
Loop Elimination for Database Updates

Vadim Savenkov1, Reinhard Pichler1, and Christoph Koch2

1 Vienna University of Technology
{savenkov,pichler}@dbai.tuwien.ac.at

2 École Polytechnique Fédérale de Lausanne
christoph.koch@epfl.ch

Abstract. The additional expressive power of procedural extensions of
query and update languages come at the expense of trading the efficient
set-at-a-time processing of database engines for the much less efficient
tuple-at-a-time processing of a procedural language. In this work, we
consider the problem of rewriting for-loops with update statements into
sequences of updates which do not use loops or cursors and which simul-
taneously carry out the action of several loop iterations in a set-at-a-time
manner. We identify idempotence as the crucial condition for allowing
such a rewriting. We formulate concrete rewrite rules for single updates
in a loop and extend them to sequences of updates in a loop.

1 Introduction

To enhance the expressive power of SQL for querying and modifying data, the
SQL standard proposes SQL/PSM as a Turing complete procedural extension
of SQL. Most relational database management systems provide their own pro-
cedural programming language such as PL/pgSQL of PostgreSQL, PL/SQL of
Oracle, SQL PL of IBM’s DB2, Transact-SQL in Microsoft SQL Server, etc.
The key feature of these extensions of SQL is to allow the definition of loops
for iterating over relations with a cursor and to “parameterize” so to speak the
action in the loop body by the current tuples of these relations. The additional
expressive power however comes at the expense of trading the efficient set-at-a-
time processing of SQL for the much less efficient tuple-at-a-time processing of a
procedural language. For the sake of optimizing updates, the question naturally
arises if a given sequence of updates necessarily has to be realized by a loop
containing these updates or whether it would be possible to achieve the same
effect with a sequence of simple updates that do not use loops or cursors.

In this paper we restrict ourselves to for -loops with updates. Our goal is to
provide rewrite rules that allow one to transform for-loops with update state-
ments into a sequence of simple updates that simultaneously carry out the action
of several loop iterations in a set-at-a-time manner. To this end, we will first in-
troduce an update language which we find convenient for our investigations and
point out how update statements of this form can be represented in (standard)
SQL. We then identify a crucial property of updates as a sufficient condition for
the elimination of for-loops containing update statements, namely the idempo-
tence of updates, i.e., applying the same update twice or more often yields the

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 48–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Loop Elimination for Database Updates 49

same result as a single application of the update. Based on this condition, we
shall define rewrite rules for unnesting a single update and also several successive
updates in a for-loop. The elimination of nested loops with updates is thus also
covered by successively applying the rewrite rules to each loop - starting with
the innermost one.

Update optimization is an old topic in database research. A problem statement
similar to ours was considered by Lieuwen and DeWitt in [5], who provided rules
for optimizing for-loop statements in the database programming language O++.
There, the authors focus on flattening the nested loops. In contrast, our approach
allows for complete elimination of loops and replacing them with relational-style
update commands. This problem has been also considered in [1] in the context
of uncertain databases. The results in the present paper extend that work: in
particular, we consider update commands in which arbitrary attributes can be
referenced on the right-hand side of equalities in the set -clause, whereas in [1]
only constants are supported.

Our transformation relies on the idempotence of update operations, which can
be easily tested: the operation is idempotent if repeating it twice or more times
has the same effect as applying it only once. The importance of the idempotence
property for update optimization for the task of incremental maintenance of
materialized views [4], has been identified in [3]. More recently, idempotent op-
erations have been found useful also in a broader setting in the area of distributed
systems [2,6]. Efficient and block-free methods of failure recovery are essential in
distributed environments. The idempotence property ensures that such repeated
evaluation is safe and does not change the semantics of a program.

Organization of the Paper and Summary of Results. In Section 2, we
introduce a simple update language, which is convenient for our investigations,
and establish its connection to (standard) SQL. In Section 3 we present our
rewrite rule for eliminating a for-loop with a single update statement inside.
Clearly, this rewrite rule is also applicable to nested loops starting with the
innermost loop. The crucial condition for the applicability of our rewrite rule is
the idempotence of the update. In Section 4, we formulate a sufficient condition
for the elimination of for-loops with more than one update inside and present
an appropriate extension of our rewrite rule.

2 Update Language

Suppose that we want to update some relation R whose schema sch(R) is given
as sch(R) = {A1, . . . , Am}. In this paper, we restrict ourselves to updates which
can be defined by a relation U with {A1, . . . , Am, A′1, . . . , A

′
m} ⊆ sch(U) in the

following sense: the tuples affected by such an update are T = {r | ∃u ∈ U , s.t.
r.A1 = u.A1∧. . .∧r.Am = u.Am}, i.e., T = R>< U . The new values to which the
attributes Ā = (A1, . . . , Am) of each tuple r ∈ T are modified are defined by the
components Ā′ = (A′1, . . . , A′m) of the corresponding tuple in U , i.e.: each r ∈ T
is modified to πĀ′(σU.Ā=r(U)). Clearly, there must exist a functional dependency

50 V. Savenkov, R. Pichler, and C. Koch

U.Ā → U.Ā′ to make sure that every tuple in T is mapped to precisely one value
U.Ā′. This leads to the definition of the following language of update statements:

Definition 1. Let R and U be relations with sch(R) = {A1, . . . , Am} and {A1,
. . . , Am, A′1, . . . , A′m} ⊆ sch(U). Then the “update defined by U” is denoted as

update R set Ā = U.Ā′ from U where R.Ā = U.Ā;

Such an update is called well-defined if there exists a functional dependency
U.Ā → U.Ā′. In this case, the effect of this update is to replace each tuple r in
R>< U by the uniquely determined value U.Ā′, s.t. r.Ā = U.Ā.

Note that the above definition imposes no restriction on the nature of the relation
U . In particular, U may itself be defined by some query. In this case, the value of
U immediately before updating R is considered as fixed throughout the update
process. This is in line with the transactional semantics of SQL updates, i.e.,
changes made by an update are not visible to the update itself before the end of
the update operation.

The proposed syntax is general enough to cover many practical cases. In
particular, the updates of the form “update R set Ā = c̄ where φ”, considered
in [1], can be captured easily: Let Qφ denote the semi-join query returning
the tuples of R that have to be updated. In order to write the above update
in the form: update R set Ā = U.Ā′ from U where R.Ā = U.Ā; we have to
define the relation U . Suppose that sch(R) = {A1, . . . , Am, B1, . . . Bn}, which we
abbreviate as Ā, B̄. Likewise, we write Ā′, B̄′ to denote {A′1, . . . , A′m, B′1, . . . B

′
n}.

Then U(Ā, B̄, Ā′, B̄′) is defined by the following query (in logic programming
notation):

U(Ā, B̄, c̄, B̄) :- R(Ā, B̄), Qφ;

We give some further simple examples of updates below:

Example 1. Consider a relation R with attributes (A1, A2). An update operation
that swaps the two attributes of R can be defined as

update R set Ā = U.Ā′ from U where R.Ā = U.Ā;

such that U(A1, A2, A
′
1, A

′
2) is defined by the following query:

U(A1, A2, A2, A1) :- R(A1, A2).

Now suppose that A1, A2 have numerical values. Moreover, suppose that we
want to apply the above update only to tuples r in R where A1 is an even number
and A1 < A2 holds. Then we just have to modify the definition of relation U ,
namely:

U(A1, A2, A2, A1) :- R(A1, A2), A1 < A2, A1 mod 2 == 0.

More generally, suppose that R contains m attributes (A1, . . . , Am) and we
want to swap the first two of them. Then U(A1, . . . , Am, A′1, . . . , A

′
m) is defined

as follows:

U(A1, A2, A3, . . . , Am, A2, A1, A3, . . . , Am) :- R(A1, . . . , Am). �

Loop Elimination for Database Updates 51

We conclude this section by describing a translation of updates formulated in
our syntax to standard SQL. Consider an update of the form

update R set Ā = U.Ā′ from U where R.Ā = U.Ā;

where Ā denotes the attributes {A1, . . . , Am} of R. This update can be rewritten
as follows:

update R set
A1 = (select A′1 from U where R.Ā = U.Ā)
. . .
Am = (select A′m from U where R.Ā = U.Ā)
where exists (select * from U where R.Ā = U.Ā).

where we write R.Ā = U.Ā to abbreviate the condition R.A1 = U.A1 and . . . and
R.Am = U.Am. If the DBMS supports the extended update syntax (like ’update
from’ in PostgreSQL), then the SQL update statement becomes more concise:

update R set A1 = A′1, . . . , Am = A′m
from U
where R.Ā = U.Ā.

Of course, in simple cases, the relation U does not have to be defined explicitly
(e.g., as a view), as the following example illustrates:

Example 2. Consider relations R,S, P with sch(R) = {A1, A2, A3}, sch(S) =
{B1, B2}, and sch(P) = {C1, C2}. Let an update be defined by the relation
U(A1, A2, A3, A

′
1, A

′
2, A

′
3), where U is defined as follows:

U(A1, A2, A3, A1, A
′
2, A

′
3) :- S(A2, A

′
2), P (A3, A

′
3), A

′
2 < A′3.

Intuitively, S defines the update of the second component of R and P defines
the update of the third component of R. Moreover, these updates may only be
applied if the new value for the second component of R is less than for the third
one. In SQL we get:

update R
set

A2 = (select S.B2 as A′2 from S, P
where S.B1 = R.A2 and P.C1 = R.A3 and S.B2 < P.C2),

A3 = (select P.C2 as A′3 from S, P
where S.B1 = R.A2 and P.C1 = R.A3 and S.B2 < P.C2)

where exists (select * from S, P
where S.B1 = R.A2 and P.C1 = R.A3 and S.B2 < P.C2).

If the DBMS supports the extended update syntax, then the above update state-
ment can be greatly simplified to:

update R
set A2 = S.B2, A3 = P.C2

from S, P
where S.B1 = A2 and P.C1 = A3 and S.B2 < P.C2 �

52 V. Savenkov, R. Pichler, and C. Koch

for ($t in Q){update R set Ā = U [$t].Ā′ from U [$t] where R.Ā = U [$t].Ā};
� update R set Ā = V.Ā′ from V where R.Ā = V.Ā;

s.t. V =
⋃

t∈Q U [t].

Fig. 1. Unnesting update programs

3 Loop Elimination

Recall from Definition 1 that, in this paper, we are considering updates defined
by some relation U . Now suppose that an update occurs inside a loop which
iterates over the tuples in some relation Q. Hence, in general, the update relation
U depends on the current tuple t of Q. We thus write U [t] to denote the value of
U for a given tuple t of Q. In a loop over Q, the relation U is parameterized so to
speak by the tuples in Q. We thus write U [$t] to denote the family of relations
U that we get by instantiating the variable $t by the tuples t in Q. We thus have
to deal with loops of the following form:

for ($t in Q){update R set Ā = U [$t].Ā′ from U [$t] where R.Ā = U [$t].Ā};

where sch(R) = {A1, . . . , Am}. Moreover, for every instantiation of $t to a tuple
t over the schema sch(Q), U [$t] yields a relation whose schema contains the
attributes {A1, . . . , Am, A′1, . . . , A′m}. The relation resulting from instantiating
$t to t is denoted as U [t]. The semantics of the above loop is the following:
for each value $t in Q, peform the update of R using the update relation U [$t]
according to Definition 1.

Of course, updates may also occur inside nested loops. We thus get statements
of the following form:

for ($t1 in Q1) {
for ($t2 in Q2) {
. . .
for ($tn in Qn) {update R

set Ā = U [$t1, . . . , $tn].Ā
′

from U [$t1, . . . , $tn]
where R.Ā = U [$t1, . . . , $tn].Ā}. . . }};

such that, for every instantiation of $t1, . . . , $tn to tuples t1, . . . , tn over the
schemas sch(Q1), . . . , sch(Qn), U [$t1, . . . , $tn] yields a relation whose schema
contains the attributes {A1, . . . , Am, A′1, . . . , A′m}. The relation resulting from
instantiating $t1 to t1, . . . , $tn to tn is denoted as U [t1, . . . , tn].

For unnesting updates, it suffices to provide a rule for transforming a single for-
loop with update into an update statement without loop. In case of nested loops,
this transformation has to be applied iteratively starting with the innermost for-
loop. Such a rule can be found in Fig. 1. It is put into effect in the following
example:

Loop Elimination for Database Updates 53

Example 3. Consider relations Department and Employee: sch(Department) =
{dept id, bonus}, sch(Employee) = {empl id, dept id, base salary, compensation}.
Using logic programming notation, we define the relations Q and U :

Q(Dept id,Bonus) :- Department(Dept id,Bonus)

U(Empl id,Dept id, Base sal, Comp,
Empl id,Dept id, Base sal, Comp′)[$t] :- Comp′ = Base sal · (1 + $t.bonus)

The following update loop increases the compensation of all employees:

for($t in Q)
update Employee set compensation = U [$t].compensation′ from U [$t]
where U [$t].empl id = Employee.empl id and

U [$t].dept id = Employee.dept id and
U [$t].base salary = Employee.base salary and
U [$t].compensation = Employee.compensation

For the sake of readability, in the set -clause of the update command we omit
the assignments to the attributes which are not modified in U [$t]. Applying the
unnesting rule from Fig. 1, the update loop can be rewritten as the following
command:

update Employee set compensation = V.compensation′ from V
where V.empl id = Employee.empl id and

V.dept id = Employee.dept id and
V.base salary = Employee.base salary and
V.compensation = Employee.compensation

Here, V is obtained from U [$t] by taking a join of U [$t] with Q and replacing
$t in the body of U with Q.

V (Empl id,Dept id, Base sal, Comp,Empl id,Dept id, Base sal, Comp′) :-
Comp′ = Base sal · (1 +Q.Bonus),
Q(Dept id,Bonus)

It is easy to see that the above expression for V expresses exactly the one in
Fig. 1, namely V =

⋃
t∈Q U [t]. This expression can be further simplifed as

V (Empl id,Dept id, Base sal,Comp,Empl id,Dept id, Base sal, Comp′) :-
Comp′ = Base sal · (1 + Department.Bonus),
Department(Dept id,Bonus) �

Remark 1. Note that to ensure that the update is well-defined, it might be
necessary to inspect the particular instance of the join between the updated
table and the update relation U . However, if certain integrity constraints are
present in the schema, such inspection can be spared, since the desired key
dependency may be inferred from the definition of the update relation U and
existing schema constraints. For instance, for the update relation U [$t](Ā, Ā′) in
Example 3, the dependency Ā → Ā′ has to be checked. Since the only modified

54 V. Savenkov, R. Pichler, and C. Koch

attribute of Employee is compensation, it suffices to check the functional depen-
dency Ā → compensation′, where Ā denotes the first four attributes of U [$t]. Note
that compensation′ is determined by base salary and Department.bonus. More-
over, note that empl id and dept id are respective primary keys in the Employee
and Department tables. Then, also the functional dependency empl id → bonus
holds in the relation Employee �� Department. Therefore, the functional depen-
dency empl id → compensation′ holds in U [$t] and thus the respective update is
well-defined irrespective of the database instance.

The following theorem gives a sufficient correctness criterion for the loop
elimination from Fig. 1.

Theorem 1. Let Q and R be relations with sch(Q) = {B1, . . . , B�} and sch(R)
= {A1, . . . , Am}. Moreover, let U [$t] be a parameterized relation with sch(U [$t])
= {A1, . . . , Am, A′1, . . . , A

′
m} and sch($t) = sch(Q). Finally, suppose that, for

every $t ∈ Q, the update of R defined by U [$t] is well-defined (cf. Definition 1).
The rewrite rule in Fig. 1 is correct (i.e., the update resulting from the rewrite

rule application has the same effect on the database as the loop), if the following
conditions are fulfilled.

1. In V , the functional dependency V.Ā → V.Ā′ holds, i.e, the update of R by
V is well-defined.

2. The relation ρĀ←Ā′ (πĀ′(V)) �� πĀ,Ā′(V) contains only tuples which fulfill
the selection criterion σĀ=Ā′ .

3. The relation R is not used in the definition of U [$t], i.e., U [$t] is not modified
by the update.

Remark 2. The second condition in the above theorem reads as follows: Consider
all tuples in πĀ′(V). They constitute a superset of the values that may possibly
occur as the result value of some update step. The renaming ρĀ←Ā′ and the join
with πĀ,Ā′(V) computes the result value (for arbitrary tuple t ∈ Q) if the update
is applied to the same row of R again. The second condition thus requires that
applying the update again must not alter the value anymore. In other words, the
second condition imposes a strong kind of idempotence, i.e., if r′ is the result
obtained from updating r ∈ R in the loop iteration according to some t ∈ Q,
then the update of r′ for any tuple t′ ∈ Q must not alter r′. Many real-world
updates are idempotent: for instance, the commands setting attributes equal to
constants, or looking up new values using join expressions, provided that the
attributes used for the look-up are not affected by the update (cf. Example 3).

The third condition above means that we are considering loops with updates
defined by relations U whose value is not modified inside the loop. Note that
this restriction is quite realistic since otherwise the semantics of the loop might
easily depend on the concrete order in which the tuples t of the “outer relation”
Q are processed.

Note that if the update relation U [$t](Ā, Ā′) is such that all attributes in Ā
are either equal to the corresponding attributes in Ā′ or not bound in the body
of U , the second condition is fulfilled trivially (cf. Example 3). If also the first
condition of updates to be well-defined is enforced by the schema constraints (as

Loop Elimination for Database Updates 55

described in Remark 1), then the applicability of the transformation in Fig. 1
can be checked statically, that is, without inspecting the actual instance.

Proof (Theorem 1). We first introduce some useful notation: Suppose that a
tuple r ∈ R is affected by the update in the i-th iteration of the loop, i.e., r ∈ R
is replaced by some tuple r′. Of course, it may happen that this result tuple
r′ itself is affected by the update in the j-th iteration of the loop with j > i.
For this proof, it is convenient to think of the tuples r ∈ R as equipped with
an additional attribute id , which serves as a unique identifier of the tuples and
which is never altered by any update. Hence, by identifying every tuple r ∈ R
with its unique id , we may distinguish between a tuple id(r) and its value r.
In particular, the updates only change the values of the tuples in R, while R
contains always the same set of tuples.

Now let T = {t1, . . . , tn} denote the tuples in Q, s.t. the loop processes the
tuples in Q in this (arbitrarily chosen) order. For every i ∈ {1, . . . , n}, let Qi

and Vi be defined as Qi = {t1, . . . , ti} and Vi =
⋃

t∈Qi
U [t]. Clearly, it suffices to

prove the following claim in order to prove the theorem:

Claim A. For every i ∈ {1, . . . , n}, the update defined by the loop

for ($t in Qi){update R set Ā = U [$t].Ā′ from U [$t] where R.Ā = U [$t].Ā};
has the same effect on the database as the update

update R set Ā = Vi.Ā
′ from Vi where R.Ā = Vi.Ā;

We proceed by induction on i with i ∈ {1, . . . , n}:
“i = 1” In this case, we have Q1 = {t1}. Thus, the above for-loop is iterated
exactly once and the corresponding update of R is defined by U [t1]. On the other
hand, we have V1 = U [t1]. Hence, the update defined by V1 is precisely the same
as the update in the (single iteration of) the loop.

“(i−1) → i” By definition, Qi = Qi−1∪{ti} and Vi = Vi−1∪U [ti]. We first show
that the tuples of R affected by the first i iterations of the above loop coincide
with tuples of R affected by the unnested update defined by Vi. In the second
step, we will then show that the affected tuples of R are mapped to the same
value by the loop-updates and by the unnested update.

Let r ∈ R with identifier id . We observe the following equivalences: r is
affected by an update in the first i iterations of the loop ⇔ there exists a j ≤ i
and a tuple u ∈ U [tj], s.t. r.Ā = u.Ā holds ⇔ r is affected by the update defined
by Vi =

⋃
t∈Qi

U [t].
As for the value of the tuple r ∈ R with identifier id after the i iterations of

the for-loop respectively after the update defined by Vi, we distinguish 3 cases:

Case 1. Suppose that r is affected by the first i − 1 iterations of the loop but
the resulting tuple r′ (which still has the same identifier id) is not affected by
the i-th iteration. By the induction hypothesis, the updates carried out by the
first i − 1 loop iterations and the update defined by Vi−1 have the same effect
on r, namely they both modify r to r′. By assumption, this value is unchanged

56 V. Savenkov, R. Pichler, and C. Koch

in the i-th loop iteration. On the other hand, since Vi−1 ⊆ Vi and, by condition
1 of the theorem, the updated defined by V (and, therefore also by Vi ⊆ V) is
well-defined. Hence, the update defined by Vi has the same effect on r as Vi−1.
Case 2. Suppose that r is affected by the i-th iteration of the loop for the first
time. The update by the i-th loop iteration is defined by U [ti]. On the other
hand, U [ti] ⊆ Vi and, by condition 1 of the theorem, the updated defined by
V (and, therefore also by Vi ⊆ V) is well-defined. Hence, both in the loop and
in the unnested update, the tuple r is modified to the value r′ according to the
update defined by U [ti].

Case 3. Suppose that r is affected by the first i−1 iterations of the loop and the
resulting tuple r′ (which still has the same identifier id) is again affected by the
i-th iteration. By the induction hypothesis, the updates carried out by the first
i − 1 loop iterations and the update defined by Vi−1 have the same effect on r.
Let the resulting value in both case be denoted as r′. Since Vi−1 ⊆ Vi and Vi is
well-defined, the update defined by Vi also modifies r to r′. It remains to show
that the i-th iteration of the loop does not alter r′ anymore. Suppose that r′ is
modified to r′′ by the update defined by U [ti]. Clearly, r

′ ∈ πĀ′(V). Moreover,
(r′, r′′) ∈ U [ti] ⊆ V and, therefore, (r′, r′′) ∈ ρĀ←Ā′ (πĀ′(V)) �� πĀ,Ā′(V).
Hence, r′ = r′′ by condition 3 of the theorem. �
If we want to apply the unnesting according to Theorem 1 to updates inside
nested loops, we have to start from the innermost loop. Suppose that the nested
loop looks as follows:

for ($t1 in Q1) {
for ($t2 in Q2) {
. . .
for ($tn in Qn) {update R

set Ā = U [$t1, . . . , $tn].Ā
′

from U [$t1, . . . , $tn]
where R.Ā = U [$t1, . . . , $tn].Ā}. . . }};

In this case, U [$t1, . . . , $tn] plays the role of U [$t] in Theorem 1 and the con-
ditions of Theorem 1 have to be fulfilled for all possible instantiations of the
parameters $t1, . . . , $tn−1 over the corresponding domains.

The following example illustrates the problems which could arise if no idem-
potence condition were required:

Example 4. Consider the program

for ($t in Q){update R set A = U [$t].A′ from U [$t] where R.A = U [$t].A};
such that R, Q, and U [$t] are relations with sch(R) = {A}, sch(Q) = {B1, B2},
and sch(U [$t]) = {A,A′}. Suppose that the update relation U [$t], which is
parameterized by the tuple $t, is defined as follows:

U [$t](A,A′) :- A = $t.B1, A
′ = $t.B2.

In other words, we consider a loop which is controlled by the tuples of Q, s.t.
each tuple t ∈ Q defines an update on R, namely if t.B1 coincides with some
entry (A) ∈ R, then (A) is replaced by t.B2.

Loop Elimination for Database Updates 57

Table 1. Non-idempotence of updates

R.A1 Q.B1 Q.B2 Q′.B1 Q′.B2

1 1 2 1 2
2 2 3 2 2

First, suppose that the relations R and Q are given in Table 1. In this case,
the result of the update loop depends on the order in which the elements of Q
are processed: if the tuple (1, 2) ∈ Q is chosen first, then both tuples in R are
updated to (3) (the first tuple of R is processed by each iteration: 1 is replaced
with 2 and then further replaced with 3 at the second iteration). On the other
hand, if the tuple (2, 3) ∈ Q is processed first by the loop, then R is updated to
{(2), (3)} by the entire loop.

Clearly, a loop whose result depends on the order in which the tuples of Q are
selected is usually not desired. In this case, condition 2 of Theorem 1 is violated
and, hence, the rewriting of Fig. 1 is not allowed. Indeed, condition 2 requires
that the relation (ρB1←B2(πB2(Q)) ��B1=B2 Q) consist of tuples with two equal
columns, which is not the case.

Now suppose that we use the relation Q′ instead of Q. Then the condition 2
of Theorem 1 is satisfied. Indeed, with any order of selecting the tuples of Q′ in
the loop, R gets modified to {(2), (2)}. �

As could be seen in the previous example, the violation of condition 2 of Theo-
rem 1 may indicate an undesired behavior of the loop. However, a non-idempotent
behavior of an update inside a loop is not always undesired. For instance, con-
sider the following variation of the update in Example 3 increasing the salary of
each employee who has been participating in a successfully finished project.

Example 5. Consider the schema of Example 3 extended with the relations
Project and EmployeeProject with sch(EmployeeProject) = {empl id, proj id} and
sch(Project) = {proj id, status}. Suppose that the employee’s compensation grows
depending on the number of successful projects she has been working in. For in-
stance, the following statement can be used to update the Employee table to
reflect such a policy:

Q(Empl id, Proj id):- EmployeeProject(Empl id, Proj id),
Project(Proj id, ’success’)

U(Empl id,Dept id, Base sal, Comp,Empl id,Dept id, Base sal, Comp′)[$t] :-
Empl id = $t.empl id,
Department(Dept id,Bonus),
Comp′ = Comp · (1 +Bonus)

58 V. Savenkov, R. Pichler, and C. Koch

for ($t in Q){up1; . . . upn};
� for ($t in Q){upj1 ; . . . upjα}; for ($t in Q){upjα+1 ; . . . upjn};
s.t. upi denotes the update of Ri by Ui[$t], i.e., upi is of the form
update Ri set Āi = Ui[$t].Ā

′
i from Ui[$t] where Ri.Āi = Ui[$t].Āi;

Fig. 2. Unnesting update programs

for($t in Q)
update Employee set compensation = U [$t].compensation′ from U [$t]
where U [$t].empl id = Employee.empl id and

U [$t].dept id = Employee.dept id and
U [$t].base salary = Employee.base salary and
U [$t].compensation = Employee.compensation

The update is well-defined but not idempotent: the incremented compensation
depends on the previous compensation. The restriction of Theorem 1 is not
desirable here. �

Different special cases like this leave a space for refining the preconditions for
loop elimination. E.g., the update predicate can be iterated some reasonable
number of times to check if the update becomes deterministic at some point
reachable by the update loop.

4 Loops with More Than One Update

In this section, we consider the case of two (or more updates) inside a loop. If
these updates operate on different relations R1 and R2, then the loop can obvi-
ously be decomposed into two loops with a single update inside. More generally,
we define the following rewrite rule.

Theorem 2. Let Q, R1, . . . , Rn be relations with sch(Q) = {B1, . . . , B�} and
sch(Ri) = Āi = {Ai1, . . . , Aimi} for i ∈ {1, . . . , n}, and let let U1[$t], . . . , Un[$t]
be parameterized relations with sch(Ui[$t]) = {Ai1, . . . , Aimi , A

′
i1, . . . , A

′
imi

} and
sch($t) = sch(Q). Moreover, suppose that, for every $t ∈ Q, the update of Ri

defined by Ui[$t] is well-defined (cf. Definition 1).
The rewrite rule in Fig. 2 is correct (i.e., the two loops resulting from the

rewrite rule application have the same effect on the database as the original
loop), if the following conditions are fulfilled.

1. The set {1, . . . , n} is partitioned into two sets J1 = {j1, . . . , jα} and J2 =
{jα+1, . . . , jn}, s.t. the two sequences of indices (j1, . . . , jα) and (jα+1, . . . , jn)
are arranged in increasing order.

2. {Rs | s ∈ J1} and {Rs | s ∈ J2} are disjoint.

Loop Elimination for Database Updates 59

Proof. Let T = {t1, . . . , tN} denote the tuples in Q, s.t. the loop processes
the tuples in Q in this (arbitrarily chosen) order. For every k ∈ {1, . . . , N}, let
Tk = {t1, . . . , tk}. We claim that, for every k ∈ {1, . . . , N} the following rewriting
is correct:

for ($t in Tk){up1; . . . upn};

 for ($t in Tk){upj1 ; . . . upjα}; for ($t in Tk){upjα+1 ; . . . upjn};

The correctness of this decomposition of the loop into two loops can be proved
by an easy induction argument which uses the facts that the relations U1, . . . , Un

are never modified inside these loops and the updates in the two resulting loops
operate on different relations Rs with s ∈ J1 and Rs′ with s′ ∈ J2. Hence, there
is no interdependence between the updates in the two resulting loops. �

From now on, we may concentrate on the case that all updates in a loop operate
on the same relation R. Below we define a rewrite rule for contracting two
updates of the same relation R to a single update. By repeating this rewrite
step, any number of updates of the same relation R can be rewritten to a single
update of R.

Theorem 3. Let R, U1, and U2 be relations with sch(R) = {A1, . . . , Am} and
sch(Ui) = {A1, . . . , Am, A′1, . . . , A

′
m} for i ∈ {1, 2} and suppose that the update

defined by each Ui is well-defined. Moreover, let U ′i be defined as follows:

U ′i(X1, . . . , Xm, X ′1, . . . , X
′
m) :- Ui(X1, . . . , Xm, X ′1, . . . , X

′
m).

U ′i(X1, . . . , Xm, X1, . . . , Xm) :- R(X1, . . . , Xm),
not Ui(X1, . . . , Xm, , . . . ,).

U ′i(X1, . . . , Xm, X1, . . . , Xm) :- U1(, . . . , , X1, . . . , Xm),
not U1(X1, . . . , Xm, , . . . ,).

U ′i(X1, . . . , Xm, X1, . . . , Xm) :- U2(, . . . , , X1, . . . , Xm),
not U2(X1, . . . , Xm, , . . . ,).

Finally, we define V with sch(V) = {A1, . . . , Am, A′1, . . . , A
′
m} as follows:

V (X1, . . . , Xm, X ′1, . . . , X ′m) :- U ′1(X1, . . . , Xm, Y1, . . . , Ym),
U ′2(Y1, . . . , Ym, X ′1, . . . , X

′
m).

Then the rewrite rule in Fig. 3 is correct, i.e., the update of R defined by V is
also well-defined and has the same effect on the database as the two successive
updates of R by U1 and U2.

Remark 3. Note that there are two possibilities why the update of a relationR de-
fined by some relation U leaves a value combination (a1, . . . , am) of the attributes
(A1, . . . , Am) unchanged: either U does not contain a row, s.t. the firstm columns

60 V. Savenkov, R. Pichler, and C. Koch

{update R set Ā = U1.Ā
′ from U1 where R.Ā = U1.Ā;

update R set Ā = U2.Ā
′ from U2 where R.Ā = U2.Ā}

� update R set Ā = V.Ā′ from V where R.Ā = V.Ā;
s.t. V is defined as in Theorem 3.

Fig. 3. Contracting two updates

coincide with (a1, . . . , am); or U contains the row (a1, . . . , am, a1, . . . , am). In-
tuitively, the latter case makes the identity mapping for the tuple (a1, . . . , am)
in R explicit. The intuition of each relation U ′i in the above theorem is that it
defines exactly the same update of R as Ui. The only difference between U ′i and
Ui is that U

′
i makes all possible identity mappings explicit.

Proof. Let r be an arbitrary tuple in r and suppose that r is modified to r′ by
the update defined by U1 (of course, r′ = r if r is not affected by this update).
Moreover, let r′ be further modified to r′′ by the update defined by U2. Then
either r �∈ πĀ(U1) or (r, r′) ∈ U1. In either case, (r, r′) ∈ U ′1. Likewise, we may
conclude that (r′, r′′) ∈ U ′2 holds. Hence, also (r, r′′) ∈ U ′1 �� U ′2 = V holds. Note
that the value of r′ is uniquely determined by r. This is due to the definition of
U ′1 and to the fact that U1 is well-defined. Likewise, the value of r′′ is uniquely
determined by r′. Hence, the update defined by V is well-defined. Moreover, it
indeed modifies r to r′′. �

In total, we define the following algorithm for unnesting updates in for-loops:

1. In case of nested for-loops, start with the innermost loop.
2. If a loop contains several updates affecting more than one relation, then

replace the for-loop by several successive for-loops each updating a single
relation (by iteratively applying the rule of Fig. 2).

3. If a loop contains several updates which all affect the same relation, then
replace this sequence of updates by a single update (by iteratively applying
the rule of Fig. 3).

4. Replace a loop with a single update by an update without loop (by applying
the rule of Fig. 1).

From a program optimization point of view, also partial unnesting via our tech-
niques may lead to much more efficient queries – even if complete unnesting is not
always possible (due to the conditions which are required for our transformation
rules to be correct).

5 Conclusion

We have considered the problem of unnesting relational updates with cursors
and replacing them with simpler, purely relational update expressions. The full
set of our rewrite rules can handle loops with one or multiple update statements.

Loop Elimination for Database Updates 61

Unnesting and loop elimination can drastically simplify the database program,
making it truly declarative and thus more readable and accessible for optimiza-
tion through appropriate components of the database engine.

Our technique crucially relies on the idempotence of the update operation.
Reasonable in most cases, in some situations this requirement can be too restric-
tive, as discussed in Section 3 (see Example 5). More fine-grained optimization
techniques of update loops, relaxing the idempotence requirement where ap-
propriate, as well as more elaborate techniques of splitting loops with multiple
updates are left for future work.

Acknowledgements. The research of V. Savenkov and R. Pichler is supported
by the Austrian Science Fund (FWF): P25207-N23. The work of C. Koch is
supported by Grant 279804 of the European Research Council.

References

1. Antova, L., Koch, C.: On APIs for probabilistic databases. In: QDB/MUD, pp.
41–56 (2008)

2. de Kruijf, M.A., Sankaralingam, K., Jha, S.: Static analysis and compiler design for
idempotent processing. SIGPLAN Not. 47(6), 475–486 (2012)

3. Gluche, D., Grust, T., Mainberger, C., Scholl, M.H.: Incremental updates for ma-
terialized OQL views. In: Bry, F. (ed.) DOOD 1997. LNCS, vol. 1341, pp. 52–66.
Springer, Heidelberg (1997)

4. Gupta, A., Mumick, I.S. (eds.): Materialized views: techniques, implementations,
and applications. MIT Press, Cambridge (1999)

5. Lieuwen, D.F., DeWitt, D.J.: A transformation-based approach to optimizing loops
in database programming languages. SIGMOD Rec. 21(2), 91–100 (1992)

6. Ramalingam, G., Vaswani, K.: Fault tolerance via idempotence. In: Proc. of POPL
2013, pp. 249–262. ACM, New York (2013)

	Loop Elimination for Database Updates

	1 Introduction
	2 Update Language
	3 Loop Elimination
	4 Loops with More Than One Update
	5 Conclusion
	References

