
Visualizing Software Ecosystems as Living Cities

Clinton Jeffery

University of Idaho, Moscow ID 83844, USA
jeffery@uidaho.edu

http://www2.cs.uidaho.edu/~jeffery/personal.html

Abstract. Several groups visualize software systems using ”city”
metaphors, mapping software onto features such as buildings and roads.
This abstract introduces a “living city” metaphor, where programs are
visualized as a city populated by users, data structures, threads of exe-
cution, and bugs. A living city is a 3D, multi-user virtual world in which
the visible artifacts are software and data.

Keywords: software visualization, virtual environments.

1 Introduction

Software visualization includes static views such as UML Class Diagrams, as
well as animated program execution behavior.

1.1 Visualizing Software as Cities

Wettel and Lanza [1] developed CodeCity to visualize software as a city. Classes
are buildings, whose height indicates the number of methods. Width and length
depict the number of attributes. CodeCity depicts large software systems, such
as this 8,000 class program.

Fig. 1. CodeCity buildings are classes. Height gives the number of methods.

In CodeCity, topography depicts package structure. Layout groups classes in
the same package together, and then uses a modified treemap algorithm [2].
CodeCity’s static views show how software systems evolve over time. Their
metaphor provides the backdrop for the visualization of dynamic program be-
havior proposed in this paper.

C. Stephanidis (Ed.): Posters, Part I, HCII 2013, CCIS 373, pp. 640–644, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www2.cs.uidaho.edu/~jeffery/personal.html

Visualizing Software Ecosystems as Living Cities 641

1.2 Related Work

Knight and Munro [5] developed a tool in which a program is a virtual world, a
directory is a country, each file is a city, each class is a district, and each method
is a building. They do not map the building interiors, but exterior characteristics
show size, parameters, and so on. Kuhn et al [3] developed topological software
maps, with island chains depicting relationships of software components.

Fig. 2. Topological software maps constructed from component relationships

In CrocoCosmos, [4] a primary model depicts the software system; secondary
and tertiary models depict details. Subsystems are streets, with contained classes
as buildings. Age is depicted by centrality and elevation.

Fig. 3. CrocoCosmos

642 C. Jeffery

2 The Living City Metaphor

The “city” metaphor enables sharing, interacting, and debugging collective soft-
ware development efforts. Extensions to the static software city metaphor are
required. The primary extensions introduce dynamic entities.

2.1 Visualizing a Software Ecosystem

Besides peer assistance and review, working in a software city on a set of related
programs injects interest and fun, and reduces the cost of collaboration.

2.2 Static Extensions to the City Metaphor

Additional metaphors extend the static backdrop developed byWettel and Lanza.

directories and packages are roads sizes equivalent to street, arterial, and
freeway are needed.

classes’ buildings’ dimensions height gives the number ofmethods (storeys).
Thewidth is the number of variables. The length is log(| longestmethod inC|).

Building exterior appearance A texture shows class age and a blended
color suggests last commit time. Some old programs are maintained, while
others are in ruins.

Class internals Inside a class building is an informative layout for users to
walk around in. Starting from ground floor constructors and a directory, one
accesses methods via elevator.

Method body details building interiors contain dynamic information: num-
ber of activation records live, threads executing there, etc.

Time model Unlike wall-clock time, CPU time may be frozen, or go back-
wards, a la the Dagger of Time.

Processes and threads Tasks appear as ”weeping angels”: frozen when seen;
moving when unseen.

Functions Functions are singletons containing one public method. A function
library resembles a village.

Representing heap Applications are humanoids. Libraries are robots.
Garbage Unused memory lies on the ground.
Atoms data appears as books (string), hammers (int) and saws (real).
External entities Networks are airports, databases are sea ports, local files

are mines. Handles are runtime entities such as aircraft or ships.
Associations Class references add connectivity, beyond the street system.
Inheritance Subclasses have a physical resemblance, such as copied buildings

with extra floors.
Aggregation Part-of relationships are physical adjacency or containment.
The call stack A beam-of-light model points backwards from callee to caller.
Bugs and warnings A bug report is a spawn-point that emits monsters that

attack executions. Killing the bug in-game is temporary; until the bug is
fixed, the spawn-point remains.

Visualizing Software Ecosystems as Living Cities 643

Building layout After placing the largest buildings first, and placing others
around them, and placing associated or coupled classes together, Loretan [6]
suggests associating classes by their lexical vocabulary.

Ghosts The city contains remembrances of fixed bugs and deleted code

2.3 Dynamic Extensions

A software city is changed by the software developers that write the code.

Users End users are depicted by computer controlled avatars (NPC’s). Users
work on use cases, suspend, log out, or crash due to bug attacks.

Developers Developers are NPC’s when not present.
Processes and threads The software code forms buildings, but executions

are NPC’s that move around in a building. A thread standing still is blocked
or thrashing and needs help.

3 Case Study: Unicon

This section explores living cities by proposing one for the Unicon programming
language, called Unicon City. The case study considers the code that is bundled
with the language distribution. The Unicon source code includes 195K lines of
C code in the language implementation.

About 350K lines of Unicon code in the distribution was written by 60+
authors. Unicon City has a horizontal axis street (unicon), sized so that a person
can walk across. The length of the axis street is proportional to the number of
lines of code. A street 1cm/LOC long would be 5.7km. The width of this primary
arterial is scaled ln(LOC) meters (13.2m).

Fig. 4. First street layout for Unicon City

This first street layout for Unicon City is based on the Unicon directory hi-
erarchy. The “CodeCity” treemap algorithm has more crossroads, laying out
disconnected parts of the tree adjacently. The “CrocoCosmos” street-based lay-
out is closer to Unicon City. An automatic city layout algorithm might generate
a software city atop a map of a real city to increase the aesthetics of the result.

644 C. Jeffery

4 Implementation

These tools under construction are needed to complete the living city:

collaborative virtual environment CVE (cve.org) is one.
world generation from a software codebase generate street layouts and

buildings from code.
incremental algorithms for code updates update data models from repos-

itory commits
high performance dynamic data Unicon reports ˜120 types of events such

as control flow, calls, returns, data structures, and garbage collection. Dy-
namic program behavior events will be used to animate the software city.

NPC AI NPC’s need “intelligent” behavior.
early adopter user base Some of the Unicon language community might use

this project, but others will prefer or require more privacy than it affords.

5 Conclusions and Future Work

The Living Cities metaphor is a vision of the future of software development:
an IDE, visualization tool, and MMO. Although this vision requires substantial
time and effort to achieve, the enabling technologies are all in place.

References

1. Wettel, R., Lanza, M.: Visualizing Software Systems as Cities. In: Proceedings of
VISSOFT 2007 (4th IEEE International Workshop on Visualizing Software For Un-
derstanding and Analysis), pp. 92–99. IEEE Computer Society Press (2007)

2. Shneiderman, B.: Tree visualization with Treemaps: a 2-D Space-filling Approach.
ACM Transactions on Graphics 11(1), 92–99 (1992)

3. Kuhn, A., Loretan, P., Nierstrasz, O.: Consistent Layout for Thematic Software
Maps. In: Proceedings of the 15th Working Conference on Reverse Engineering,
WCRE 2008, pp. 209–218 (October 2008)

4. Steinbruckner, F., Lewerentz, C.: Representing Development History in Software
Cities. In: Proceedings of the 5th International Symposium on Software Visualiza-
tion, SOFTVIZ 2010, pp. 193–202. ACM, New York (2010),
http://csbob.swan.ac.uk/visWeek10/softvis/docs/p193.pdf

5. Knight, C., Munro, M.: Comprehension with[in] Virtual Environment Visualiza-
tions. In: Proceedings of the Seventh International Workshop on Program Compre-
hension, Pittsburgh, PA, May 5-7, pp. 4–11.

6. Loretan, P.: Software Cartography. M.S. Thesis, University of Bern (2011)

http://csbob.swan.ac.uk/visWeek10/softvis/docs/p193.pdf

	Visualizing Software Ecosystems as Living Cities
	1 Introduction
	1.1 Visualizing Software as Cities
	1.2 Related Work

	2 The Living City Metaphor
	2.1 Visualizing a Software Ecosystem
	2.2 Static Extensions to the City Metaphor
	2.3 Dynamic Extensions

	3 Case Study: Unicon
	4 Implementation
	5 Conclusions and Future Work
	References

