, y) =

{
opt(x)/m(x, y) when A is a maximization problem
m(x, y)/opt(x) when A is a minimization problem

where opt(x) is the optimal solution of x. That is, while the solution y found by
T (x) may not be optimal, it is not too far from opt(x) (i.e., bounded by r(|x|)).

However, PTIME approximation algorithms that directly operate on the orig-
inal instances of a problem may not work well when querying big data.

(1) As shown in Example 2, PTIME algorithms on x may be beyond reach in
practice when x is big. Moreover, approximation algorithms are needed for prob-
lems that are traditionally considered tractable [18], not limited to NPO.

(2) In contrast to NPOs that ask for a single optimum, query evaluation is to
find a set of query answers in a dataset. Thus we need to revise the notion of
performance ratios to evaluate the quality of a set of feasible answers.

After the topic has been studied for decades, it is unlikely that we can expect
soon to have a set of algorithms that on one hand, have low enough complexity to
be tractable on big data, and on the other hand, have a nice performance ratio.

Data-driven Approximation. To cope with this, we propose to develop al-
gorithms that work on data with “resolution” lower than the original instances,
and strike a balance between the efficiency (scalability) and the performance
ratio [5]. Consider a pair 〈D,Q〉 that represents an instance x, where Q is a
query and D is a dataset (see Section 2). When D is big, we reduce D to D′ of
manageable size, and develop algorithms that are feasible when operating on D′.

More specifically, consider a function α(·) that takes |D| as input, and returns
a number in (0, 1]. We use a transformation function f(·) that given D, reduces
D to D′ = f(D) with resolution α(|D|) such that |D′| ≤ α(|D|) · |D|. We also use
a query rewriting function F : Q → Q for a query class Q that, given any Q ∈ Q,
returns another query F (Q) in Q. Based on these, we introduce the following.

An algorithm T is called a (α, r)-approximation algorithm for Q if there exist
functions f(·) and F (·) such that for any dataset D,

(1) D′ = f(D) and |D′| ≤ α(|D|)|D|; and
(2) for each query Q in Q defined on D, Q′ = F (Q), and algorithm T computes

Y = Q′(D′) such that the performance ratio R(〈D,Q〉, Y) ≤ r(|D|).
Intuitively, f(·) is an offline process that reduces big data D to small D′ with
a lower resolution α(|D|). After this, for all queries Q in Q posed on D, T is
used to evaluate Q′ = F (Q) in D′ as an online process, such that the feasible
answers Y = Q′(D′) computed by T in D′ are not too far from the exact answers
Q(D) in D. To evaluate the accuracy of Y , we need to extend the notion of
performance ratio R(·, ·) to measure how close a set of feasible query answers Y
is to the set Q(D) of exact answers. There are a variety of choices for defining

R(·, ·), depending on the application domain in which T is developed (see [5] for
details).

Example 5. A weighted undirected graph is defined as G = (V,E,w), where for
each edge e in E, w(e) is the weight of e. Given G and two nodes s, t in V , we
want to compute the distance dist(s, t) between s and t in G, i.e., the minimum
sum of the weights of the edges on a path from s to t for all such paths in G.

There exist exact algorithms for computing dist(s, t) in O(|E|)-time (cf. [34]).
However, when G is big, we need more efficient algorithms. It has been shown
in [34] that for any constant k ≥ 1, one can produce a data structure of size
O(k|V |1+1/k). After this offline process, all distance queries onG can be answered
in O(k) time (constant time) online by using the structure, with a constant per-
formance ratio 2k−1 [34]. That is, there exists a (α, r)-approximation algorithm
for distance queries, with α(|G|) = |V |1+1/k/(|V |+ |E|) and r = 2k − 1. �

Data-driven approximation aim to explores the connection between the resolu-
tion of data and the performance ratio of algorithms, and speed up the online
process. As remarked earlier, the choice of f(·) and T depends on what cost we
can afford for offline preprocessing and what algorithms are tractable on big data.
When α(|D|) is sufficiently small (e.g., below a certain threshold ξ), f(D) reduces
“big data”D to “small data”D′, on which a PTIME algorithm T is feasible. How-
ever, if D′ remains “big”, i.e., when α(|D|) ≥ ξ, we may require T to be in NC.
To cope with big D, the offline preprocessing step may require more resources
such as computing nodes for parallel processing than online query evaluation.

5 Data Quality: The Other Side of Big Data

The study of querying big (social) data is still in its infancy. There is much more
to be done. In particular, a complexity class that captures queries tractable on
big data has to be identified, to characterize both computational and communi-
cation costs. Complete problems and reductions for the complexity class should
be in place, so that we can effectively decide whether a class of queries is tractable
on big data and whether a query class can be reduced to another one that we
know how to process. In addition, more effective techniques for querying big data
should be developed so that (combinations of) the techniques can improve query
processing by MapReduce. Furthermore, the connection between data resolution
and performance ratio needs a full treatment. Given a resolution, we should be
able to determine what performance ratio we can expect, and vice versa.

We have so far focused on how to cope with the volume (quantity) of big
data. Nonetheless, data quality is as important as data quantity. As an example,
consider tuples below that represent suspects for a secretary S in a drug ring,
identified by graph pattern matching in social networks (recall Q0 and G0 of
Fig. 1):

FN LN AC street city state zip status
t1: Mary Smith 212 Mtn Ave MH NJ 10007 single
t2: Mary Smith 908 Mtn Ave MH NJ 07974 single
t3: Mary Luth 212 Broadway NY NY 10007 married

Each tuple in the table specifies a suspect: her name (FN and LN), area code
AC, address (street, city, state, zip code), and marital status, extracted from social
networks. Consider the following simple queries about the suspects.

(1) Query Q1 is to find how many suspects are based in New Jersey. By counting
those tuples t with t[state] = “NJ”, we get 2 as its answer. However, the answer
may be incorrect. Indeed, (a) the data in tuple t1 is inconsistent: t1[AC] = 212 is
an area code for New York, and it has conflict with t1[state] (NJ). Hence NJ may
not be the true value of t1[state]. (b) The data in the table may be incomplete.
That is, some suspects may not use social networks and hence, are overlooked. (c)
Tuples t1, t2 and t3 may refer to the same person and hence, may be duplicates.
In light of these data quality issues, we cannot trust the answer to query Q1.

(2) Suppose that the table above is complete, t1, t2 and t3 refer to the same
person Mary, and all their attribute values were once the true values of Mary
but some may have become obsolete. Now query Q2 is to find Mary’s current
last name. We do not know whether it is Smith or Luth. However, we know that
marital status can only change from single to married, and that her last name
and marital status are correlated. From these we can conclude that the answer
to Q2 is Luth.
This example tells us the following. First, when the quality of the data is poor,
we cannot trust answers to our queries no matter how big data we can handle and
how efficient we can process our queries. Second, data quality analyses help us
improve the quality of our query answers. However, already difficult for (small)
relational data (see [9] for a survey), the study of data consistency, accuracy,
currency, deduplication and information completeness is far more challenging
for big data. Indeed, big data is typically heterogeneous (variety), time-sensitive
(velocity), of low-quality (veracity) and big (volume). Despite these, data quality
is a must for us to study if we want to make practical use of big data.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:
EDBT (2010)

3. Bendersky, M., Metzler, D., Croft, W.: Learning concept importance using a
weighted dependence model. In: WSDM (2010)

4. Brynielsson, J., Högberg, J., Kaati, L., Martenson, C., Svenson, P.: Detecting social
positions using simulation. In: ASONAM (2010)

5. Buneman, P., Fan, W.: Data driven approximation algorithms for querying big
data (2013) (unpublished manuscript)

6. Crescenzi, P., Kann, V., Halldórsson, M.: A compendium of NP optimization prob-
lems, http://www.nada.kth.se/~viggo/wwwcompendium/

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1) (2008)

8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
JCSS 66(4), 614–656 (2003)

http://www.nada.kth.se/~viggo/wwwcompendium/

9. Fan, W., Geerts, F.: Foundations of Data Quality Management. Morgan & Clay-
pool Publishers (2012)

10. Fan, W., Geerts, F., Neven, F.: Making queries tractable on big data with prepro-
cessing. In: PVLDB (2013)

11. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph
reachability and pattern queries. In: ICDE (2011)

12. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: From
intractability to polynomial time. In: PVLDB (2010)

13. Fan, W., Li, J., Tan, Z., Wang, X., Wu, Y.: Incremental graph pattern matching.
In: SIGMOD (2011)

14. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: SIG-
MOD (2012)

15. Fan, W., Wang, X., Wu, Y.: Performance guarantees for distributed reachability
queries. In: PVLDB (2012)

16. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching (2013) (un-
published manuscript)

17. Fan, W., Wang, X., Wu, Y.: Graph pattern matching using views (2013) (unpub-
lished manuscript)

18. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press (1995)

19. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4) (2001)
20. Hellerstein, J.M.: The declarative imperative: Experiences and conjectures in dis-

tributed logic. SIGMOD Record 39(1), 5–19 (2010)
21. Henzinger, M.R., Henzinger, T., Kopke, P.: Computing simulations on finite and

infinite graphs. In: FOCS (1995)
22. Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Com-

puter Science, Volume A: Algorithms and Complexity (A), The MIT Press (1990)
23. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3),

480–503 (1996)
24. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.

In: SODA (2010)
25. Koutris, P., Suciu, D.: Parallel evaluation of conjunctive queries. In: PODS (2011)
26. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS (2002)
27. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern

matching. PVLDB 5(4) (2011)
28. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
29. Morris, M., Teevan, J., Panovich, K.: What do people ask their social networks,

and why? A survey study of status message Q&A behavior. In: CHI (2010)
30. Natarajan, M.: Understanding the structure of a drug trafficking organization: a

conversational analysis. Crime Prevention Studies 11, 273–298 (2000)
31. Ntoulas, A., Cho, J., Olston, C.: What’s new on the Web? The evolution of the

Web from a search engine perspective. In: WWW (2004)
32. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph

problems. TCS 158(1-2) (1996)
33. Terveen, L., McDonald, D.W.: Social matching: A framework and research agenda.

ACM Trans. Comput.-Hum. Interact. 12(3) (2005)
34. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52(1), 1–24 (2005)
35. Ullmann, J.R.: An algorithm for subgraph isomorphism. JACM 23(1), 31–42 (1976)
36. Vazirani, V.V.: Approximation Algorithms. Springer (2003)

	Querying Big Social Data
	1 Introduction
	2 Tractable Query Classes on Big Data
	3 Graph Pattern Matching in Big Social Data
	3.1 Bounded Simulation: Graph Simulation Revisited
	3.2 Distributed Query Processing with Partial Evaluation
	3.3 Query Preserving Graph Compression
	3.4 Graph Pattern Matching Using Views
	3.5 Incremental Graph Pattern Matching
	3.6 Top-k Graph Pattern Matching

	4 Approximation Algorithms for Querying Big Data
	5 Data Quality: The Other Side of Big Data
	References

